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EXHAUSTING AN AREA WITH DISCS

P. ERDŐS AND D . J. NEWMAN

ABSTRACT. The general question is, just how much of a given area

may be covered by interior disjoint discs? We simplify matters by choosing

the unit square as our given area, and then give estimates (upper and lower)

on how much of it may be so covered by n discs .

It is true, although perhaps not trivial, that the unit square can have al-
most all its area exhausted by the removal of open disjoint discs in its inte-
rior . Our question is, how fast?

So define R(n) to be the minimum of the areas one must leave behind
when one removes n disjoint discs interior to S, the unit square . We have
already remarked that R(n)- - 0 and our job is to estimate just how it does
so. The straightforward estimates give upper and lower bounds which are
enormously disparate (e - ' V'1 ' 9 " and n-" respectively) and we try to repair
this situation somewhat by showing that the truth is around n - B . The pre-
cise result is

Theorem. c l n -113 > R(n) > c 2 n -1 , c l and c2 positive constants .

Proof. We turn first to the lower bound and need the following elemen-
tary lemma .

Lemma 1 . Consider a disc cut by a chord of length c and suppose that
the smaller region has height h and the larger one has height H . We then
have

(a) The area of the smaller region is bounded by (rr/4)ch .
(b) The area of the larger region is bounded by (77/2)H 2 .

To prove (a) consider the ellipse which has the chord as major axis and
which is tangent to the minor arc at its midpoint . The ellipse and the circle
meet at the endpoints of the chord and doubly at the tangency point and so
they meet nowhere else (4 points are all they can share) . At the endpoints
the slope of the circle is smaller than oa, the slope of the ellipse, and so the
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entire circular segment must stay within the half ellipse . The area of the

half ellipse is exactly (n14)ch, however, and (a) is proved .

As for (b) simply construct the semicircle with center at midpoint of the

chord and radius H. This is tangent to our original circle and hence con-

tains the larger region . Its area is exactly (7r/2)H 2 , however, and (b) follows .

Now let E denote the strip, of height W, along the bottom of our square

S, and consider any collection of disjoint discs in S which have their cen-

ters outside E . If D is any one of them then part (a) of the lemma insures

that Area (D n E) < (7r/4)1V . (chord of D on the boundary of E) . These chords

are disjoint, however, and so the sum of these areas is bounded by (nr/4)W • 1 .

Next look at a disc, D', in S with its center inside E. Here part (b) of

our lemma applies and we conclude that Area(D' r) E) < (7r/2)W 2 .
If we have n disjoint discs in S, then, the total amount of area they

can cover in E is bounded by (7r/4)W + n • (7r12)W2 so that there remains in

E an uncovered area of (1 - rr/4)W - n(7r/2)W 2 , choosing W = (4 - rr)/4rrn
shows that the uncovered area is at least ((4 - 7T)213277) • n -1 and our lower

bound is established with C 2 = (4 - 7T)2 /3277 ;z~ .0074 .
As for our upper bound we remove n discs by the simple device of re-

moving, at each turn, the largest disc which is contained in the residual set .

(It is not quite trivial that this process even exhausts (almost all) the area

of S but this is known and was perhaps first noticed by A . Beck.) We need

the following

Lemma 2. Suppose that a region has its boundary composed of 3 con-
cave arcs (arcs whose every chord is disjoint from the region) and denote its
area by a and perimeter by 1. Suppose that a disc of radius r is inscribed
therein (its interior lies in the region and its circumference meets all 3 arcs) .
Then r • 1 > 2a .

The simple proof is based on the integral formula a = 4 jy, T - lids where

y is the boundary, 'r is the radius vector from the origin 0, which we take as

the center of our disc, n is the unit outward normal and ds represents arc

le ngt h .
If we focus on any one of our concave arcs A, and draw the two lines of

support from 0 then the two points of contact define a subarc, A' . We ob-

serve first of all that for any point in A - A', r • n < 0. Secondly we note

that, at any point of A', the line of support, L, separates the origin from A

so that r • n = distance from 0 to L < distance from 0 to A = r . In either

case, then, 1 • n < r and so we have
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as required .
This is clearly a best possible result as the example of the triangle

shows . In our application, however, the three arcs will be mutually tangent
circles and improvement is then possible . It can be shown e .g. that r • 1

2 .8a and this would allow us to obtain n - ' 4 rather than only n -1/3 . The
calculations are very complicated however, and so we omit the details .

Now let us return to our strategy of removing the biggest disc possible .
It is clear, then, that at the kth stage the residual set is composed of a finite
number (2k + 2) of disjoint "circular triangles" and that the next chosen
disc will be one of their inscribed discs . Our lemma applies! Indeed if we
call av and Iv the areas and perimeter of these circular triangles then we
have r k l y > 2ay for all v (r k being the radius of the next, or (k + lkh, disc
to be removed). Summing over v gives

(1) rk Lk > 2A k , where, of course, Lk and A k are, respectively, the
total perimeter and area of the residual set (the set remaining after the first
k discs have been removed) .

It is also clear, from the very definition of our strategy, that
(2) . rk_1 > rk ,

(3) Lk _ 1 = L k - 2rrr k _ l , and

(4) Ak-1 = A k + rrrk _ , .

The trick is to notice that these entail the nonincrease of the quantity

kLk + 2A k/Vrk. We have, namely, by (3) and (4),

(

	

Lk-1 + 2A k _ 1J,/rk'1) - (VTk Lk + 2Ak/~)

_ (1/,r, - lIVrk )( rk _ 1 rkLk - 2A k )

and by (2) the first factor is > 0 while the second is > rkLk - 2A k which is,
in turn, > 0 by (1). The montonicity is thereby established and in particular
we have

Ln + 2A n/

	

< ,IroL o + 2A /

	

= 4,~2 .n

	

VF:,

Again, by (2) and (3), we obtain Ln > n • 2rrr n so that the above ine-
quality becomes
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r312 n17
+ r -i/24n

	

n

	

< 2~.n -

7f, finally, we apply the arithmetic-geometric inequality to the left-hand side
we find that it is

4Combining gives A n < 3/yarn and our result is established with C 1 =

3/ 3 477

	

1 .29.

> 4[(r3 /217,n) (r -1 1

/2A,/3 )3]1/4=40unA3) I/4/3-n

	

n
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