
SOME NEW APPLICATIONS Ok PROBABILITY METHODS TO

COMBINATORIAL ANALYSIS AND GRAPH THEORY

P . Erdős

Probability methods have often been applied successfully to

solve various combinatorial problems which in some cases have been(and

still are) unassailable by other methods . A systematic discussion

of this method can be found in my recent book with J . Spencer .

In the present paper I give some new results obtained by this

method . I do not give detailed proofs, but by following the very

sketchy outlined instructions, thev can easily be supplied by the

interested reader who is familiar with the method .

P. Erdos and J . Spencer, Probabilistic Methods in Combinatorics,

Acad . Press and Publishing House Hung . Acad . Sci . 1974 .

1 . Let Gr (n) be a uniform hypergraph of n vertices (i .e . the

basic elements of our hypergraph are vertices and r-tuples, for r = 2

we obtain the ordinary graphs, see e .g . the excellent recent book of

C . Berge, Graphs and Hypergraphs, North Holland and Amer Elsevier 1973) .

K(G) will denote the chromatic number of G . Let fr(.m,k ;r,)

be the largest integer for which there

and such that all m point suhgraphs of

not exceeding k . I proved

(1)

	

f2(m,3 ;n) > c,(m) 1 ~ 3 (log -) -1

(e l ,c 2 . . . . denote absolute constants) . (1) has the surprising

consequence that for every Z there is an c - c(l) > 0 and a graph
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a Gr (n) with K(Gr (n)) = fr (m,k ;n)

our Gr (n) have chromatic nuinber

is



GZ (n) satisfying K(G2 (n)) ? Z, yet every subgraph of [en] vertices has

chromatic number at most three . I have no nontrivial upper bound for

f2 (m;3,n) valid for all m . Perhaps

f2(m ;3,n) < C2
1-cc

holds for some a and all m, but I have not even been able to prove that

there is an A(x) which tends to infinity as x + - and for which

f2(m,3 ;n) <
c3 m

(A(m)) -1

f2 (m,3 ;n)

	

3 m is, of course, trivial but it

can be improved (the case m = cn, n + m seems difficult) .

Now we investigate whether (1) can be improved for all m . It

is very easy to see that the exponent 3 can not be replaced by a number

greater than 3

	

If m o 4 the condition that every subgraph of 4 vertices

has chromatic number 5 3 simply means that G,(n) contains no K(4) (a

complete graph of 4 vertices) and by a theorem of Szekeres and myself

this implies K(G 2 (n)) < cn2/3

Results o£ Faudree, Rousseau, Schelp and myself which are not

yet quite complete will, I feel sure imply that (1) can not hold for all

m with an exponent greater than 2

	

At present I can only show that

it can not hold for 3 - e . It would be nice i£ the following would be

true : For every c > 0 and n > n p (c)

1f4(m,3 ;n) > c4(m) ? -E

is not clear how much it

Following G. Dirac we say that the graph G is (vertex) critical

if the omission of any vertex decreases its chromatic number . My



proof of (1) was based on the obvious fact that every 4-chromatic

critical graph has all its vertices of valency ? 3, thus if it has

n vertices it has at least 3 edges . Gallai proved that a 4-chromatic

critical graph of n vertices has at least (Z + 2G) n edges but Dirac

showed that this can not be improved to 32 + n-4 < 53 _ My proof

of (1) actually gives that, if every 4-chromatic critical graph of

n vertices has at least on edges, then the exponent .L can be replaced

by--1 . Thus, by Dirac's result, my method will certainly not givee

a better exponent than 5

	

Gallai's result gives (1) with an exponent

20 instead of 3 .

The situation is somewhat confused for f(m,2 ;n) and this, as

I now explain, is my fault . Gallai constructed a 4-chromatic graph

C(n) the shortest odd circuit of which has length > [ Jr3 . In other

words, Gallai proved f2([á] ;2,n) > 3 . Perhaps this result is best

possible . I stated that I can prove that, for a sufficiently large

constant c,

(4)

	

f2([c)fn],2 ;n) _ 3 .

Unfortunately I have not been able to reconstruct my 'proof' of (4)

and perhaps it was incorrect . In any case (4) has to be considered

open at the moment . Callai and I conjectured that there

c( Z) and c2Z) so that

are constants

(5)

	

f2(10(2
nl/Z],2 ;n) s Z + 1 but f2([o2n

1/Z ],2 ;n) > Z + 1 .

It may be that the constants elT) and e2Z) are independent of Z .



W_ m .Ia aoo progress with the proof of (5) and its proof or disproof

may not be easy . on the other hand, I proved that there are constants

CM and c2 Z) so that every G(n)with K(G(n)) > Z contains a circuit

having fewer than c, log n edges, and yet there is a G(n) with

K(G(n)) > Z all whose circuits have at least C
(
2
L) log n edges .

Observe that f2 (m,2 ;n) behaves very differently from

f2 (m,k ;n) for k ? 3 . This is perhaps not surprising since the critical

3-chromatic graphs are trivial (they are the odd circuits) whereas the

critical 4-chromatic graphs can be very complicated . For r > 2 the

3-chromatic graphs already have a non-trivial structure (probably too

complicated for complete characterisation) . Actually for r > 2

fr (m,2 ;n) does not behave very differently from fr (m,k ;n) .

The proof used for (1) gives in this case

(6)

	

fr,(m,2 ;n) > c(m) r-2 /r-1

For the proof of (6) one needs in addition the following

result of Lovaszand Woodall (Which did not exist when) proved (1)) :

Every critical 3-chromatic r-graph (r > 2) of n vertices contains

at least n edges . Woodall also proved that this result is best

possible i .e, there are such r-graphs with exactly n edges .

P . Erdős, On circuits and subgraphs of chromatic graphs,

Mathematika 9(1962), 170-175 .

P. Erdos and G . Szekeres, A combinatorial problem in geometry,
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Sci . 8 (1963), 165-192 Sec in particular pp 172-173 and 186-189 .
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2 .

	

Uniquely colourable graphs . This work was done jointly with

Ehud Artzy . A k-chromatic graph is called uniquely colourable if the

k independent sets into which our graph can be decomposed are unique .

Trivial examples of uniquely colourable graphs are the complete graphs

less trivial examples were known but they were relatively few in number .

In particularly in was not known if for every k and Z there is a

uniquely colourable k-chromatic graph of girth Z . During my last visit

to Israel I discussed these problems with E . Artzy and we noticed that

the methods used in my paper quoted below, apply here too . A previous

problem of Sauer should be mentioned here which was very helpful . Sauer

asked (oral communication) several years ago if for n > no there exists

a 3-chromatic graph not containing a triangle and having n vertices of

each color so that it should not contain an independent set of more than

n points . r observed that the probability method relatively easily

gives the existence of such graphs and we observed that the

gives a k-chromatic uniquely colorable graph of arbitrarily large girth .

I give a brief outline of the construction . Let k and Z be

given, e - e(k,Z) sufficiently small, n > n,(e,k,Z) large. Consider all

same method



graphs of kn vertices, with k color classes Sl , . . .Sk , each S"i has n

vertices . Si and S . are joined at random by [nl+E] edges . The number

of these graphs clearly equals
n 2

	

n

[nl+e]

	

o An

A simple computation (involving only the first moment) shows that, with

the exception of a(An ) of them, these graphs have o(n) circuits of length

f- Z. From each off these circuits we omit an arbitrary edge . The resulting

graphs clearly have girth > Z and a simple (but slightly more complicated)

computation gives that all but a(An ) of them have no independent sets of

size n other than the Si (i - 1, . . .k) . Thus these are k-chromatic

uniquely colorable graphs o£ girth Z .

Some further refinements are possible . This method gives that

there are absolute constants c, and c 2 so that for every Z and n there

is a uniquely colorable graph G(n) of n vertices, girth Z and chromatic

number > C ln c2/Z

We can further show that all but o(A n) of our graphs have the

property that no set U of its vertices is independent which intersects

two Si 's insets of size > nl- n where r)- n(k,Z) is sufficiently small .

At the recent conference in graph theory in Prague (June 24 - 28,

1974) MUller gave uniquely colorable k-chromatic graphs of girth Z for

every k and Z by a direct construction without using probability

arguments .

Chung. C. Wang and Ehud Artzy, Note on uniquely colorable graphs,

J . Comb . Theory ser, B 15(1973), 204-206 .



P. Erdüs, Graph theory and probability I and II Canad . J .

Math 11(1959), 3438 and 13(1961), 346-352 .

3 . Answering a question of Berman I showed that for sufficiently

small e > 0 and n > n u (c) one can direct the edges of a K(n,n) in such

a way that every subgraph of (n
2-e 3

edges contains a cyclically directed

04 . The proof is straightforward . One can show that if one directs
2

the n2 edges of our K(n,r) at random all but o(2n ) of these graphs

will have the required property . I have not been able to determine the

best possible value of e . I am quite sure that for every n > 0 and

n > nU(n) one can direct the edges of a K(n,n) in such a way that every

subgraph of fn
3/2+n3 edges contains a cyclically directed C4 . Perhaps

this already holds for subgraphs of en 3 / 2 edges if e is a sufficiently

large absolute constant . Similar results will hold for cyclically

directed C2r 's - perhaps for every subgraph of size ern l+l/r

The question of Berman led me to the following problem which

is o£ independent interest . Let G(k) be a directed graph of k vertices .

A(n;G(k)) is the largest integer so that there is a graph G(n) (of n

vertices) which can be directed in A(n ;G(k)) ways so that none should

contain a subgraph isomorphic to G(k) (isomorphism here of course

means that all the edges are directed as,in G(k)) . Determine or

estimate A(n,G(k)) .

Perhaps the following modification of this problem is more

interesting and useful . Let now G(k) be an undirected graph of k

vertices and let f(n ;G(k)) be the largest integer so that there is a

G(n ;f(n ;G(k)) (G(n ;Z) is a graph of n vertices and Z edges] which does

not contain our G(k) as a subgraph . .The function f(n ;G(k)) is of



course well known from the theory of extremal graphs, e .g . (Turan in his

pioneering paper determined f(n,K(k)) . Denote now by F(n ;r,G(k)) the

largest integer for which there is a G(n) whose edges can be coloured by

r colors in F(n,r,G(k)) ways so that there should not be a monochromatic

G(k) . Clearly

(1)

	

F(n;r,G(k)) >_ z„f(n ;G(k))

To see (1) observe that by definition of f(n ;G(k)) there is a

G(n ;f(n ;G(k)) which does not contain our G(k) and hence its edges can

be coloured arbitrarily . It seems that for very many (perhaps all)

graphs G(k), F(n ;r,G(k)) is not much bigger than rf(n,G(k)) . In

particular Rothschild and I conjectured that for n > no

(2)

	

F2(n ;G3) v 2 [n2/4]

and more generally for every s and n > n,(s)

(3)

	

F (n ;K(s)) - 2f(n ;K(s))

where f(n;Ka ) is the number of edges of the well known Turan-graph

i.e . the largest graph on n vertices which does not contain a K(s) .

(2)clearly does not hold for all n . It is possible that

F(n;r,G(k)) < r(l+e)f(n ;G(k))

will hold for all (or "nearly" all) graphs G(k) . Clearly analogous

problems can be stated for hypergraphs .



4 .
	

Professor Even and others considered cries following question :

A graph G(n) is called a rigid circuit graph if every circuit of it

contains at least one diagonal . They obtained various algorithms for

determining a rigid circuit graph G(n) which contains a given G(1.) and

has as few edges as possible . Not being good at finding algorithms

but being interested in extremal problems, when Even told me of these

questions I asked : Determine or estimate the smallest integer f(n) soo

that for every G(n) one can add

	

f(n) new edges so that the resulting

graph should be a rigid circuit graph . I first thought that

f(n) < (1+0(1)) nZ8 , but Fven showed by a simple construction that
2

f(n) must be greater than [4] . Then I observed that in fact

n2f(n) =
2 (1+0(1)) . More precisely the methods of Rdnyi and myself

give the following result : Let a > 0 be sufficiently small . Consider

all the graphs G(n ;t) where t = [n 2-a ) . The number of these graphs
( n

is clearly p

	

I(2), . There is an a' > 0 so that all but o(p) of these

graphs have the following property . Consider all those C4 's of our

G(n ;t) which do not have any diagonals . Add one of the diagonals to all

the C 4 ' s . Then the resulting graph will always have more than

( n ) - n2-a' edges .
2

This clearly implies

(1)

	

f(n) > ( 2) - n2-e

for a certain e > 0 . I suspect but can not prove that this method might

give f(n) > ( 2) - n 3 /
2+t

The exact determination or better estimation of f(n) seems to me

to be an interesting problem . I have no non trivial upperbound for f(n)



and can not even prove

2

f(n)
< 2 - en

for every e > 0 and n > n o (c) .

Even informed me that the following problem has been considered :

Let G be a planar graph of n vertices . Find the smallest rigid circuit

graph containing G(smallest of course means having the fewest number of

edges) . If I remember correctly examples are known of planar graphs G

for which every rigid circuit graph containing G must have at least n 3/2

edges but no non trivial upper bounds are known .

Several modifications of the problem of estimating f(n) seem to

have some interest, here I only state one of them . Let fl (n) be the

smallest integer with the following property : To every G(n) we can add

•

	

fl (n) edges so that the resulting new graph should contain at least

one diagonal of every C 4 of our G. In fact in (1) we really proved

n

	

2-e
fl (n) > (2 ) - n

	

It is not difficult to show

fl (n) < (2) - cn 3/2

Clearly fl (n) 5 f(n) . An intermediary function f2 (n) can be defined as

follows : f2 (n) is the smallest integer so that to every G(n) we can add

•

	

f2 (n) edges so that in the resulting graph every C 4 should have a diagonal .

Clearly f(n)? f2 (n) - f(n) . I am certain that for n > n o the inequalities

are strict, perhaps fl (n) > ( z) - n3/2+e for every c > 0 and n > n,l (c) .

5 .

	

Hamiltonian circuits of random graphs . Rényi and I conjectured

that if c is sufficiently large then all but

•

	

m [cn log n] are Hamiltonian .

(( ( n )) l
all (2

	

graphs G(n ;t),



M. Wzight proved thin with t
	

(cra ;~~] Recez~tly poea proved ---
conjecture and by a refinement of his method Komlos and Szemeredt proved

that the result holds with t - [(1/2+ t)rn log n] .

Perhaps the following two problems of Rényi and myself are of

interest : For what values of t is it true that i£ we know that C(n ;t:)

is connected then with probability tending to 1 as n tends to infinity,

it is Hamiltonian?

( n
Put (2l)] = T(n,c) . Is it true that there is a function f(c)

so that all but o(T(n,e)) graphs C(n ;[en]) have their longest circuit

of size (1+o(I))f(c)n? We know that f(c) = 0 for c

	

2 and believe that

f(c) is continuous strictly increasing for 2 e

	

further

lim f(c) = 1 .
C=-

Spencer and I have the following further conjectures .

Rényi and I proved that if t = [1 n log n + 2 n loglog n+ cn) then the
- 2c

probability that C(n ;t) has all its vertices of valency ? 2 is 1-e
-e

We hope that the probability that it is Hamiltonian given by the same

expression .

The results of Rényi and myself on linear factors of random

graphs give our conjecture some support .

Spencer and I have various further conjectures on this subject

we had no time to think much about them thus we are not sure whether

they are likely to lead to good results . Let C(n ;t) be a random graph .

Suppose we know that each of its vertices has valency ? 2 . For which

t can we conclude that the conditional probability of it having a



Hamiltonian circuit tends to l . We feel sure that this will hold for

much smaller values of t than 2 n log n(a(nlog n)?) .

Further we formulated the following two problems : Let G(n ;k)

be a graph of n vertices and k edges which has no Hamiltonian circuit .

We add edges to it at random . How many edges do we have to add that

with probability tending to 1 the resulting graph should be Hamíltonian?

In this generality the problem is trivial G(n ;k) may be such that the

addition of every further edge makes it Hamiltonian, but it seems that if

k is not too large (say ¢ cn or cn log n) then we hope that one will

have to add "many" edges (more than cn?) to make the graph Hamiltonian

with probability tending to 1 .

The other problem is perhaps more interesting . Consider all the

numberings of the edges of the complete graph with the integers(2)!

1,2, . . .,(n2 ) . To each of these enumerations we associate two integers

n l and n2 n n l ~ n 2 < (2) so that n l is the smallest integer for which

the first nl edges givé a graph each vertex of which has valency ? 2

and n2 is the smallest integer for which the first n2 edges give a graph

with a Hamiltonian cycle . What can be said about the expected value

and distribution of n 2 - n l ? It may be that n2 W nl for almost all of

the (2)! permutations . This could be an extremely strong result but it

appears very difficult to show .

Clearly both these problems can be formulated for other properties

too .

The following further (non-probabilistic) problem is due to B .Bollobt

Determine the smallest integer h(n) for which there is a graph G(n ;h(n))



which is "Ot Hamiltonlan but it one adds any r-- ange the graph
becomes Hamiltonian . As far as we know the problem is still

unsolved .

P . Erdős and A . R~nyi, On the evolution o£ random graphs, Publ .

Math. Inst . Hung . Acad . Sci . 5 (1960), 17 - 67 and On the strength

of connectedness of a random graph, Acta Math . Acad . Sci . llungar .

12(1961), 261-267, see also The Art of Counting p . 574-624 .
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