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0 . NOTATIONS

Let H be a fixed graph, n a given integer . For some m it is pos-
sible to colour the edges of K" with m colours so that no subgraph of
Kn each edge of which has different colour will be isomorphic to H. The
maximum m will be denoted by An, H). The present paper investigates
the dependence of ftn, H) on n and H.

A graph considered below will never contain loops or multiple edges .
If G is a graph, e(G), v(G) and k(G) will denote the number of edges,
vertices and the chromatic number respectively . E(G), V(G) will denote
the edge - and vertex-set of G . If G 1 and G2 are subgraphs of G,
e(G 1 , G2 ) and E(G 1 , G2 ) will denote the number of edges and the set
of edges joining G 1 and G2 in G, respectively . If Gm denotes a
graph, rn (the superscript) will always denote the number of vertices of
it . Thus e.g ., Pk and Ck denote the path and cycle of k vertices. The
set of neighbours of a vertex x c G will be denoted by N(x), the car-
dinality of N(x), that is, the degree of x is denoted by d(x) . If E is
a set, I E I denotes its cardinality .
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Kd (n 1 , . . . , nd ) denotes the complete d-partite graph with n t ver-
tices in its i-th class. Kd = : Kd (1, . . . , 1) is the complete d-graph . If
G is a graph and A is either a set of vertices and edges of G or a sub-
graph of G, G - A denotes the graph obtained by omitting the edges
and vertices of A and also all the edges having endvertices among the
omitted ones . If A is a set of edges of the complementary graph of G,
G + A denotes the graph obtained by adding the edges of A to G. G
denotes the complementary graph of G .

1 . INTRODUCTION

If K" is edge-coloured in a given way and a subgraph U contains
no two edges of the same colour, then U will be called a totally multi-
coloured subgraph of K" and we shall say that K" contains a TMC U.
Let f(n, H) be the maximum number of colours K" can be coloured
with without containing a TMC H. The problem of determining f(n, H)
is connected not so much to Ramsey-theorem than to Turán-type prob-
lems. For a given family .e of finite graphs

ext (n, ) _ : max I e(G" ) : H Q G"

	

if H E -*9} ,

that is, let ext (n, ) be the maximum number of edges a graph G"
can have if it has no subgraph from

	

. The graphs attaining the maxi-
mum for a given n are called extremal graphs .

The main result of [I], asserts that if d + 1 = min k(H), then
HEM

(1)

	

ext (n, f) I
l
2

1
-> 1 - d ) when n

	

.

The corresponding result for f(n, H) is formulated in Theorem 1 :

Theorem 1 . Let

(2)

	

d + 1 = min {k(H - e): e E E(H)} .

Then

(3)

	

f(nH) , (1 - d
(2)

if n --> -- .
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A similar result holds for uniform hypergraphs. Instead of defining the hy-
pergraphs we refer to [2], [3] and for the sake of simplicity we restrict our-
selves to the case of 3-uniform hypergraphs in the proof. Let extk (n, --,V)
denote the maximum number of k-tuples a k-uniform hypergraph of n
vertices can have without containing a subhypergraph from Y . Let
fk(n, H) denote the maximum number of colours a complete k-uniform
n-graph K('k) can be coloured with if it does not contain a TMC copy of
the k-uniform hypergraph H . One can easily show [4] that
extk (n, H) / nk) is convergent when n ~.

Theorem 2. Let H be a k-uniform hypergraph and let .f _ {H - e :
e is a k-tuple of H} . Then

(4)

	

fk (n, H) - extk (n, )0 = o(nk ) .

(In other words, fk (n, H) / l k 1 and

same limit.)

then
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extk (n, ) /
t
k
1

converge to the

One can also ask, what is the structure of the extremal colourings i.e .,
how is Kn coloured when it is coloured by f(n, H) colours and it does
not contain TMC H. Using the results of [5] and [6] instead of (1) and
combining the method of the proofs of Theorems 1, 2 with that of Theo-
rem 4 one can prove the following assertion :

Theorem 3 . Let us consider a Kn coloured by f(n, H) colours and
not containing TMC H. One can subdivide V(K) into d sets A1,. . . , Ad
(where d was defined in Theorem 1) so that all but o(n2 ) edges joining
different classes have own colours (i.e., colours used only once) and all the
edges joining vertices of the same class A l have o(n 2 ) colours altogether,
(j= 1,2, . . .,d) .

The proof of this theorem will not be published here .

The theorems above were the general ones . Now we turn to theorems
concerning special choices of H.

Theorem 4 . Let p >, 4 . There exists an np suca that if n > np ,



(5)

	

f(n, KP) = ext (n, Kp - 1 ) + 1 .

Further, if K n is coloured by f(n, KP) colours and it contains no
TMC K", then its colouring is uniquely determined : one can divide the
vertices of Kn into d classes A I , . . . , A d so that each edge joining
vertices from different A t 's has its own colour (that is, a colour used only
once) and each edge of form (x, y) where x and y belong to the same
At has the same colour, independent from x, y and i.

Remark 1 . The second part of Theorem 4 means that an extremal
colouring of Kn can be obtained from an extremal graph Sn for
ext (n, KP -1) by colouring the edges of Sn differently and the edges of
Sn by one extra colour. A theorem of G . Dirac asserts that ext (n, KP
= ext (n, KP - e), moreover, the extremal graph is the same if n > 2p .
Dirac's theorem, and Theorems 1, 2 throw light on the background of The-
orem 4 .

Remark 2. If d = 1, the information yielded by Theorem 1 is that
f(n, H) = o(n 2 ) . Unlike in case d > 2 we do not get upper and lower
bounds the ratio of which tends to 1 . This case will be called degenerated .
We do not have too much result in this case, mainly, because the corre-
sponding degenerated problems of Turán-type are unsolved and seem pretty
difficult .

Two degenerated problems will be discussed here : the problems of
Ck and Pk .

Conjecture 1 .

f(n,Ck )=n( k 2 2 + k 1I )+O(1) .

The conjecture says that the best way to colour Kn so that no TMC Ck

would occur is to divide the points into k n I groups of k - 1 vertices

and then colour all the edges joining vertices of the same group by dif-
ferent colours, and the edges joining vertices from different groups colour

by knI further colours in the following way : the vertices of the i-th
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group are joined by the i-th extra colour to the vertices of the j-th group
if j > i. We do not assert, however the uniqueness of the extremal colour-
ings. This conjecture will be proved only for k = 3 in Theorem 5.

Conjecture 2 . Let t be a given integer, e = 0, 1 and k = 2t + 3 + e .
Then

(6)

	

f(n, Pk) = to - t+2 1 ~ + 1 + e if n > 5t +3 + 4e
2

and

(7)

	

f(n, pk ) _ ~
k 2

2J + 1 if k 5 n < 5t +3 + 4e
2

Further, the only extremal colourings corresponding to (6) are the follow-
ing ones : t vertices x, , . . . , x t E K" can be choosen so that all the edges
of form (xi , y), j = 1, . . . , t, y c= K", have different colours and the
edges of K" - {x1) . . . , x t } are coloured by one or two (more exactly,
by 1 + e) further colours . The only extremal colourings corresponding
to (7) are the following ones : k - 2 vertices x l , . . . , x k- 2 can be
chosen in K" so that all the edges (x t , xj ) have different colours and all
the other edges have the same extra colour.

Remark 3 . If t is odd, for n = 5 t+3+ 4e we have two different
extremal colourings in the conjecture .

We can prove the following theorem :

Theorem 5. There exists a constant

then Conjecture 2 is valid.
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c such that if n > 5t +3 + c
2

It is not too difficult to improve some estimates of our proof on The-
orem 5 and get

Theorem 6. If t is sufficiently large, then Conjecture 2 is valid .

However, even the proof of Theorem 5 is rather long and we cannot
prove Theorem 6 in a satisfactorily short way. The proofs of Theorems 5,
6, will be published later .



2 . PROOFS OF THEOREMS 1, 2

Let Y be a given family of graphs . Let Y - denote the family of
graphs H - e where H is from Y and a is an edge of it . Let P +
be the family of graphs G having the following property :

If we colour the edges of G by e(G) different colours and colour
G in an arbitrary way, then the obtained colouring of K`'(G ) always con-
tains a TMC H from Y .

Here Y = fH} will be assumed .

Lemma 1 . If Y * C Y', then

(8)

	

1 + ext (n, &-) < f(n, H) < ext (n, 2') .

Proof. Let Gn be an extremal graph for Y - . Let us colour the
edges of Gn by different colours "1", "2", . . . , "m", where
m = ext (n, Y- ) = e(G n ) and let us colour the edges of G" by "0" .
The obtained colouring of Kn contains no TMC H and this implies the
left side of (8) .

Let us call G n a representation of a colouring of Kn if it contains
exactly one edge of each colour . Let us consider an extremal colouring of
Kn and a representation G n of it . By definition of Y+, Gn contains
no subgraph from Y* . Hence

f(n, H) = e(Gn) < ext (n, Y*) .

	

Q.E.D .

Remark 4. One can easily prove that

(9)

	

f(n, H) = ext (n, Y+ ) .

However, since _V+ is an infinite family of graphs which generally is dif-
ficult to describe we have trouble in utilizing the whole amount of infor-
mation in (9) .

Remark 5. In our proofs we shall use the following observation : Let
G 1 , G2 E Y+ . If we omit an edge (x, x') from G, and an edge (y, y')
from G2 and identify x with y and x' with y', then the obtained
graph G3 E Y+ . Indeed, if we colour G3 by e(G3 ) colours and the
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complementary graph arbitrarily, either G2 c G3 + (x, x') or G1 C

c G3 + (x, x') is a TMC graph and therefore either KY(G1) or Ki'(G2)

(spanned by G, and G2 respectively) must contain a TMC H .

Proof of Theorem 1 . By Remark 5, if we omit an edge e = (x, x')
from H so that k(H - e) = d + 1 and then take two copies of this
H- e, say, Ul and U2, then by identifying the vertices corresponding
to x E H - e and the vertices corresponding to x' E H - e, we get a
U3 E + . Clearly, k( U3) = d + 1 hence, by (1) and Lemma 1

(10)

	

fln,H)<ext(n,U3)_(I-d+o(1))~2j .

On the other hand, by Lemma 1 and since for any L E Y-, k(L) _
=k(H-e)>d+ 1,

(10+)

	

f(n, H) > ext (n, Y -) > (1- d + 0(1) ) 12 I .

This completes our proof.

` J

.

Proof of Theorem 2 . One can immediately see that Lemma 1 and
Remark 5 and their proofs remain valid for k-uniform graphs as well. What
we cannot directly generalize to hypergraphs is (10) and (10+) . To avoid
the clumsy notations we restrict our consideration to the case k = 3 .

Let G be a 3-uniform hypergraph and let xl, . . . , xm be its vertices,
T be the set of its triples . Let G(t) denote the hypergraph obtained from
G by replacing x1 by t vertices x1 S, (i = 1, . . . , m, s = 1, . . . , t) . Let

(x11 S1, x12 S2, x13 S3) be a triple of G(t) if il, i2, i3 are all different and

(x11, x12 , x13 ) is a triple of G .

Then a result of P . E r d ő s [31 generalizing in some sense (1) asserts
that

ext3 (n, G(t)) - ext3 (n, G) = o(n3) ,

or, in other words :

ext3 (n, G(t))
lim
n--



does exist and is independent of t .

This result can easily be generalized as follows :

Let Y(t) _ : {U(t) : UE _F} . Then

ext3 (n; P (t)) - ext 3 (n, P) = o(n3 ) .

If we knew that for any U = H - e (where a is a triple of H), U(2) E
E Af+, then we were home :

By the generalized Lemma 1 (Y _ {H}, Y - _ ,r, .e+ D o(2))

ext3 (n, *) < f3 (n, H) < ext3 (n, *(2)) < ext 3 (n, -ye) + o(n3 ) .

which implies Theorem 2. But U(2) E * + follows from the correspond-
ing generalization of Remark 5 : for a given U there exists a triple (x, y, z)
in U such that U + (x, y, z) = H . Clearly, U(2) contains 3 vertices x',
y' and z' and two subgraphs U, and U2 isomorphic to U such that
U + (x', y', z') = H is isomorphic to H (i = 1, 2) and Hl and H2
have no common vertices but x', y', z' . Now, colouring the triples of U(2)
by different colours and (x', y', z') arbitrarily, by symmetry we may as-
sume that U, does not contain the colour of (x', y', z') and therefore
Hl is totally multicoloured .

3 . PROOF OF THEOREM 4

We shall need the following theorem :

Theorem 6 . Let r, d, and k < r/2 be given positive integers . Let
J be the class of graphs obtainable from Kd (r, . . . , r) by adding k
edges. Then

ext (n, 9- ) = ext (n, Kd+ 1 ) + k - 1 if n > no (r, d, k) .

Further, S" is an extremal graph for .i iffone can obtain S" by
adding k - 1 edges to Kd(n l , . . . , n d ), where nt's are defined by

(11)

	

Ins =n and Ini-dI< 1,

	

i= 1,2, . . .,d .
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We shall not prove this theorem here, though it follows fairly easily from
the much deeper theorems of [7] or it can be proved easily in the same
way as its special case k= 1 was proved in [6] (Theorem 1*) . Theorem
6 will be used here with k = 2 .

Proof of Theorem 4. Let k = 2, r = 5 and d = p - 2 in Theorem
6. Then .r contains 3 non-isomorphic graphs and one can easily check
that all they belong to Y + : 9- c 20+ . Therefore, by Lemma 1 and The-
orem 6 and since Y - _ { P - e) and p - e ? Kp _ 1 , we get that

1 + ext (n, P _ 1 ) < 1 + ext (n, Kp - e) < f(n, Kp ) <
(12)

< ext (n, T) = ext (n, Kp _ 1 ) + 1 .

This gives the "quantitative" part of Theorem 4 : the assertion (4) . We wish
to describe the structure of extremal colouring as well. Let us consider an
arbitrary extremal colouring of K" . Let G" be a representation of it .
Since overall in (12) we have equality, according to the proof of the upper
bound in Lemma 1 G" must be an extremal graph for 1 . Hence G"
can be obtained from a Kd(n l , . . . , nd ) (satisfying (11)) by adding an
edge to it .

What we have to show is that if e is the edge of G" for which
G" = Kd (n l , . . . , nd ) + e and f is an arbitrary edge of Kd (n 1 , . . . , nd ),
then a and f have the same colour . There exists exactly one f * E G"
having the same colour as f. Thus G" - f * + f is again a representation
of this extremal colouring. Therefore there exists an e* for which

(G" - f * + f)-e*= Kd(n1, . . . . nd ) .

This implies that f * = e (unless n is very small), i .e. f and e have
the same colour.



5 . APPENDIX

A. Here we prove Conjecture 2 for k = 3 . In fact, it is trivial : Let
Gn be a representation of a colouring of K" by n colours. Gn con-
tains a cycle. Let CS be the shortest TMC cycle in Kn . If its vertices
are al, . . . , as in their cyclic order and s 4- 3, then the colour of
(a,, a3) can occur at most in one of the two paths (a,, a2, a3 ) and
(a3, a4, . . . . as). In any case we obtain a shorter TMC cycle . Hence
Cs = C3 . This proves

fln,C3)=n-1,

since f(n, C3 ) > n - 1 immediately follows from the following construc-
tion : the vertices xl, . . . , xn E Kn are labelled somehow and we colour

(xi, x,) by "j" if i < j. Thus we get a colouring of Kn by n - 1
colours and Kn does not contain any TMC cycle .

B. We could not settle the problem of determining f(n, K2 (3,3)) .
We do not even know, whether it is greater than ext (n, .P- ) = en 312 .

C. Let U4 be the 3-uniform hypergraph on 4 vertices with 3 trip-
les. It is trivial, that

[ll

2
f3(n, U4) > ext3 (n, .~1'~n) = 4 + o(n2) .

On the other hand, it is easy to see, that

2
f3 (n, U4 ) < 4 + O(n)_

Probably the lower bound is sharp, but we could not prove it .
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