
4 On the
Scarcity of
Simple Groups

Denote by f (x) the number of integers n < x for which there is
a simple group of order n . Dornhoff [2] proved that f (x)* o (x)
and Dornhoff and Spitznagel [3] proved that (c1 , c2 , . denotes
suitable positive absolute constants)

P. Erdös

( 1 )

Denote by fl (x) the number of integers n < x for which
there is a non-cyclic simple group . We are going to prove the

following sharper result.

Theorem 1.

Denote by P(u) the greatest prime factor of u . Let u1 < u2

< . . . be the sequence of all integers which have a divisor

t** , t i > 1, ti * 1 (mod P(ui)) . Let v1< v2< . . . be the sequence

of all integers such that for every p*v i there is a divisor

ti(p) of v i satisfying ti(p)*1 (modp), ti(p)* 1 . Clearly every

v is a u. Thus U *U (x)*V(x) (U (x)**1, V (x)**1) .

It follows from classical results on non-cyclic simple groups
that if there is a non-cyclic simple group of order n then n is

** *** a vi. For if p***p**n then the number of Slow subgroups



t(*,p) of order p* must be a divisor of n; further t (x,p) * 1 (modp)

and if the group is non-cyclic we must have t(*,p) > 1.

(2)

Instead of Theorem 1 we prove and

Denote by

	

(x, y) the number of integers not exceeding x

all whose prime factors are < y . Put yz = x and assume

z*4y12 logy. A theorem of de Bruijn then states that[1

(3)	 *(x, y) < c2x(logx) 2 exp(-z log z-zlog logz + c3z)

Now we are ready to prove (2) . We split the integers ui* x
into two classes. In the first class are the integers u i* x all whose

prime factors are less than exp , and

in the second class are other u's . Ui(x) (i = 1, 2) denotes the num-

ber of u's not exceeding x of the i -th class. By (3) we have by a

simple computation

(4)

Now we estimate the number of us of the second class
U2(x) . We evidently have

(5)

Now since U (x) 	 **(x) + U 2(x), (4) and (5) implies (2)
and this completes the proof of Theorem 1.

With a little more trouble we can prove

Theorm 2 . U(x)



We only outline the proof of Theorem 2. It is easy to see
that

(6)

where the dash indicates that the summation is extended over all
integers t>1 for which all prime factors of tp + 1 are less than

or equal to p.

Using (3) we can deduce from (6) by a somewhat intricate
computation that

(7)

To prove the opposite inequality we first observe that

( 8 )

The proof of (8) is somewhat cumbersome and . we suppress it. De
Bruijn [1j proved that the right side of (3) also gives a lower bound
for * (x,y) (for a different value of c3). From this fact and from

(8) a simple computation gives

(.9)

Using (6) and (8) it perhaps should be possible to give an
asymptotic formula for U (x), but I have not succeeded in doing
this .

I can prove that forx> x0

(10)

The proof of (10) is not _quite simple and we suppress it. Further

I can prove

I do not know which of these estimates is closer to the true

order of V (x)



1-c7 It seems likely that fi (x)<x but (1.1) shows that the
method used in this paper cannot be used to improve our
estimate for f1 (x) very much.
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