On the Number of Unique Subgraphs of a Graph

R. C. ENTRINGER AND PAUL ERDÖS

University of New Mexico, Albuquerque, New Mexico 87106, and Mathematical Institute, Hungarian Academy of Science, Budapest 9, Hungary

Received December 3, 1971

A subgraph H of a graph G is unique if H is not isomorphic to any other subgraph of G. The existence of a graph on n vertices having at least $2^{n^{3/4}-en^{9/8}}$ unique subgraphs is proven for $c > \frac{3}{2} \sqrt{2}$ and n sufficiently large.

We will say a subgraph H of a graph G is unique if H is not isomorphic to any other subgraph of G. In Figure 1 we give an example of a graph and its unique subgraphs.

![Figure 1](image-url)

Any graph G with edges contains at least two unique subgraphs: G itself and the graph obtained by deleting all edges of G. The complete graphs on more than one vertex have just two unique subgraphs.
We will show that, although a graph on n vertices can have at most $2^{n \choose 2}$ subgraphs, still, for all large n, there are graphs with more than $2^{n^2/2-cn^{3/2}}$ unique spanning subgraphs where c is any constant greater than $\frac{1}{3} \sqrt{2}$.

In the following an asymmetric graph is a graph with no non-trivial automorphism and $[x]$ and $\{x\}$ have their usual meanings as largest integer not more than x and least integer not less than x, respectively.

We denote by $f(n)$ the largest number of unique-subgraphs a graph on n vertices can have.

Theorem. $f(n) > 2^{n^2/2-cn^{3/2}}$ for $c > \frac{3}{\sqrt{2}}$ and n sufficiently large.

Proof. We will construct a graph G having the required number of unique subgraphs by constructing graphs A and B and then joining their vertices in a certain manner to form G.

We first construct a graph A on $m = \left\lfloor \frac{-1 + \sqrt{8n + 1}}{2} \right\rfloor$ vertices so that the complement of A is a tree T having exactly one vertex v of valence three and such that the removal of v leaves three paths no two having the same length. Such a tree exists for $m \geq 7$ and hence for all $n \geq 28$. Clearly T, and so A, is asymmetric. For a later calculation we note that each vertex of A has valence at least $m - 4$.

Next we construct a second graph B with $n - m$ vertices by dividing these vertices as equally as possible into

$$k = \left\lfloor \frac{m}{2} \right\rfloor - 3$$

sets and joining by an edge any two vertices not in the same set. Again for future calculation we note, since there are at least

$$\left\lfloor \frac{n - m}{k} \right\rfloor$$

vertices in each set, that each vertex of B has valence at most

$$n - m - \left\lfloor \frac{n - m}{k} \right\rfloor.$$

With each vertex b of B we associate a set A_b of at least $m - 2$ vertices of A. Since $\binom{m}{2} + m + 1 \geq n - m$, the A_b sets can be chosen to be distinct. Since also $\binom{m}{2} \leq n - m$ the A_b sets can be chosen to include all
subsets of \(m - 2 \) vertices of \(A \) and hence so that any vertex of \(A \) is a member of at most one more \(A_b \) set than any other vertex of \(A \).

Now we let \(G \) be the graph consisting of \(A \) and \(B \) together with all edges joining each vertex \(b \) of \(B \) to all the vertices of \(A_b \). If \(a \) and \(b \) are vertices of \(A \) and \(B \), respectively, then, since there are at least \((n - m)(m - 2)\) such edges, \(a \) has valence at least

\[
\left\lfloor \frac{(n - m)(m - 2)}{m} \right\rfloor + m - 4
\]

and \(b \) has valence at most

\[
n - \left\lfloor \frac{n - m}{k} \right\rfloor
\]

so that \(a \) has greater valence than \(b \) if

\[
\left\lfloor \frac{n - m}{k} \right\rfloor > 2 + \frac{2n}{m}.
\]

It is easy to verify that this inequality holds for \(n \geq 1 \).

If the number of edges in \(B \) is \(t \) then, since

\[
\frac{n - m}{k} \leq \frac{2(n - m)}{m - 7} \leq \sqrt{2n} + 7,
\]

we have, for \(c > \frac{3}{2} \sqrt{2} \) and sufficiently large \(n \),

\[
t \geq \frac{1}{2} (n - m)(n - m - \left\lfloor \frac{n - m}{k} \right\rfloor) > \frac{1}{2} (n - \sqrt{2n})(n - 2\sqrt{2n} - 8) \\
\geq \frac{n^2}{2} - cn^{3/2},
\]

so that the proof will be complete if we show that any subgraph of \(G \) obtained by deleting edges of \(B \) is unique.

Suppose that \(H \) is any such subgraph and that \(H' \) is another subgraph of \(G \) isomorphic to \(H \) under \(\varphi \). \(\varphi \) must carry a vertex \(a \) of \(A \) to a vertex of \(A \) since the degree of \(a \) in \(H \) is larger than the degree in \(H' \) of any vertex of \(B \). The restriction of \(\varphi \) to \(A \) is then an automorphism on \(A \) and so each vertex of \(A \) is fixed by \(\varphi \) since \(A \) is asymmetric. Since this is so, for each vertex \(b \) of \(B \) we must have \(A_b = A_{\varphi(b)} \), which in turn requires \(\varphi(b) = b \), i.e., \(\varphi \) is the identity and \(H \) is unique.
We note that it follows from the proof that for proper choice of the constant \(c \) we have

\[
f(n) > 2^{n^{3/2} - 3\sqrt{2n^{3/2}} - e^n} \quad \text{for} \quad n \geq 1.
\]

It would be interesting to get a non-trivial upper bound for \(f(n) \). Perhaps our lower bound is close to being best possible but we have not even proved \(f(n) < 2^{n^{3/2} - n^{1+\varepsilon}} \) for a certain \(\varepsilon > 0 \).

The following question might also be of interest: Determine or estimate the largest \(r = r(n) \) so that there is a graph on \(n \) vertices in which the removal of \(r \) or fewer edges leaves a unique subgraph.