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ABSTRACT 

We solve here some problems arising from a work by Hechler [3]. We elimi- 
nate extra set-theoretic axioms (MA, in fact) from existence theorems and deal 
with the existence of disjoint sets. 

Intrdouction 

Wedeal with almost-disjoint families (denoted by K and L) of sets of natural 
numbers. Usually the sets and the family are infinite. (For any two cardinals 
KB 2 tc,, it is of interest to consider those families of subsets of K, such that 
eachmember of the family has cardinality K, and the intersection of any two 
distinct members of the family has cardinality less than K, . Our results generalize 
to hold for such families with only small changes or additional requirements 
(e.g., fi < CI or K, regular for Theorem 2.1).) We use Hechler’s notation. Two 

remarks are in order: 
1) non-2-separability of K is equivalent to the property (B) of K (see Miller 

[5] and Erdijs and Hajnal [l] concerning this property}. Miller proved the exis- 
tence of, what we called, the a-separable family in a very “tricky” way. 

2) K is n-separable iff it does not have a colouring with n-colours (according 

to the notations of Erdiis and Hajnal [2]). 

1. Existence of n-separable but not (12 + 1) - separable families 

In [3], section 8, Hechler proves the existence of some almost-disjoint families 
with separability properties, using the assumption that every infinite maximal 
almost-disjoint family (E P(N)) has power 2“‘. This follows from Martin’s axiom 
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[4] but, by Hechler [6], its negation is consistent with ZFC. We shall eliminate 

this assumption of [3], theorems 8.1 and 8.3. 

THEOREM 1.1. There is a strongly n-separable (hence n*-separable), non- 

(n + l)-separable, and even non-(n + l)-“separable, maximal almost-disjoint 

family (for any n 2 1). 

PROOF. Let (Al,..., A,, r) be a partition of N into (n + 1) infinite sets. Let, 
for i 5 n+l, Li= {FL: a < 2Ko} be an almost-disjoint family of (infinite) 
subsets of Ai. (Throughout this paper we shall use i, j, k, m , and n to denote 
positive integers or variables ranging over positive integers. Thus i s y1 may 
always be thought of as meaning 1 5 i S n ,) Let {(II,‘, .s.,D~: a c 2Ko} be the 
set of all partitions of N into n sets, each partition appearing 2”O times. For 
each CI < 2Ko and each i 5 II -t 1, 

J=t 

Since Fi is infinite, there exists a j = j@, i) such that FL n Dh is infinite. Since 
for fixed c1 the function j(q i) has n + 1 elements in its domain and only n in its 

range, there exist i(a, 1) < i(a, 2) 5 n + 1 such that j(,, i(cr,l)) = j(a, i(cr, 2)) 
dz j(g). Define G, = Di”’ n (Fi(oL*l) U Fi’” ‘3, 

Let K = {G,: a < 2”). K is a subfamily of the desired family. Clearly it is 
an infinite almost-disjoint family of subsets of N. The partition (AI, .**,A,+l) 
shows that K is not even (n -I- l)-*separable, much less (n + l)-separable because 
each G, intersects at least two Ai'S in an infinite set. On the other hand, as 

G, c Di”“‘, and each partition appears infinitely often, K is strongly n-separable. 
Now, by [3] theorem 6.2, we may extend K to a maximal almost-disjoint family 
which retains these properties. 

THEOREM 1.2. For each n > 1, there is an n-separable maximal almost- 

disjoint family which is not strongly n-separable. 

PROOF. Let (Al, ..a, A,) be a partition of N into n infinite sets. For each i 5 n, 

let I,i = (Fi: CI K 2”) be an almost-disjoint family of infinite subsets of Ai. Let 

(P,1, .-.> 01): 0 < 0: c 2’O) be the set of partitions of N into n sets. We define 
for each c( < 2’9 asetG,cN,andthenK=(F&~..,F~)y{G,:O<cl~2~~} 

is our family. The partition (Ai, ..- ,A,) shows that K is not strongly n-separable; 
whereas the Ga’s show that it is n-separable. 
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Let Q<ct<2Ko. As in Theorem 1.1, for each i s n , there is a j = j(i, cx) 

such that 1 Fi n Oil = K,. If there exists i < k s n such that j = j(i, a) 

= j(k,a), then set G, = ok n (FL n FB. Otherwise for each j 5 N, there is 
an i(j,a) such that i = i(j,a) +z- j = j(i,a). If there is a k s n such that 

D%+,a), choose such a k and any x E DkAi(k II, and let G, = (@u Fi(k’“‘) n (x). 

In the remaining case Df = Ai(k,a) for all k so the partitions (D,‘,*.*, 0:) and 

(4, -..) A,) are the same and we may let G, = FJ. Clearly we obtain a family K 
satisfying our conditions. 

Problem A. Does there exist a completely separable family (without assum- 
ing MA, as in [3], theorem 8.2)? 

Problem B. For any m, n 2 2, does there exist an m-n-separable but not 
strongly m-n-separable almost-disjoint family? (For definition see [3], p. 415.) 

Problem C. For any m, n 2 2 does there exist a strongly m-n-separable, 

non-m-(n + I)-separable almost-disjoint family? 
Problem D. Let m 5 1. Does there exist am almost-disjoint family K, 

which is m-n-separable for every n, but is not (m + 1)-Zseparable? 
Problem E. Does there exist a fully-Ramsay, not completely separable 

almost-disjoint family (see [3] p. 419)? The answer is no since if S is fully-Ramsey, 
2S = { (2n: n E A} : A E S> is a counter-example. 

REMARK. In Erdiis and Hajnal [l], it was noted that Miller’s [S] construction 
gives somewhat more than almost-disjointness, i.e., for each A E K and x E N-A , 

the set A n ( u {B; x E B E K}) is finite; with small additions our proofs can 

give this too. Notice that CH(2u0 = ‘&) implies MA. 

2. On disjoint sets in 2-separable almost-disjoint families 

In [3], theorem 4.1, Hechler proved that any strongly 2-separable almost 

disjoint family contains an infinite disjoint subfamily. For 2-separability he has 

some weaker results (theorems 4.3 and 8.4). We shall prove that every such family 
has two disjoint sets, but (assuming MA)) not necessarily three. 

THEOREM 2.1. If K is nn almost-disjoint 2-separable family of inJinite sets, 

then it contains two disjoint sets. 

REMARK. We need the “infinite sets”. For example 
K,,= {A:Ac {1,..+,2n+l]All = n + l}. 

PROOF. Suppose there are no two disjoint sets in K. Let A E K. We now 
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define by induction on n a famiIy {B,,) E K - (A) of distinct sets and’s colouring 

of the points of lJ1=l Bi by red and blue, such that each set Bzn contains only 

blue points except for one red point y,, E B,, n A, and each set Bznf I contains 
only red points except for one blue point y,,,, I E B,,, 1 fi A. Suppose B,, 1.1, B,- 1 

have already been delined, together with the associated colouring. We shall define 
B, assuming, without loss of generality, that n is even. Choose blue points 
X,E& for each i 5 n-1. Let C = (pi: 1 5 i s n-1) u Undo (A nBJ. Since 

K is almost disjoint, C is finite. (C, N- C) is a 2-partition of N, but since 
C is finite, no subset of it belongs to K. Hence there is a set D E K such that 

D E (N-C). By assumption D and A are not disjoint, so choose any point 
y,EAnD. Then y,$C, and as y,,eA, we have y,$ UfZ:Bi* Let 

D, = (U yZ:B,u D) - (xi,***,~,-~,y,,). As xi~Bt, we have Bi $ D,, and as 
~,ED, we also have D $ D1. If for any other set X E K, we have X c D, , 

then either X n Bi (for some i) or X n D is infinite-a contradiction. 
Thus no member of K is contained in D, . As K is 2-separable, there is a B, E K, 

such that B, c (N -DI) . By assumption B, n D + 0, but by the definition of 

D, and B, we have (B, n D) E {y,> . Hence y,, E B,. Similarly 

n-l 

B,, n UB, 3 {x~,“*,x,). 
( > i=l 

So all the points of B, which are coloured, are coloured blue. Thus since 

y, $ U 7:: Bi , it is not coloured. So we can colour y, red and each x E B, - (yn} 

blue. After we finish colouring U n= 1 B,, we can complete the colouring 
arbitrarily. 

Now we have a partition of N into two sets-the red points and the blue 

points. Then one of them, say the set of red points, contains an XEK. Now 
by assumption, for each n , X n B, # ~3. But if n is even, B, has only one red 
point y, so y, E X . Hence X n A 2 {y, 1, n even} which is infinite-a contra- 
diction. 

THEOREM 2.2. Assuming Martin’s axiom, there is an (in$nite) almost-disjoint 

2-separable family of (injnite) subsets of N, containing no three disjoint sets. 

PROOF. Let ({D,‘, Ill) : o < CI e 2”‘) be the set of partitions of N into two sets 
such that 0 E 0,‘. 

We shall define by induction on a a family of (infinite) sets G, G N such that 
1) N minus any finite union of GE’s is infinite. 
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2) p < 01 implies G, n G, is finite or G, = G, . 

3) G,ED,~ or G,ED,! 

4) If fl<&,G,#G,, then either 0 E G, E D,’ or 6, n G, # ,a. 

Define G, , n < w , so that (G,: n < o 1 is an almost-disjoint family of subsets 
of N with intersection (0) and union N. 

Suppose we have defined G, for every P < SI, and we want to define G, , 

Case I. There exist n,fll < ... < 8, < tl, such that 0: c * U:= 1 Gflr. 

(A _c * B iff A - B is finite). 

If for some fl< a we have G, r 0: , let G, = G,. Clearly the conditions 

are satisfied. Otherwise, for each G, If (GB,: i I n>, condition 2 guarantees that _ 

GB n Df is finite and hence Gd n 0: is infinite. By [3] theorem 9.2, there is a set 
A c D,‘which is almost disjoint to every GB fi Di, and 1 G, n Df 1 2 h’,,=> ( G, n Al 

> 0 and A n GBi # 0 for 1 5 i S n. Define G, = A; clearly all conditions are 

satisfied. 

Case Ii. not case I. 
By [3], section 9.2, we can find A c 0,” such that A is infinite and A n G, finite 

for every fi < c(. Let G, = A u (0} . The family K = {G,: CI < 2 ‘O> satisfies 

all conditions except maximality. By [3], theorem 2.3, there is a L 3 K which 
satisfies them all if we add 0 to every A EL - K. 

Problem F. Can Martin’s axiom be eliminated from the proof? 

REMARK. Clearly in Theorem 2.1, the “almost-disjoint” assumption was 
necessary (e.g., any ultrafilter over N is 2-separable, but it contains no two dis- 

joint sets.) It is natural to ask whether the ‘Lalmost-disjoint” hypothesis can be 
replaced by a weaker one. A natural candidate is given by: 

DEFINITION 2.1. A family of sets is independent if for no n and distinct 

4% ee.5 B, in the family, A c Ur= 1 Bj. 

If we replace AZ UB, by AE* UB, (=A- UB, is finite) we get the notion 
of *-independent. When considering a *-independent family, it is natural to ask 
as to whether or not it contains an almost-disjoint subfamily. 

THL~REM 2.3. Assuming Martin’s axiom, there is an “-independent (in- 

finite) strongly 2*-separable family K of (infinite) subsets of N, in which there 

are no two *-disjoint sets (i.e., A # BE K 5 A n B is infinite). 

PROOF. Let {(Dz, 0,‘) : a < 2’“}> be the set of partition of N into two, each 
appearing 2KJ times. We define by induction on E, infinite sets G, c N such that: 
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1) for no n,&,..*,& 5 CI, N $ * U~,lGgi 
2) p < a implies G, n G, is infinite 

3) (G,: /? 2 a} is *-independent. 
Suppose GB, /3 < a, has been defined. Then clearly by 3) {G,: /3 < a> is a *-in- 

dependent family. 

If for some p < CI, G, E * 0: or G, z * Ol, let G, = GB. Otherwise for each 
/? < c(, Gs n 0,” is infinite. By l), without loss of generality, for no n < o, 

P ‘..T p,,<cc, D,~E* u!cl Gfit. Let L be the Boolean algebra generated by 
{XnD::p<.). Then/ L[ ~2% Hence by Martin’s axiom (see [3], theorem 
9.2) we can find G, E 0,” such that A EL, A infinite + G, n A and A - G, are 
infinite. So it is easy to verify that the induction hypothesis is satisfied. 

K = {Gbl: c( < 2Ko) is the set we want. 

Problem G. Does every independent 2-separable family of infinite subsets 
of N contain two disjoint members? 

Problem G was solved affirmatively by Hajnal, McKenzie and Shelah, inde- 
pendently. 

THECIEREM 2.4. In every independent 2-separable family of infinite subsets 

of N, there are two disjoint sets. 

SKETCHED PROOF. Suppose K is a counterexample. Let 

K, = {A: AEK, A c U {B:BEK, B f A}}; 

K, is also an independent 2-separable family. Define inductively B, E K, , x, E B,, 

and a colouring of U i < n Bi by red and blue such that: x, is the only red or blue 

point of B,; and for each x E B, there is m < o such that x = x,. Suppose 
Xi, Bi i < n , and the colouring of U i<n B, are defined, Let x, be the first number 

in U i< ,, Bi - (xi: i < n> , and, without loss of generality, x, is blue. We want 
to find B, and a colouring. Choose from each Bi, i < n , X, $ Bi , a red point Zi . 

Let D, = Ui<nBi-{(zi:i)-{~n) and Dz = N-D1. For no BEK~ is B_cD, 

so there is a B, E K such that B,, E D,. Colour B, - (xn} by red. 

By the 2-separability there is a set BE K, , disjoint to one colour, e.g., red. 
Hence if x, is blue, B n B, s {x,} so B fi B, = {x,} and x, E B. So B contains 
all the blue x,. Let x, be red. Then B, - B = (x,> , but B, E K, , so we have 

B’EK, B’ # B, and x,EB’. Hence B,,, E BU B’-a contradiction. 
We can pose instead: 
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Conjecture G”. 
1) For every n there is a 2-separable family K of infinite subsets of N, with 

no two disjoint members, such that for distinct B, A 1, *.., A, E K , B $ &li. 
2) The same as 1) with B $ * Ui, HAi. 
For n = 1, 1) was proved by Lovan (private communication) and Shelah 

independently. 
A variant of Lovan’s construction is: let us partition iV into the infinite sets 

X,A,, n<w. Let (T,:a<2”) = (T:T _C U,A,, ITfiA, 1 = 1}, X = {xn:n] 

u{y), and K= {-~u(Y}: n<o>u{T,uIy}:a<2Ko)u{A,uT~u{Xm): 

n,m<H, 1x<2~~)U (X}. 
Shelah’s construction defines an increasing sequence of families K,, such that 

XEAEK,=> (iv-A)U(X)EK,. 

3. Families of finite sets 

There are also related finite problems. Let n, m be natural numbers. A family 

S is called an (n, m)-family if A E S implies IA 1 = n, and for distinct A, B E S, 
we have [A r\ BI g m . The question is to find f(n, m) according to: 

DEFINITION. 3.1. f(n, m) is defined to be the maximal number f such that 

every 2-separable (n, m)-family has in it f pairwise disjoint members, 
For simplicity we restrict ourselves to m = 1. 

Conjecture H. f(n, 1) 2 2 w)(~-‘) for any E > 0 n big enough, (or at least 

f(n, 1) >= 2cn). 
However it is not hard to see that for n sufficiently large we havef(n, 1) 2 2 

(and, in fact, much larger). 
Suppose there are no two disjoint sets in a 2-separable (n, l)-family S. Choose 

X,E&ES and let V= U{A:AES). Let B, = U{A:X,EAES), and con- 
sider the partition [B, - (x0>, (I’ - B,) u {x0}]. If some C E S is a subset of 
(V - B,) y (x0), then C $ B, . Hence x0 $ C so C c V- B. and therefore 
C, A, E S are disjoint-a contradiction. Hence there is a C E S such that 
Cc B,-(x0}. For each A if 3t0gA~S, CnA#@; but for any distinct 

&&ES, XoE&, XOEA,, CnA, nA,=@ as 1 A, nA,I j 1. Hence 

A, nA, = (x0} but x,$C. As /Cl = rt, clearly 
1 (A: x,EAES}/ $ n. If x~EA~ES, G,EA~ES, A, #A, then for every 

x0 # XlEAi, xi) # X5E&, there is at most one C E S such that x0 $ C , x1 E C 

andx,EC. Hence ISI s n+(n-1)‘. 
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But we could have chosen x0 belonging to at least two members of S; other- 
wise S is a family of pairwise disjoint sets, and, if n > 1, is not necessarily 2-sep- 

arable. 
Now we shall show that the 2-separability of S implies 1 Sl 2 2 “+I (in fact 

j s 1 2 2y1 + 2jn)-l by Schmidt [S] and for n = 4 Prevling (private commu- 
nication) has shown 1 SI > 13). We do it by a probabilistic argument. Suppose 
we randomly partition I/ into two parts such that each element of V has equal 

probability of falling into either part and that the choices are made independently. 
The probability of a set A E S being totally in one part is 2-c”- 2). But if ( S 1 c 2-*-l 
the probability that at least one set of S will be totally in one part is at most 

1 S 1 * 2-‘“- ” < 1, so S cannot be 2-separable. 
Thus we have shown that 2”-l 5 S 5 n + (n-1)2. But n + (n-1)’ 2 2”-’ 

implies n < 6, so we have therefore shown that n 2 6 implies f(n, 1) 2 2. 

ErdGs [7] shows that there is a family S such that A ES => 1 A 1 = II, S is 
2-separable and 1 S 1 < 01~2~. 

Conjecture I. For every n, m(n) 2 cn where nz(n) is the largest nt for which 
f(n, 172) > 1. (But m(n) 2 en/log n can be proved.) 
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