Reprinted from Israel Journal of Mathematics Vol. 12, No. 2, 1972

SEPARABILITY PROPERTIES OF ALMOST – DISJOINT FAMILIES OF SETS

BY

PAUL ERDÖS AND SAHARON SHELAH

ABSTRACT

We solve here some problems arising from a work by Hechler [3]. We eliminate extra set-theoretic axioms (MA, in fact) from existence theorems and deal with the existence of disjoint sets.

Intrdouction

We deal with almost-disjoint families (denoted by K and L) of sets of natural numbers. Usually the sets and the family are infinite. (For any two cardinals $\aleph_{\beta} \leq \aleph_{\alpha}$, it is of interest to consider those families of subsets of \aleph_{α} such that each member of the family has cardinality \aleph_{α} and the intersection of any two distinct members of the family has cardinality less than \aleph_{β} . Our results generalize to hold for such families with only small changes or additional requirements (e.g., $\beta < \alpha$ or \aleph_{α} regular for Theorem 2.1).) We use Hechler's notation. Two remarks are in order:

1) non-2-separability of K is equivalent to the property (B) of K (see Miller [5] and Erdös and Hajnal [1] concerning this property). Miller proved the existence of, what we called, the 2-separable family in a very "tricky" way.

2) K is *n*-separable iff it does not have a colouring with *n*-colours (according to the notations of Erdös and Hajnal [2]).

1. Existence of *n*-separable but not (n + 1) – separable families

In [3], section 8, Hechler proves the existence of some almost-disjoint families with separability properties, using the assumption that every infinite maximal almost-disjoint family ($\subseteq P(N)$) has power 2^{\aleph_0} . This follows from Martin's axiom

Received March 16, 1972

[4] but, by Hechler [6], its negation is consistent with ZFC. We shall eliminate this assumption of [3], theorems 8.1 and 8.3.

THEOREM 1.1. There is a strongly n-separable (hence n*-separable), non-(n + 1)-separable, and even non-(n + 1)-*separable, maximal almost-disjoint family (for any $n \ge 1$).

PROOF. Let (A_1, \dots, A_{n+1}) be a partition of N into (n + 1) infinite sets. Let, for $i \leq n+1$, $L_i = \{F_{\alpha}^i: \alpha < 2^{\aleph_0}\}$ be an almost-disjoint family of (infinite) subsets of A_i . (Throughout this paper we shall use i, j, k, m, and n to denote positive integers or variables ranging over positive integers. Thus $i \leq n$ may always be thought of as meaning $1 \leq i \leq n$.) Let $\{(D_{\alpha}^1, \dots, D_{\alpha}^n): \alpha < 2^{\aleph_0}\}$ be the set of all partitions of N into n sets, each partition appearing 2^{\aleph_0} times. For each $\alpha < 2^{\aleph_0}$ and each $i \leq n+1$,

$$F^i_{\alpha} = \bigcup_{j=1}^n (F^i_{\alpha} \cap D^j_{\alpha})$$

Since F_{α}^{i} is infinite, there exists a $j = j(\alpha, i)$ such that $F_{\alpha}^{i} \cap D_{\alpha}^{j}$ is infinite. Since for fixed α the function $j(\alpha, i)$ has n + 1 elements in its domain and only n in its range, there exist $i(\alpha, 1) < i(\alpha, 2) \le n + 1$ such that $j(\alpha, i(\alpha, 1)) = j(\alpha, i(\alpha, 2))$ $\stackrel{df}{=} j(\alpha)$. Define $G_{\alpha} = D_{\alpha}^{j(\alpha)} \cap (F_{\alpha}^{i(\alpha, 1)} \cup F_{\alpha}^{i(\alpha, 2)})$.

Let $K = \{G_{\alpha} : \alpha < 2^{\aleph_0}\}$. K is a subfamily of the desired family. Clearly it is an infinite almost-disjoint family of subsets of N. The partition (A_1, \dots, A_{n+1}) shows that K is not even (n + 1)-*separable, much less (n + 1)-separable because each G_{α} intersects at least two A_i 's in an infinite set. On the other hand, as $G_{\alpha} \subseteq D_{\alpha}^{i(\alpha)}$, and each partition appears infinitely often, K is strongly *n*-separable. Now, by [3] theorem 6.2, we may extend K to a maximal almost-disjoint family which retains these properties.

THEOREM 1.2. For each n > 1, there is an n-separable maximal almostdisjoint family which is not strongly n-separable.

PROOF. Let (A_1, \dots, A_n) be a partition of N into n infinite sets. For each $i \leq n$, let $L_i = \{F_{\alpha}^i: \alpha < 2^{\aleph_0}\}$ be an almost-disjoint family of infinite subsets of A_i . Let $\{(D_{\alpha}^1, \dots, D_{\alpha}^n): 0 < \alpha < 2^{\aleph_0}\}$ be the set of partitions of N into n sets. We define for each $\alpha < 2^{\aleph_0}$, a set $G_{\alpha} \subseteq N$, and then $K = \{F_0^1, \dots, F_0^n\} \cup \{G_{\alpha}: 0 < \alpha < 2^{\aleph_0}\}$ is our family. The partition (A_1, \dots, A_n) shows that K is not strongly n-separable; whereas the G_{α} 's show that it is n-separable. Let $0 < \alpha < 2^{\aleph_0}$. As in Theorem 1.1, for each $i \leq n$, there is a $j = j(i, \alpha)$ such that $|F_{\alpha}^i \cap D_{\alpha}^j| = \aleph_0$. If there exists $i < k \leq n$ such that $j = j(i, \alpha) = j(k, \alpha)$, then set $G_{\alpha} = D_{\alpha}^j \cap (F_{\alpha}^i \cap F_{\alpha}^k)$. Otherwise for each $j \leq n$, there is an $i(j, \alpha)$ such that $i = i(j, \alpha) \Leftrightarrow j = j(i, \alpha)$. If there is a $k \leq n$ such that $D_{\alpha}^k \ddagger A_{i(k,\alpha)}$, choose such a k and any $x \in D_{\alpha}^k - A_{i(k,\alpha)}$ and let $G_{\alpha} = (D_{\alpha}^k \cup F_{\alpha}^{i(k,\alpha)}) \cap \{x\}$. In the remaining case $D_{\alpha}^k = A_{i(k,\alpha)}$ for all k so the partitions $(D_{\alpha}^1, \dots, D_{\alpha}^n)$ and (A_1, \dots, A_n) are the same and we may let $G_{\alpha} = F_0^1$. Clearly we obtain a family K satisfying our conditions.

Problem A. Does there exist a completely separable family (without assuming MA, as in [3], theorem 8.2)?

Problem B. For any $m, n \ge 2$, does there exist an *m*-*n*-separable but not strongly *m*-*n*-separable almost-disjoint family? (For definition see [3], p. 415.)

Problem C. For any $m, n \ge 2$ does there exist a strongly *m*-*n*-separable, non-*m*-(*n* + 1)-separable almost-disjoint family?

Problem D. Let $m \ge 1$. Does there exist am almost-disjoint family K, which is *m*-*n*-separable for every *n*, but is not (m + 1)-2-separable?

Problem E. Does there exist a fully-Ramsay, not completely separable almost-disjoint family (see [3] p. 419)? The answer is no since if S is fully-Ramsey, $2S = \{\{2n: n \in A\}: A \in S\}$ is a counter-example.

REMARK. In Erdös and Hajnal [1], it was noted that Miller's [5] construction gives somewhat more than almost-disjointness, i.e., for each $A \in K$ and $x \in N-A$, the set $A \cap (\bigcup \{B; x \in B \in K\})$ is finite; with small additions our proofs can give this too. Notice that $CH(2^{\aleph_0} = \aleph_1)$ implies MA.

2. On disjoint sets in 2-separable almost-disjoint families

In [3], theorem 4.1, Hechler proved that any strongly 2-separable almost disjoint family contains an infinite disjoint subfamily. For 2-separability he has some weaker results (theorems 4.3 and 8.4). We shall prove that every such family has two disjoint sets, but (assuming MA)) not necessarily three.

THEOREM 2.1. If K is an almost-disjoint 2-separable family of infinite sets, then it contains two disjoint sets.

REMARK. We need the "infinite sets". For example $K_n = \{A : A \subset \{1, \dots, 2n+1 | A \| = n+1\}.$

PROOF. Suppose there are no two disjoint sets in K. Let $A \in K$. We now

define by induction on *n* a family $\{B_n\} \subseteq K - \{A\}$ of distinct sets and a colouring of the points of $\bigcup_{i=1}^n B_i$ by red and blue, such that each set B_{2n} contains only blue points except for one red point $y_{2n} \in B_{2n} \cap A$, and each set B_{2n+1} contains only red points except for one blue point $y_{2n+1} \in B_{2n+1} \cap A$. Suppose B_1, \dots, B_{n-1} have already been defined, together with the associated colouring. We shall define B_n assuming, without loss of generality, that *n* is even. Choose blue points $x_i \in B_i$ for each $i \leq n-1$. Let $C = \{x_i: 1 \leq i \leq n-1\} \cup \bigcup_{i=1}^{n-1} (A \cap B_i)$. Since *K* is almost disjoint, *C* is finite. (C, N-C) is a 2-partition of *N*, but since *C* is finite, no subset of it belongs to *K*. Hence there is a set $D \in K$ such that $D \subseteq (N-C)$. By assumption *D* and *A* are not disjoint, so choose any point $y_n \in A \cap D$. Then $y_n \notin C$, and as $y_n \in A$, we have $y_n \notin \bigcup_{i=1}^{n-1} B_i$. Let $D_1 = (\bigcup_{i=1}^{n-1} B_i \cup D) - \{x_1, \dots, x_{n-1}, y_n\}$. As $x_i \in B_i$, we have $B_i \notin D_1$, and as $y_n \in D$, we also have $D \notin D_1$. If for any other set $X \in K$, we have $X \subseteq D_1$, then either $X \cap B_i$ (for some *i*) or $X \cap D$ is infinite—a contradiction.

Thus no member of K is contained in D_1 . As K is 2-separable, there is a $B_n \in K$, such that $B_n \subseteq (N-D_1)$. By assumption $B_n \cap D \neq 0$, but by the definition of D_1 and B_n we have $(B_n \cap D) \subseteq \{y_n\}$. Hence $y_n \in B_n$. Similarly

$$B_n \cap \left(\bigcup_{i=1}^{n-1} B_i\right) \supseteq \{x_1, \cdots, x_n\}.$$

So all the points of B_n which are coloured, are coloured blue. Thus since $y_n \notin \bigcup_{i=1}^{n-1} B_i$, it is not coloured. So we can colour y_n red and each $x \in B_n - \{y_n\}$ blue. After we finish colouring $\bigcup_{n=1} B_n$, we can complete the colouring arbitrarily.

Now we have a partition of N into two sets—the red points and the blue points. Then one of them, say the set of red points, contains an $X \in K$. Now by assumption, for each $n, X \cap B_n \neq \emptyset$. But if n is even, B_n has only one red point y_n so $y_n \in X$. Hence $X \cap A \supseteq \{y_n \mid n \text{ even}\}$ which is infinite—a contradiction.

THEOREM 2.2. Assuming Martin's axiom, there is an (infinite) almost-disjoint 2-separable family of (infinite) subsets of N, containing no three disjoint sets.

PROOF. Let $\{(D_{\alpha}^{1}, D_{\alpha}^{2}): \omega < \alpha < 2^{\aleph_{0}}\}$ be the set of partitions of N into two sets such that $0 \in D_{\alpha}^{1}$.

We shall define by induction on α a family of (infinite) sets $G_{\alpha} \subseteq N$ such that 1) N minus any finite union of G_{α} 's is infinite.

- 2) $\beta < \alpha$ implies $G_{\beta} \cap G_{\alpha}$ is finite or $G_{\beta} = G_{\alpha}$.
- 3) $G_{\alpha} \subseteq D_{\alpha}^{1}$ or $G_{\alpha} \subseteq D_{\alpha}^{2}$.

4) If $\beta < \alpha$, $G_{\alpha} \neq G_{\beta}$, then either $0 \in G_{\alpha} \subseteq D_{\alpha}^{-1}$ or $G_{\alpha} \cap G_{\beta} \neq \emptyset$.

Define G_n , $n < \omega$, so that $\{G_n : n < \omega\}$ is an almost-disjoint family of subsets of N with intersection $\{0\}$ and union N.

Suppose we have defined G_{β} for every $\beta < \alpha$, and we want to define G_{α} .

Case I. There exist $n, \beta_1 < \cdots < \beta_n < \alpha$, such that $D_{\alpha}^1 \subseteq * \bigcup_{i=1}^n G_{\beta_i}$. ($A \subseteq *B$ iff A - B is finite).

If for some $\beta < \alpha$ we have $G_{\beta} \subseteq D_{\alpha}^{1}$, let $G_{\alpha} = G_{\beta}$. Clearly the conditions are satisfied. Otherwise, for each $G_{\beta} \notin \{G_{\beta_{i}} : i \leq n\}$, condition 2 guarantees that $G_{\beta} \cap D_{\alpha}^{1}$ is finite and hence $G_{\beta} \cap D_{\alpha}^{2}$ is infinite. By [3] theorem 9.2, there is a set $A \subseteq D_{\alpha}^{2}$ which is almost disjoint to every $G_{\beta} \cap D_{\alpha}^{2}$, and $|G_{\beta} \cap D_{\alpha}^{2}| \geq \aleph_{0} \Rightarrow |G_{\beta} \cap A|$ > 0 and $A \cap G_{\beta_{i}} \neq \emptyset$ for $1 \leq i \leq n$. Define $G_{\alpha} = A$; clearly all conditions are satisfied.

Case II. not case I.

By [3], section 9.2, we can find $A \subset D_{\alpha}^{1}$ such that A is infinite and $A \cap G_{\beta}$ finite for every $\beta < \alpha$. Let $G_{\alpha} = A \cup \{0\}$. The family $K = \{G_{\alpha} : \alpha < 2^{\aleph_{0}}\}$ satisfies all conditions except maximality. By [3], theorem 2.3, there is a $L \supset K$ which satisfies them all if we add 0 to every $A \in L - K$.

Problem F. Can Martin's axiom be eliminated from the proof?

REMARK. Clearly in Theorem 2.1, the "almost-disjoint" assumption was necessary (e.g., any ultrafilter over N is 2-separable, but it contains no two disjoint sets.) It is natural to ask whether the "almost-disjoint" hypothesis can be replaced by a weaker one. A natural candidate is given by:

DEFINITION 2.1. A family of sets is independent if for no *n* and distinct A, B_1, \dots, B_n in the family, $A \subseteq \bigcup_{i=1}^n B_i$.

If we replace $A \subseteq \bigcup B_i$ by $A \subseteq^* \bigcup B_i (=A - \bigcup B_i$ is finite) we get the notion of *-independent. When considering a *-independent family, it is natural to ask as to whether or not it contains an almost-disjoint subfamily.

THEOREM 2.3. Assuming Martin's axiom, there is an *-independent (infinite) strongly 2*-separable family K of (infinite) subsets of N, in which there are no two *-disjoint sets (i.e., $A \neq B \in K \Rightarrow A \cap B$ is infinite).

PROOF. Let $\{(D_{\alpha}^{1}, D_{\alpha}^{2}): \alpha < 2^{\aleph_{0}}\}\$ be the set of partition of N into two, each appearing $2^{\aleph_{0}}$ times. We define by induction on α , infinite sets $G_{\alpha} \subseteq N$ such that:

- 1) for no $n, \beta_1, \dots, \beta_n \leq \alpha, N \notin * \bigcup_{i=1}^n G_{\beta_i}$
- 2) $\beta < \alpha$ implies $G_{\beta} \cap G_{\alpha}$ is infinite
- 3) $\{G_{\beta}: \beta \leq \alpha\}$ is *-independent.

Suppose G_{β} , $\beta < \alpha$, has been defined. Then clearly by 3) $\{G_{\beta}: \beta < \alpha\}$ is a *-in-dependent family.

If for some $\beta < \alpha$, $G_{\beta} \subseteq * D_{\alpha}^{1}$ or $G_{\beta} \subseteq * D_{\alpha}^{2}$, let $G_{\alpha} = G_{\beta}$. Otherwise for each $\beta < \alpha$, $G_{\beta} \cap D_{\alpha}^{2}$ is infinite. By 1), without loss of generality, for no $n < \omega$, $\beta_{1}, \dots, \beta_{n} < \alpha$, $D_{\alpha}^{2} \subseteq * \bigcup_{i=1}^{n} G_{\beta_{i}}$. Let L be the Boolean algebra generated by $\{G_{\beta} \cap D_{\alpha}^{2} : \beta < \alpha\}$. Then $|L| < 2^{\aleph_{0}}$. Hence by Martin's axiom (see [3], theorem 9.2) we can find $G_{\alpha} \subseteq D_{\alpha}^{2}$ such that $A \in L$, A infinite $\rightarrow G_{\alpha} \cap A$ and $A - G_{\alpha}$ are infinite. So it is easy to verify that the induction hypothesis is satisfied. $K = \{G_{\alpha} : \alpha < 2^{\aleph_{0}}\}$ is the set we want.

Problem G. Does every independent 2-separable family of infinite subsets of N contain two disjoint members?

Problem G was solved affirmatively by Hajnal, McKenzie and Shelah, independently.

THEOEREM 2.4. In every independent 2-separable family of infinite subsets of N, there are two disjoint sets.

SKETCHED PROOF. Suppose K is a counterexample. Let

$$K_1 = \{A \colon A \in K, A \subseteq \bigcup \{B \colon B \in K, B \neq A\}\};$$

 K_1 is also an independent 2-separable family. Define inductively $B_n \in K_1$, $x_n \in B_n$, and a colouring of $\bigcup_{i \le n} B_i$ by red and blue such that: x_n is the only red or blue point of B_n ; and for each $x \in B_n$ there is $m < \omega$ such that $x = x_n$. Suppose $x_i, B_i \ i < n$, and the colouring of $\bigcup_{i < n} B_i$ are defined. Let x_n be the first number in $\bigcup_{i < n} B_i - \{x_i: i < n\}$, and, without loss of generality, x_n is blue. We want to find B_n and a colouring. Choose from each B_i , i < n, $x_n \notin B_i$, a red point z_i . Let $D_1 = \bigcup_{i < n} B_i - \{z_i: i\} - \{x_n\}$ and $D_2 = N - D_1$. For no $B \in K_1$ is $B \subseteq D_1$ so there is a $B_n \in K$ such that $B_n \subseteq D_2$. Colour $B_n - \{x_n\}$ by red.

By the 2-separability there is a set $B \in K_1$, disjoint to one colour, e.g., red. Hence if x_n is blue, $B \cap B_n \subseteq \{x_n\}$ so $B \cap B_n = \{x_n\}$ and $x_n \in B$. So B contains all the blue x_n . Let x_m be red. Then $B_m - B = \{x_m\}$, but $B_m \in K_1$, so we have $B' \in K$, $B' \neq B_m$ and $x_m \in B'$. Hence $B_m \subseteq B \cup B'$ —a contradiction.

We can pose instead:

Vol. 12, 1972

Conjecture G*.

1) For every *n* there is a 2-separable family K of infinite subsets of N, with no two disjoint members, such that for distinct $B, A_1, \dots, A_n \in K, B \notin \bigcup_i A_i$.

2) The same as 1) with $B \not \equiv * \bigcup_{i \leq n} A_i$.

For n = 1, 1) was proved by Lovan (private communication) and Shelah independently.

A variant of Lovan's construction is: let us partition N into the infinite sets $X, A_n, n < \omega$. Let $\{T_{\alpha} : \alpha < 2^{\aleph_0}\} = \{T : T \subseteq \bigcup_n A_n, |T \cap A_n| = 1\}, X = \{x_n : n\} \cup \{y\}, \text{ and } K = \{A_n \cup \{y\} : n < \omega\} \cup \{T_{\alpha} \cup \{y\} : \alpha < 2^{\aleph_0}\} \cup \{A_n \cup T_{\alpha} \cup \{x_m\} : n, m < \aleph, \alpha < 2^{\aleph_0}\} \cup \{X\}.$

Shelah's construction defines an increasing sequence of families K_{α} , such that $x \in A \in K_{\alpha} \Rightarrow (N-A) \cup \{x\} \in K_{\alpha}$.

3. Families of finite sets

There are also related finite problems. Let n, m be natural numbers. A family S is called an (n, m)-family if $A \in S$ implies |A| = n, and for distinct $A, B \in S$, we have $|A \cap B| \leq m$. The question is to find f(n, m) according to:

DEFINITION. 3.1. f(n,m) is defined to be the maximal number f such that every 2-separable (n,m)-family has in it f pairwise disjoint members.

For simplicity we restrict ourselves to m = 1.

Conjecture H. $f(n,1) \ge 2^{(n/2)(1-\varepsilon)}$ for any $\varepsilon > 0$ *n* big enough, (or at least $f(n,1) \ge 2^{cn}$).

However it is not hard to see that for n sufficiently large we have $f(n, 1) \ge 2$ (and, in fact, much larger).

Suppose there are no two disjoint sets in a 2-separable (n, 1)-family S. Choose $x_0 \in A_0 \in S$ and let $V = \bigcup \{A: A \in S\}$. Let $B_0 = \bigcup \{A: x_0 \in A \in S\}$, and consider the partition $[B_0 - \{x_0\}, (V - B_0) \cup \{x_0\}]$. If some $C \in S$ is a subset of $(V - B_0) \cup \{x_0\}$, then $C \not\equiv B_0$. Hence $x_0 \notin C$ so $C \subset V - B_0$ and therefore $C, A_0 \in S$ are disjoint—a contradiction. Hence there is a $C \in S$ such that $C \subset B_0 - \{x_0\}$. For each A if $x_0 \in A \in S$, $C \cap A \neq \emptyset$; but for any distinct $A_1, A_2 \in S$, $x_0 \in A_1$, $x_0 \in A_2$, $C \cap A_1 \cap A_2 = \emptyset$ as $|A_1 \cap A_2| \leq 1$. Hence $A_1 \cap A_2 = \{x_0\}$ but $x_0 \notin C$. As |C| = n, clearly

 $|\{A: x_0 \in A \in S\}| \leq n$. If $x_0 \in A_1 \in S$, $x_0 \in A_2 \in S$, $A_1 \neq A_2$ then for every $x_0 \neq x_1 \in A_1$, $x_0 \neq x_2 \in A_2$, there is at most one $C \in S$ such that $x_0 \notin C$, $x_1 \in C$ and $x_2 \in C$. Hence $|S| \leq n + (n-1)^2$.

But we could have chosen x_0 belonging to at least two members of S; otherwise S is a family of pairwise disjoint sets, and, if n > 1, is not necessarily 2-separable.

Now we shall show that the 2-separability of S implies $|S| \ge 2^{n+1}$ (in fact $|S| \ge 2^n(1+2/n)^{-1}$ by Schmidt [8] and for n = 4 Prevling (private communication) has shown |S| > 13). We do it by a probabilistic argument. Suppose we randomly partition V into two parts such that each element of V has equal probability of falling into either part and that the choices are made independently. The probability of a set $A \in S$ being totally in one part is $2^{-(n-2)}$. But if $|S| < 2^{-n-1}$ the probability that at least one set of S will be totally in one part is at most $|S| \cdot 2^{-(n-1)} < 1$, so S cannot be 2-separable.

Thus we have shown that $2^{n-1} \leq S \leq n + (n-1)^2$. But $n + (n-1)^2 \geq 2^{n-1}$ implies n < 6, so we have therefore shown that $n \geq 6$ implies $f(n, 1) \geq 2$.

Erdös [7] shows that there is a family S such that $A \in S \Rightarrow |A| = n$, S is 2-separable and $|S| < cn^2 2^n$.

Conjecture I. For every $n, m(n) \ge cn$ where m(n) is the largest m for which f(n,m) > 1. (But $m(n) \ge cn/\log n$ can be proved.)

ACKNOWLEDGEMENT

We wish to thank Professor S. H. Hechler for many helpful comments and corrections.

REFERENCES

1. P. ERDÖS and A. HAJNAL, On a property of families of sets, Acta Math. Acad. Sci. Hungar. 12 (1961), 87-123.

2. P. ERDös and A. HAJNAL, On chromatic number of graphs and set systems, Acta Math. Acad. Sci. Hungar. 17 (1966), 61.

3. S. H. HECHLER, Classifying a almost-disjoint families with applications to $\beta N-N$, Israel J. Math. 10 (1971), 413-432.

4. D. M. MARTIN and M. SOLOVAY, Internal Cohen extensions, Annals of Math. Logic 2 (1970), 143-178.

5. E. W. MILLER, On a property of families of sets, Comptes Rendus Varsovie, 30 (1937) 31-38.

5. S. H. HECHLER, Short complete nested sequences in βN -N and small almost-disjoint families, to appear in General Topology and its Appl.

7. P. ERDÖS, On a combinatorial problems II, Acta Math. Acad. Sci. Hungar. 15 (1964), 445-447.

8. W. M. SCHMIDT, Ein Kombinatorisches Problem von P. Erdös und A. Hajnal, Acta Math. Acad. Sci. Hungar. 15 (1964), 373-374.

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY, HAIFA

AND

THE HEBREW UNIVERSITY OF JERUSALEM