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1. INTRODUCTION 

We fist recall a few definitions and results from [ 21. Let K be a set 
of points in Euclidean n-space, En, and let the points of En be r-col- 
ored (that is, divided into Y classes, or colors). Then if all the points of 
K are the same color (i.e., in the same class), K is said to be monochro- 
ma tic. Let H be a group of transformations on En. In [ 21 we were 
primarily concerned with whether or not the following statement is true: 
R,(K, n, v): For any r-coloring of the points of En there is a monochro- 
matic set K’ which is the image of K under some element of H. 
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In this paper, we generalize R,(K, n, r) in several ways and try to 
decide which statements are true and which are false. Thiegeneralizations 
include replacing E n by infinite dimensional spaces, E and JZ’, K,- 
dimensional Euclidean space and Hilbert space, respectively. We also gener- 
alize by replacing K by r different sets Ki and see if for some i there 
is a Ki, congruent to Ki, which is monochromatic in the i-th color. 
These latter questions are dealt with in the next section. 

If K is a set in some Em, we say that K is Ramsey if for every 
r there is an n such that R,(K, M, r) holds, where H is the group of 
congruences of E". We recall that in [2] we showed that a set K is 
Ramsey if it is a subset of vertices of a “brick”, or rectangular parallelepi- 
ped, and that if K is Ramsey, it must be a set lying on some sphere. For 
infinite dimensional spaces the analogues of these may not hold (see Sec- 
tion 4 below). 

We conclude this section with a question more properly belonging to 
the first part of this study [2]. For every n, t is there a number pn = 
= m(n, r) such that for every set K of m points there is an r-coloring 
of E" without a monochromatic copy of K? 

2. ASYMMETRIC RAMSEY PROBLEMS 

In this section we consider asymmetric generalizations of the state- 
ment R,(K, n, r), where we write just R(K, n, r) when it is clear that 
the group H is the group of congruences. The generalization is as follows. 

R,W,, . . . , Kr, n, r): For any r-coloring of En there is some i 

and some Ki consisting only of points of the i-th color such that Ki 
is the image of Ki under some element of H. 

Frequently such asymmetric questions can be answered by direct ap- 
plication of a corresponding symmetric theorem. For instance, in the case 
of finite sets, if we 2-color the k-subsets of an n-set for n sufficiently 
large, then there is either an /r-set with all its k-subsets color 1, or an 
$-set with all its k-subsets color 2. This is a direct result of Ram se y ’ s 
theorem (Theorem 1 of [2]), since we get a monochromatic Z-set, where 
2 = max (1r, $). Ramsey’s theorem itself is sometimes stated in this equiv- 
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alent asymmetric form [6]. It is possible that obtaining bounds on the 
number n required for a given set of parameters (e.g. I,, I,, k) is easier 
in some cases than obtaining bounds for corresponding symmetric cases 
[ 11. Hopefully some of the geometrical asymmetric theorems discussed here 
will help provide proofs for yet undecided symmetric cases. 

Theorem 1. If the points of E3 are Zcolored (red and blue), then 
either there is a red pair of points distance 1 apart, or there are four 
blue points in a line with distance 1 separating adjacent points. 

Proof. By Theorem 8 of [2], we know that for any 2-coloring of 
E3 there is a monochromatic triple a, b, c of points in a line distance 1 
apart, Suppose E3 is colored to avoid both a red pair distance 1 apart, 
and a blue set of four points on a line 1 apart. Then we must get a blue 
triple a, b, c (See Figure 1). 

0 5 0 

Oe ‘4. ‘b % Od 

0 
g 

0 0 *i 

Figure I 

In Figure 1 we have a part of the triangular lattice, with the unit cell 
an equilateral triangle of side length 1. Then both points d and e must 
be red, or else we would have four blue points in a row. Thus f, g, h and 
i must all be blue, as they are adjacent to red points. Now, not both i 
and k can be red, so suppose i is blue. Then, since g, a and i are 
blue, I must be red. Then k has to be blue. This is finally a contradic- 
tion, since f,i, k and h are now all blue, proving the theorem. 

We included this proof to indicate the potential for using the triangu- 
lar lattice to prove such results. We turn to this question in more detail 
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later. Actually we have a stronger result, replacing E3 by E*. 

Theorem 1’. If the points of E* are 2-colored, (red and blue), then 
either there is a red pair 1 apart, or 4 blue points on a line I apart. 

Proof. Suppose E2 is 2-colored so that neither a red pair distance 
1 apart nor a blue four on a line distance 1 apart occurs. Then there 
must be a red point p somewhere in E*. Consider the circle C, of 
radius 1 and center p. The points of the circle must be entirely blue. 
Now consider the concentric circle C2 with center p and radius V? 
(see Figure 2). 

In Figure 2, we have the two concentric circles with an equilateral 
triangle a, b, c inscribed in C,. The distances between a and d, d 
and e, and e and b are all 1. d and e are both blue as they are 
on C,. Thus not both a and b are blue. This is true similarly for a 
and c or b and c. Hence at most one of a, b, c is blue. Suppose a 
and b are red. Let the points f and g be distance 1 both in the clock- 
wise direction from a and b, respectively, and on C2. Then the points 
f and g are blue, as are h and i, which are on Cl. This is a contra- 
diction, as the distances fh, hi, ig are all 1. 

Theorem 2. Zf the points of E3 are 2-colored (red and blue), then 
either there is a red (1, 1, fi)-triangle, or a blue unit square. 

Proof. If there are no red points, it is trivially true. So let a be red. 
Suppose thire is no red B at distance 1 from a. Then the unit sphere 
centered at a is all blue. A unit square is imbeddable in the unit sphere, 
and the theorem is true in this case. 

Finally, then, we can assume tl and b are both red and distance 1 
apart. Consider the two circles of radius 1 with centers at a and b re- 
spectively, and perpendicular to the line ab. If a point c on one of these 
circles is red, then abc is a red (1, 1, fl)-triangle. Thus we can assume 
both circles are blue. But then we clearly can find a blue unit square by 
taking two points each circle. This completes the proof. 

The same result holds if “square” is replaced by “rectangle whose 
longer side is 1”. 
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a 

Figure 2 

Theorem 3. Let T be any three points in E’. 2-color the poinfs 

of E2 (red and blue). Then either there are two red points distance d 
apart, or a blue translate of T. 

Proof. Let tl, t2, tg be the points of T, and let K be the seven 
point configuration in Figure 3. If there is no pair of red points distance 
d apart, each ti + K can have only two red points. Hence for some 
k E K, T + k is blue. This completes the proof. 
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(0, 0) (4 0) 

Figure 3 
All edges have length d 

In Corollary 6 below we generalize Theorem 3 considerably. Whereas 
Theorem 3 says we must have either a red unit distance or a blue translate 
of a set K, Corollary 6 says we must have a red brick B’ congruent to 
B, a fixed brick, or a blue translate of K (in Em for sufficiently large 
m). In particular, since all Ramsey sets known so far are subsets of ver- 
tices of bricks, we know that for all known cases the following statement 
is true, and we conjecture that it is true in general: Let K be a set of k 
points, and let B be a Ramsey set. Then there is an n, such that if. En 
is 2-colored, either there is a red B’ congruent to B, or a blue translate 
of K. 

This may be true even if it turns out that some Ramsey sets are not 
imbeddable in a brick. 

Theorem 1’ and 3 lead to the question: if K is a set in E2, and 
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the points of E2 are colored red and blue so that no two red points are 
distance d apart, then is there necessarily a blue K’ congruent to (or a 
translate of) K? This question is settled negatively by the following ex- 
ample. Let d = 1 and let K = the set of 1012 points in a regular 
IO6 x IO6 lattice of points where the distance between adjacent points 

3 
Is 106 * * - Now for each pair of integers m and n, let the square 

{(x, y) 12~ < x g 2m + 112, 2n < y < 2n + l/2} be colored red, and let 
all other points in E 2 be colored blue. Clearly with this coloring there 
are no red points 1 apart, and no blue K, This same kind of counter- 
example can be used for the analogous questions in higher dimensions. 
There is an open question here, which we think should have a negative 
answer: given k, is there an n, depending only on k, such that if K 
is a subset of Ek, and En is 2-colored so that there is no red pair of 
points distance 1 apart, then must there be a blue K’ s K? The point 
here is that n is independent of I KI. When it is allowed to depend on 
I KI also, then Theorem 3 gives an affirmative answer. As a special case 
we would like to know if there is for each n a set K, c E’ and a 2- 
coloring of E” with no red points distance 1 apart and no blue set 

Other open questions arise from Theorems 1 and 2. From Theorem 
2 we see that if we 2-color E3 so that no two red points have distance 
1, then there will be a blue unit square. Whether E2 suffices here is still 
undecided. From Theorem 1’ we see that any 2-coloring of E2 yields 
either a red pair distance 1 apart, or four blue points in a row 1 apart. 
We don’t know whether we can get five points in a row. It is also not 
known whether we can get five in E3. However, for E4 we can, by 
considering the Qdimensional generalization of Figure 3 and using a proof 
analogous to that of Theorem 1. 

Some of the asymmetric results can yield statements about the chro- 
matic numbers of certain kinds of graphs. A graph C will be called an 
(n, l)-graph if the vertices of G can be put in a one-to-one correspon- 
dence with a set of points G’ in E” such that a pair of vertices in G 
is connected by an edge in G if and only if the corresponding pair of 
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points in G’ are distance 1 apart. For example the graph in Figure 3 is 
a (2, l)-graph. Let K be a set of k points in En, and let G be an 
(n, I)-graph with chromatic number k + 1‘ Then just as in the proof of 
Theorem 3, we let G’ be a realization of G in En, and we consider all 
the points in G’ + K. If we 2-color En, red and blue, such that no red 
points are distance 1 apart, then we must have a blue translate of K. 
Thus if we can color En so as to avoid both red points distance 1 apart 
and blue copies of K, it follows that no (n, I)-graph has chromatic num- 
ber k + 1 (or more). In particular, if E2 can be 2-colored so as to avoid 
both a red pair of points of unit distance and a blue unit square, then we 
can conclude that every (2, l)-graph has chromatic number 4 or less. 

3. DENSITY ARGUMENTS AND SPECIAL SETS 

The arguments in the previous sections which gave positive Ramsey 
theorems about various sets were all proved by constructing (even if only 
inductively) an appropriate finite set, the coloring of which forced one of 
the monochromatic configurations under consideration (see Proposition 4 
of [2]). It is possible in some cases to construct sets so rich in some spe- 
cial configuration that simply by counting we can verify the existence of 
monochromatic instances of the configuration. The most obvious case of 
such a set, of course, is the simplex. If we consider the simplex on II 

points, then any fraction cy of them where CY > 2 must contain an Y 

point simplex. Thus we are guaranteed an r-point monochromatic simplex 
using [n/r] colors. For configurations other than simplicial ones the re- 
quired sets may be complicated. The fractions obtained in these cases give 
bounds on the number of colors required in a given dimension to prevent 
the configuration from occurring monochromatically. In particular, if in 
Em we can find a set S with n points such that every subset of size 

6 E < 1, contains the given configuration, K, then R(K, m, [n l- ‘I) 
holds. The following construction is a generalization of a construction of 
Jon Folkman, A. Hajnal and E. SzemerCdi showed that it is 
the best possible for constructions of this type (partitioning coordinates). 

Theorem 4. Let B be u k-dimensional brick, k > 1, with dimen- 
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sions d,, d,, . . . , d,. Then there is a set S of N points in Em such 

that every subset of S with 2kN2k- 2M2k- I) points contains a brick 

congruent to B, where N = nZk- ‘, m = n2k, n is any integer greater 
than 1. 

Proof. Let S be the set of points 

. . . ) X3n~‘“-,Xkl,‘--,X 
knpk- ‘) 

where for each j = 1, 2, . . . , k all the xii are 0 except for one, which 

must be l/V? l d,. There are N = nzk- ’ of these points in (n 
2k- 1 + * . . 

. , . + n2 + n)-dimensional space, and thus in m = n2k-dimensional space. 

Now consider the sets Aj = u, il i = 1, 2, . . . , 2j- 1 }, j = 1, . . . , k. 
Let T be the set of all k-tuples consisting of one element from each of 
the Ai. Each element f E T corresponds to a point s E S by choosing 
xii # 0 in s if and only if (j, i) E t. 

Select two elements form each of the Aj and form the subset of T 
consisting of all the k-tuples in T composed only of the selected elements. 
Call such a set a 2k -subset of T. (It has 2k k-tuples in it.) From the 
construction of S, each 2k-subset of T corresponds to a brick in S 

congruent to B. So what we wish to show is that any 2kn2k - ’ of the 

n2k- 1 elements of T contain a 2k-subset. 

We can do this by induction on k. For k = 1 the result is trivial, 
since every two elements of A, correspond to a pair of points at distance 
d, (or l-dimensional brick). 

We consider k = 2 next to illustrate the idea in the general case. In 
this case T can be thought of as the complete bipartite graph K 2. 

Suppose T has a subset T’ without acycles (quadrilaterals). If we c”d”unt 

pairs of edges of T’ with common vertex in A,, we get 
II ‘; 

at most, 

for otherwise T’ would contain a quadrilateral. There are then at most 
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*i II edges contained in such pairs. There may be at most n* edges in 

T’ not in such a pair. Thus there are at most 2 “2 + n* = 2n2 - n edges 
0 

in T’. Any subset of T with at least 2n2 edges therefore contains a 
quadrilateral. This completes the k = 2 case, since such quadrilateral cor- 
respond to bricks. 

We next assume that the statement .is true for k and show it for 
k+ 1. 

Consider A,,A,, . . . ,AR+r and T as defined above. Suppose T’ 
is a subset of T not containing a 2k + ’ -subset. We count pairs of (k + l)- 
tuples in T’ with a common point in A r . If a E A, , then the set of 
(k + l)-tuples in T’ containing a deteremines a set of k-tuples with one 
element from each of the Aj, j > 2. Let this set be T’(a). If c1 and b 

are in A, and I T’(a) C-I T’(b)I> 2k(n2)2k-2, then by induction (with 
n* replacing n), T’(a) and T’(b) have a common 2k-subset, U. But 
this in turn gives us a 2k + ’ -subset of T’ consisting of all those (k + l)- 
tuples {a) U Uk and {b} U Uk for all Uk E U. This is impossible by 

choice of T’, So I T’(a) n T’(b) I < 2kn2k+ ’ - 4. 

If we now count all pairs of (k f I)-tuples of T’ differing only in 

A 1, we get at most 
II “2 2kn2k+‘-4* 

(There are “2 
0 

ways to pick the 

element in A, for such a pair, and at most 2kn2kf ’ - 4 2k-sets in the 

44, * * ’ dk+l in which they can overlap.) This then accounts for 

n(n - l)2kn2k+ lM4 of the (k -!- 1)-tuples in 7”. There are at most 
(n2)2k-l = **k+l-2 members of T’ not in any such pair. Hence T’ 

can have at most n(n - 1)2 k’ 2k+1-4 n +n 2k+l-* , and the induction is 
complete, 

We note then that Corollary 21 of [ 21, which says that any brick is 
Ramsey, is also a corollary of this theorem, since as we observed before, 

Theorem 4 implies R(B, n 2k, [FZ/~~]). Theorem 4 can also be used to gen- 
eralize Theorem 3 as follows. 
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Theorem 5. Let S be a set of iV points in Em so that every sub- 
set of [N/r] points of S contains a set K’ congruent to a given set K. 
Let I < r, and let L be a set in Em with I points. Then if Em is 
Zcolored (red and blue), either there is a red K’ congruent to K or a 
blue translate of L. 

Proof. Consider each set a + S for a E L. If Em is 2-colored to 
avoid a red K, then fewer than [N/r] of the points of a + S are red. 
Thus, since Z(N/r] < N, there must be some point s E S such that a + s 
is blue for all a E L. This gives a blue L’ which is a translate of L, 
completing the proof. 

Let n > 1 and k > 0 be integers, and let m = n 2’, NC n2k-1, 

and 1 and integer less then [n/2k]. Let L be a set in Em with I 
points, and let B be a k-dimensional brick. Then from Theorems 5 and 
4 we get 

Corollary 6. If Em is Zcolored (red and blue), then either there 
is a red B’ congruent to B or there is a b/ire translate of L. 

Since the only Ramsey sets we know so far are embeddable in bricks, 
it is suggested by the arguments above that perhaps the only Ramsey sets 
are those which satisfy a similar density property. That is, if K is Ramsey, 
must there be an n element set S,, for large n such that any subset of Sn 
with f(n) points contains a K’ congruent to K, and f(n) = o(n)? 

In the case of sets which are not Ramsey we obtain the inverse state- 
ment. That is, for example, if K consists of three points equally spaced 
on a line, then we have for every set S,, of n points some subset of at 
least n/4 points which contains no K’ congruent to K, since R(K, n, 4) 
is false (see [2] Sec. 3). 

Another conjecture is that if K is a configuration associated with a 
function fin) as described above, and if in fact f(n) = o(G), then K 
must be a simplex. With the square we got f(n) = O(n2j3), and with the 
1, 1, fi right triangle we got @I%), as seen below. 
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?I* -n 
Theorem 7. There is a set S in En with 2 points such that 

any subset of S with n points contains a (1, 1, )/2)-triangle. 

Proof. The set S we choose is the set of all points (x1, . . . , xn> 

where all the xi are 0 except for two, which are l/I!?. There are 
n 

(1 
, 

of these. If we consider the complete graph Kn on n vertices, where tie 
edge between vertices i and j corresponds to the point (x1, . . . , xn) 
with xi = xi = l/l/z, then clearly non-cyclic paths of length three in K, 
correspond exactly to (1, 1, ~‘%triangles. Since the only subset of edges 
of K, without paths of length three are disjoint triangles and stars, any 
set of n + 1 edges in Kn must contain a path of length three. Thus any 
n + 1 points of S contain a (1, 1, I/Z)-triangle, completing the proof. 

The construction used in Theorem 7 gives a set S of 

11 

0 
“2 points 

such that there are 12 z (1, 1, lQ)-triangles among them. This is more 

than (2 -~ ;)lSl 2. What is the largest number of (1, 1, I’?)-triangles we 

can have in a point set of size N in a Euclidean space? We ask the same 
question for the unit square. In that case, the construction in Theorem 4 
gives about N*/4. We can in fact do better in both of these cases. 

Theorem 8. There is a set S of N = (3/2)n points in En + 2 such 
that, for n sufficientiy large, at least ( 1/15)N3 of the triples form 
( I , 1, IQ-triangles. 

Proof. Let A=(x,,..., x,, 47, z)l all entries are 0 except for 
one of the xi, which is l), and let B = {l/n,. . . , l/n,~~,z)l z2 = l/n). 
The circle B is distance 1 from all points in A. Let Be be any set 
of cuz points of B, and let S = A u BLZ. S has (1 + cx)n points, and 
any two from A with one from B from a (1, 1, ?‘2)-triangle. Thus there 

n 
are 

(1 2 
an of these triangles. The maximum value of 

(1 
“2 an(( 1 + a)n)- 3 

occurs at o = I/2. Thus if we let a = l/2, N = (3/2)n we get 
(2/27)( 1 - l/n)N3 triangles. For n large enough, this is more than 
(l/lS)N3 and we are done. 
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We observe two things about this construction. First, it works equally 
well for any isosceles triangle. Second, although the construction yields 
more triangles than that used in Theorem 7, it requires more than (1/3)N 
of the points to guarantee a triangle, as opposed to U(l&) in Theorem 
7. If we let K be a configuration on n points maximizing the number 

of (1, 1, V?)-triangles, then dp- (y) < 1, where t(K) is the number 

of (1, 1, V2)-triangles in K. The value of this limit is unknown. If S is 
a set of n points maximizing the number of unit squares, the next theo- 
rem gives 4(S) Z n2, where q(S) is the number of unit squares in S. We 
do not know whether q(S) = o(n3). 

Pdsa asked whether in Hilbert space every set of c points has a aubset 
of c points without any right triangles. In En the answer is affirmative. 

Theorem 9, There is a set S of N = points in Em such 

that for M sufficiently large. S contains at least N2 unit squares. 

Proof. For k < m/4, let Sk denote the set {(x1, . . . ,x,)1 exact- 
ly 2k of the xi are l/lx and m - 2k are O}. We can form unit 
squares in Sk by choosing four disjoint k-sets of coordinates A, B, C, D, 
and choosing the four points whose non-zero entries occur precisely in 
A u B, B u C, C u D and D u A, respectively. There are Q = 

= ($I(;) (“; “I(” Jj 2k) (“; 3k] = ($) (g) (” ,,,) (2J2 of 

these. Now 

I I’% 
Let k = [!!!I. Then since (F-is)” z (1 --v;;;) and this 

goes to l/e as m-, m, we can pick m large enough so that 

I m i2k)2k > l/3, or Q/ [$)2 > ($) (2kkJ 2. Clearly for m large 

enough 

. 
> 24. Thus we have at least = N2 unit squares, 

and the theorem is proved using S = S,,,S;,~ ,, 
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The arguments above all involved the construction of some special 
set which was “dense” in a particular configuration. In fact, these con- 
structions were all based more or less directly on the simplices. P 6 s a 
proved a result for infinite sets of this type. Namely, there exists a set of 
power c in Hilbert space so that any subset of power c contains a set 
similar to the infinite unit simplex. He used C.H. We don’t know any oth- 
er sets for which this is true. We can restrict our attention to prescribed 
types of sets and ask about the density of various configurations contained 
in them, In particular, in view of some of the arguments used before (cf. 
Theorem 1) we might consider regular lattices, such as the triangular lat- 
tice or the square or rectangular lattices. 

Suppose K is the configuration of three points on a line distance 
one apart. Then in the m-dimensional integer lattice of side n, 

L m,n=((X1 ,..., xm)I1<xXioz, lGi<n}, 

we can find a set S with (2/3)fl points (asymptotically with n) con- 
taining no K’ congruent to K. Just let 

s = ((X1) I . . ,X,)11 <xi<n, 1 <i<m , 

2 xi f 0 (mod 3)) . 
i= 1 

This is clearly the largest number possible, for if we divide L, n into 
disjoint, adjacent triples in, say, the (1, 0, . . . , 0) direction, we must ex- 
clude at least one from each triple. 

In the simplicial lattice we don’t yet have such a complete answer. 
Let 0, vr , . . . , v, be the points of a simplex in Em, and let Sm n = 
= {llVl -I- . . . + im v, 1 1 < $ < n, 1 <i < m}. If m = 2, this is just the 
triangular lattice in the plane, and for this case we obtain the set 

S = {iv1 + jvz I i - j f 0 (mod 3), 1 < i, ] < n} . 

S has no K’ congruent to K, and 1 Sl = 2/3n* (asymptotically in n). 
It is undecided whether there is such a set with 2/3nm points in the lat- 
tice Sm n. Since K is not a Ramsey configuration, and in fact R(K, y1,4) 1 
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is false, we know that we can find a set S with more than (1/4)fl points 
containing no R congruent to K. 

We might get a larger number of some configurations K in a lattice by 
reducing the side of the lattice, or, equivalently, increasing the scale of K. 
For instance, in the n X n integer lattice L, n there are 2n(n - 1) pairs 
distance 1 apart. But there are 2n(n - 5) +’ 2(n - 3)(n - 4) pairs of 
points distance 5 apart, since some diagonals have length 5. For some 
configurations K, however, changing scale doesn’t help. An interesting 
case is the equilateral triangle. Clearly there is no equilateral triangle of 
side 1 in L, ,,. As a special case of the next theorem we see that L, n 
contains no eqbilateral triangle of side d either. 

Theorem 10. Let K be any odd polygon (we permit edges to cross) 

with all sides of length d. Then the integer lattice L, n contains no K’ 
congruent to K. 

Proof. Let d be realizable as the diagonal of the integer rectangles 
with horizontal side length ai and verticle side length bi, 1 G i < k. Let 
P be a closed polygon of side length d in L, n with m sides. If we 
start at one vertex of P and move around the ‘polygon along successive 
edges, each step contributes to the horizontal and vertical components of 
the position. Let the successive contributions be (xi, yj), 1 B i G m. Since 
P is a closed polygon, the total contributions must both be 0. That is 

&fx=Ty 
j=l i 

. = 0. The pairs (x, y) must be chosen from the pairs 
i=l 1 

Now let 4 be the largest integer so that 24 divides all the ai and b,, 
and let (aj, bi) = 24 (a:, bi). By considering d2/22q(mod 4) we see that 
if one pair (al, b]) has one odd and one even number, so do all the other 
pairs (a;, bi). In this case, if m is odd there are either an odd number 
of xi z 24(mod 29 + ‘), or an odd number of yi 5 2q(mod 24+ ‘), an 
impossibility since the x’s and y’s sum to 0. If there are no even-odd 
pairs (a:, bi), then all aI and b: are odd, and we get the same contra- 
diction as above if m is odd. But by the choice of 4, these are the only 
possibilities. Thus m is even, and the theorem is proved. 
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4. INFINITE CONFIGURATIONS 

So far our concern has been only with finite configurations which are 
or are not necessarily monochromatic in certain coiorings. We now turn our 
attention to the question of infinite sets. As we might expect, many of the 
direct analogues to finite theorems are false in the infinite case. However, 
some are true. We recall as an illustration that the infinite version of 
Ramsey’s theorem is true, while the infinite version of van d er 
W ae r d e n ’ s theorem is false. These observations imply directly the fol- 
lowing two theorems. 

Theorem 11. Let EHo denote No-dimensional Euclidean space 

(=ail KO-tuples with only finitely many nonzero terms, and with the usu- 

ai metric). Let K be the K,-simplex, 0) 1 y has exactly one coordinate 
equal to 1 and all others 01. if the points of I? ’ are r-colored in 
any way (in fact the points of K are all that’s necessary to consider here), 
then there must be some monochromatic K’ congruent to K. 

We use the term “congruent” above, and will below, to mean that 
R is the image of K under an isometric mapping .f of EKo into E”O 
which is not necessarily onto. If we required f to be onto as well, then 
K’ would have to have the same codimension as K, and Theorem 11 
would not be true. This same convention is used for the notion of similar- 
ity also when appropriate. 

Theorem 12. lf I is real Hilbert space, then ./I’ can be 2-col- 
ored so that there is no monochromatic set K’ congruent to any arith- 
metic progression (or, alternatively, similar to K = ((i, 0, 0, . . .) I i = 
= 0, 1, 2,. * .)). 

Proof. We decompose ,X’ into concentric shells around the origin 
with thicknesses increasing and unbounded. Then we color the shells al- 
ternately. This generalizes the usual 1 -dimensional coloring. 

Besides the kinds of variations we considered for the finite case, such 
as the asymmetric problems and problems with different groups, there are 
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in the infinite case some kinds of questions involving analytical or topolog- 
ical properties not relevant in the finite case. 

Theorem 13. Let G be the group of homeomorphisms of E2 onto 
itself, If K is any discrete set in E2, then R,(K, 2, 2) is true. If K 
is any set which is everywhere dense, then R&C, 2, HO) is false. 

Theorem 14. There is a set S of c (continuum) real numbers such 
that E’ can be Zcolored with no monochromatic pair of points distance 
d apart for any d E S. No such S of positive measure exists. 

Proof. For the first part, any set S of c numbers which are ration- 
ally independent will work. For let B be a Hamel basis containing S. 
Let G be the additive subgroup G = UI, + > of the reals generated by B. 
We color the elements of G according to the parity of the sum of the 

k 
“coefficients” of the elements of B. That is, if g = 2 nibi, bi E B, 

i=l 
& 

ni E Z, then b is colored according to the parity of ig ni. This colors 

G. Now for each coset r + G of G, choose a representative r, and 
color each element r + g the same as g. E’ is now all colored. The only 
points x, y which can be a distance b E B apart are points x, y in the 
same coset of G. But if x - y = b E B, then the parity of x and y 
differ. Thus no distance in S G B occurs monochromatically. 

Suppose S has positive measure. Let E’ be 2-colored with no 
monochromatic distance d E S. Suppose the color of 0 is red. Then the 
set SCE’ isblue.Then S+S={x(x=st +s~,s~,s~ES} must beall 
red. By a well-known theorem, since S has positive measure, S + S must 
contain an interval {a, b). Thus we have shown that if 0 is red, [a, b] 
is red. Similarly then, using each point in [a, b] as a new origin, we get 
12a, 2b] all red. In general then, arbitrarily large intervals are all red a 
contradiction completing the proof. 

Theorem 15. We can 2-cotor El so that no pair of red points are 

a rational distance apart, and no set of blue points in congruent to the set 
of rational numbers. 
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Proof. Again we appeal to a Hamel basis B, where we take 1 E B. 
Color red any point in E’ whose Hamel basis expansion has a 0 coef- 
ficient for 1. Color all other points blue. Clearly no two red points dif- 
fer by a rational distance. On the other hand, suppose some set x + Q 
was all blue. Then x cannot be rational (as 0 is red), and thus x = 

k k 
= x0 + 2 xilji where the xi E Q and bj E B. Then we have iJ1 xibi E 

i= 1 

E x + Q. This is a contradiction since x + Q is all blue, while igl xibi 

must be red by the choice of the coloring. This completes the proof. 

It is an open question whether this can be extended to E2. We 
might extend it in any of several ways, actually. We may try to color EZ 
to have no red pair of points a rational distance apart and no blue set 
congruent to Q in E 2. We may replace Q by Q X Q, or perhaps by 
the sets A or C of algebraic or constructabk points, respectively. 

Theorem 16. Given any set K with 1 KI > 1 in any vector space 
L, we can color the points of L in two colors so that there is no mono- 

chromatic translate of K. 

Proof. The proof of this is similar to that of Theorem 14 above. Let 

G be the additive subgroup of L generated by K. G is countable. Each 
coset of G in L is a translate of G in t, and vice-versa. Each trans- 
late Z-t K of K in L is in the coset I+ G of G. Just as in the proof 
of Theorem 14, we need only color the elements of G to avoid mono- 
chromatic translates of K, and then color each element I + g E I + G 
the same color as g. 

It is sufficient to let K = {O, k). Then we color nk according to 
the parity of n. This coloring clearly avoids any monochromatic translate 
of K, completing the proof. 

We see that R,(K, n, r) is therefore uninteresting for K infinite 
and G the group of translations. Theorem 16 can be made more general 
by replacing L by any group. We can also make a similar asymmetric ar- 
gument excluding k fixed distances in red and a translate of K in blue. 
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Theorem 12 is a negative result about sets similar to K = (0, 1, 

2,3, - - .I, i.e. arithmetic progressions. A stronger result with essentially 
the same proof follows. 

Theorem 17. Let K be an unbounded set in Hilbert space ti. 
Then .Y/ can be 2-colored (in concentric she&I so that no K’ similar 

to K is monochromatic. 

We also get negative results for some asymmetric problems in the fi- 
nite dimensional case. 

Theorem 18. E2 can be 2-colored so that no two blue points are 
distance 1 apart and no infmite arithmetic progression is entirely red. 

Proof. Let Ai be the open annulus around the origin with inner and 
outer radii 1 02’ and 1 02’+ ’ , i = 1, 2, . . . . ‘ Let C, be the set of all 
discs of radius l/4 contained in any of the A 

2’ 
which have centers on 

points of the form (loprz, lOn), m, n integers. By the Kronecker approx- 
imation theorem, every arithmetic sequence contained in a line of irration- 
al slope meets some disc in C,. 

Let (ai, b,, c,), i > 2 be all triples of rational numbers. For each 
i > 2 let pj be the i-th prime number. Let Cj denote the set of all 
discs with radius l/4 contained in any A pi’ j > 1, with centers on 

points of the form (ai, bj) + lOn(1, cj), n and integer. Then any infinite 
arithmetic progression with slope ci and initial point in a neighbourhood 
of (ai, b,) (say a disc of radius I/10) must meet some disc in Ci. Thus 

C = i-, Cj is a set of discs such that every arithmetic sequence meets 

one of them (they actually meet an infinite number). 

All the discs in C are of diameter l/4, and all are at least distance 
10 apart. Thus if we color all points in the discs of C blue and every- 
thing else red, the proof is complete. 

Theorem 18 can be generalized by induction to E” as follows. 
Taking concentric shells Ai as above, and using a lattice of n-balls in- 
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stead of discs, we obtain a set C, of n-balls which meet every arithme- 
tic progression with “totally irrational” slope. That is, if u + iv, i = 

= 1,2,... is the progression, the coordinates of Y are rationally inde- 
pendent. For each of the denumerably many possible rational relations be- 
tween the coordinates of Y, we get an m-dimensional problem, m < n, 
For this we have a set of n-balls which meet all such sequences. Thus we 

can choose a countable set of n-balls i-l1 Ci meeting all arithmetic prog- 

ressions. We let the Ci be in alternate Ai as above. 

What we have here, then, is an asymmetric result allowing us to color En 
to avoid a blue unit distance and any red K’ similar to K = { 1, 2,3, . . .). 
The questions of replacing K by an arbitrary infinite set, and En by 
Hilbert space are open. It appears that for some K in En a set of small 
blue discs far apart may not be sufficient to provide a suitable coloring, as 
it was in the case of arithmetic progressions. Certainly for some sequences 
K which are “close” to arithmetic sequences the result of Theorem 18 can 
be extended. What seems particularly interesing is the case where K is a 

convergent sequence, like (i]. For some sets, such as K = {x 1 Ix I = 11, 

the result of Theorem 18 clearly doesn’t hold, for such a red set K must 
surround every blue point. Perhaps for K unbounded the generalization of 
Theorem 18 holds. Replacing similarities by congruences or other groups 
also leads to new questions. Finally we comment: If En (or &‘) is 2- 
colored so that no two blue points are distance one apart, then if a set K 
occurs in blue, a set K’ z K occurs in red. K’ can be taken as any unit 
translate of K. 

Returning to the symmetric case, we obtain a result stronger than 
Theorem 17. 

Theorem 19. Let K be ony infinte set in En. Then En can be 
HO-colored so that every K’ similar to K contains points of every color. 

Proof. Let k be the smallest integer such that K has a denumer- 
able subset L, contained in some k-dimensional Euclidean subspace, Ek. 
Let L, be a denumerable subset of L, so that no k f 1 points of L, 



are in a (k - 1)dimensional Euclidean subspace. (Such a set exists by the 
choice of k.) Finally, we choose inductively a set L = fy, , y2, . . .} C_ L, 
such that no two subsets of k + 2 points are similar. This can always be 
done one step at a time as follows. Suppose we have chosen Sn = {or, . . . 
* ‘ . , vn ) satisfying these condictions, If Xk+ r and Yk + 2 are a (k + l)- 
set and a (k A- 2)-set in L,, respectively, then there are only a finite 
number of points v which can make Xk + r u {v) similar to Yk+ 2. And 
if Xk+r and Yk+I are both (k + 1)-sets, there are still only a finite 
number of points in Ek for which Xk+ 1 U {Y) and Y, + 1 U {v) can 
be similar. Since there are only a finite number of possible Xk + r and 
Y k+ 2 at each step, and since t, is infinite, we can always choose 
V, + 1. Thus no two (k + 2)-subsets of L are similar. 

Then any two sets L’ and L” which are simils: to L must contain 
at most k + 1 points in common, since L is deternined by any k + 1 
of its points. By a theorem of E r d 6 s and H aj n al on families of sets 
with bounded intersections [3], the points of En can be He-colored so 
that every L’ similar to L contains points of every colot. This completes 
the proof. 

We see by Theorem 11 that for infinite dimensional spaces Theorem 
19 isn’t true. However, if K is a subset of En C EHo for some n, then 
the proof of Theorem 19 would apply. The E rd 6 s - H aj nal result 
will not apply in general because the set L which was fixed by any k + 1 
of its points may not exist. We remark finally that similarities could be 
replaced by affme motions in Theorem 19, because we could still find some 
m and set L with every m points of L fixing L. 

Let f(i) be a positive real-valued function on the positive integers. In 
EN0 let xi denote the point with the i-th coordinate equal to f(i) and 
all other coordinates equal to 0. Let x0 be the origin, and let Kf = 
={xo,+x2 ,... . } We recall that a set K is a space E is called Ramsey 
if for every r > 0 and every r-coloring of E there is a monochromatic 
K’ congruent to K. For the Kr above we have the following result, 
which generalizes Theorem 11, 

- 549 - 



ENO. 
Theorem 20. If f is a bounded function then Kf is Ramsey in 

Proof. Let En ’ be r-colored for some r > 0. Suppose that no 
K’ Y K’ (Z means “congruent to”) is monochromatic. It p. is any point 

in E HO , we try to choose sequentially points p1 , p2, . . . such that all 
the pi and p. are the same color, (p. -pi) and (p. - pj) are orthog- 
onal for if j, and lpo -pi I = f(i). If we could continue choosing the 
pi indefinitely we would have a monochromatic K’ z 4. Thus for some 

PI,. - - >Pm we can’t continue. Let S be the sphere with center p. con- 
sisting of all points x with (p. - x) orthogonal to (p. -pi) for all 
i= 1,2 ,..., m, and with Ipo -x I = f(m + 1). Then all points on S 
are colored differently from po. 

Thus we can associate with each point p in EN0 a sphere S(p) 
with radius R(p) < supifli), of finite codimension such that the color of 
any point in S(p) is different from the color of p. What we wish to do 
nowistofindpoints p1,p2,.,.tpI+1 with pl+l~S(pl)n...nS(pi) 
for i= 1,2,..., r. This would be a contradiction since it implies that 
the colors of pi and pi are distinct for i < j, while there are only r 
colors. 

We choose the pi sequentially. Let E = 2- 2r. Let M, = supENoR(p), 

and let p1 be some point with R@,)2 > M:(l - E). Set S, = S(p,), 
r,=R@,), and st =rr. Similarlyfor i=2,3,...,r+ 1 welet M,= 

= SUPp~S1 n... nSi- 1 R(p), (we will prove below that S, n . . . n Si- 1 f 6) 

and let pi be some point in S, n . . . n Si- 1 with RCJI~)~ > MF( 1 - c). 

We let ri = R(p,), Si = S(p,) and si = 1’rf - rT/(4$- 1), the radius of 
s, n . . . n Si. Then the proof is complete if we can show that this con- 
struction yields S, n . . . n Sr # @a But to show this it is sufficient to show 
that (si/(ri+ I))2 > l/2( 1 - 2i~), 1 < i < r. We do this by induction. For 
i = 1 it is true by the choice of rll In general (ri/(ri+ , )I* > $/(Mf) > 
> (1 -- e), by the choice of ri. Then (si- I /trill2 > l/2(1 - 2’- ’ ~1, 
i > 2, implies that 
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=(l -E) ( 1 1 2i- 1, 
7-Q _ 2i- $1 = 

I 

=$1-4(2i-le) 112’E’& -2’e). 

This completes the proof. 

Theorem 20 suggests several questions about Ramsey sets in infinite 
dimensional spaces. For the finite dimensional case [2] it was true that 
only sets imbeddable in a sphere could be Ramsey. If we let fci) = 1, then 
by Theorem 20 4 is Ramsey in Hilbert space (or in ENO). But K’ is 
not spherical. Thus not all Ramsey sets are spherical. However, as in the 
finite case, any set K known to us so far to be Ramsey is a subset of 
the vertices of a “brick”. That is, if f is a real-valued non-negative func- 
tion on the positive integers, then the set BV) of all points with the i-th 
coordinate equal to Ai) for a finite number of i, and equal to 0 for 
all other i is the brick determined by f. Anything isometric to BV) is 
also a brick. The sets Kr in Theorem 20 are subsets of the bricks BV), 

In the finite dimensional case we know that all subsets of vertices of bricks 
are Ramsey. In the infinite case it is an open question whether this is true 
if f is bounded. (The unbounded case is false by Theorem 17.) In partic- 
ular, one might ask whether the set K of all points with exactly 2 coor- 
dinates equal to 1 and all the other coordinates equal to 0 is a Ramsey 
set. We construct some other Ramsey sets below by translating Ramsey 
sets. If the original sets are in a brick, then so are the new ones. 

Theorem 21. Let K be a Ramsey set in a space E. Let L be a 
finite Ramsey (resp. r-Ramsey (i.e. for r-colorsl) set in E” . Then K @ L 

is Ramsey (resp. r-Ramsey) in E @ En. 
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Proof. The proof is the same as in the infinite case. Namely, let 
E (9 En be colored by r-colors. Let M’ be a finite set in E” such that 
any r-coloring of M’ gives a monochromatic L’ CM’ congruent to L. 
Then if IM’I = m we can p -color E by coloring each point e E E ac- 
cording to the colors of e @MM’. By the Ramsey property, there is a 
K’ C E such that K’ is monochromatic in this coloring. But this says 
that for some L’ C_ M’ congruent to L we have K’ 0 L’ all one color. 
This completes the proof. 

We used the crucial fact that for any finite set L which is r-Ramsey, 
there is some finite set M’ such that any r-coloring of M’ produces a 
monochromatic L’ C_ M’ congruent to L. We do not know whether sim- 
ilar things are true for the infinite case. In particular, if K is a countable 
r-Ramsey subset of Es0 or Hilbert space &‘, is there a countable set 
M’ so that any r-coioring of M’ produces a monochromatic K’ isomet- 
ric to K? All the sets obtained so far have this property. For instance, 
consider a set Kf from Theorem 20. Let F be-the field obtained from 
the rationals by adjoining the numbers f(i), 1 < i < 00, and let F be 
its algebraic closure. 1 P 1 = K, . The argument in the proof of Theorem 
20 can be carried out in Ho-dimensional space over P. 

We also don’t know if there is any set K C EHo C X such that K 
is Ramsey in X but not in EK O. We can say that K must have less 
than c points, for, by a transfinite induction argument, we can color & 
with c colors so that every copy of K has all c colors if I KI = c. 

Letting f(i) = l/i, and L the unit simplex in E” , we get by The- 
orem 21 that Kf @ L is Ramsey. The set of points 0 Q L are all limit 
points of I$ @ L. We have no examples yet of sets K in Hilbert space 
with an infinite set of limit points, either in K or not in K, such that 
K is 2-Ramsey. It seems possible that if K has more than K, limit 
points, then 1: cannot be Ramsey. 

For instance, any set K which is dense in some line segment is not 
‘t-Ramsey, as we can see by using a coloring by alternate spherical shells 
of successively smaller thicknesses. 
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For instance, any set K which is dense in some line segment is not 
2-Ramsey, as we can see by using a coloring by alternate spherical shells 
of successively smaller thicknesses. 

A related question concerns e-chains. An e-chain from x to y in 
some space E is a sequence x=x0,x1,. . . ,x, =y such that Ixj- 

- xi-t 1 
I < E for all i. Then can we r-color E so that for every pair of 

points x,y with IX - y I > 1, there is an E = E(X, y) so that no e-chain 
from x to y is monochromatic? 

In E2 this is trivially possible, say, for r = 9. Just tile the plane 
with 2 X 2 squares, each colored the same way, as 9 differently colored 
sub-squares 2/3 X 2/3. A similar argument will work in Efl with more 
colors. On the other hand, with r = 2 it is impossible for E2, which we 
see below. The open question is whether for some finite and some r-color- 
ing of EN0 or x, no points x and y with Ix -y 1 > 1 are connect- 
ed by monochromatic c-chains for all E > 0. 

Theorem 22. For every koloring of E2, there are points x, y 

with lx - y I 2 1 such that for any E > 0, there is a monochromatic E- 
chain from x to y. 

Proof. Let E2 = R U B, where R is the set of red points, and B 

is the set of blue points. Let I? and B be their closures. The components 
of I? or of B have diameter less than 1. Let S be a 2-sphere in E3 
of radius 1 and tangent to E2 at 0. Then the stereographic projection 
of E2 into S yields sets ks and BsL the images of I? and 3. Let- 
ting R’ and B’ be closures in S of R, and as, respectively, we have 
R’ = ES U {-) and s’ = 8, U (-1 where m is the point on S diamet- 
rically opposite 0. Furthermore (-} is a component both of I? and of 
B’, and all components of R and B’ have diameter less than 1, 
R’UB’=S. 

This leads to a contradiction through an argument in dimension theo- 
ry (we are indebted to Robert Edwards for showing UP this). For there will 
be a finite number of open, disjoint sets with diameter Q 1 + e covering 
S by small open sets with no three having a common point. Considering 
the “nerve” of this covering leads to the contradiction. 
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5. EDGE COLORINGS 

Suppose that instead of coloring points of E” we color pairs of 
points, or “edges”. Now we specify a set K of edges in En and ask if 
there is a K’ congruent (or similar, etc.) to K which is monochromatic. 
(By congruent, similar, etc., we mean that the sets of endpoints of the 
edges are respectively congruent, similar, etc.) Even in the case of similari- 
ty, the only non-trivial questions occur when all edges in K have the same 
length. For suppose some edges of K have length 1 and 01> 1. Then 
every positive real number can be represented uniquely in the form cam 
for m an integer, and c a number in [ 1, or). If we color each edge ac- 
cording to the parity of m in the expression cam for its length, then 
no K’ similar to K will be monochromatic. 

By Ramsey’s theorem, if K is the set of edges of a regular k-simplex, 
then for large enough n, depending on K and the number of colors r, 
any r-coloring of En has a monochromatic K’ congruent to K. The 

minimum size of n is in general not known. It is known that n f o(2s) 
but we may be able to improve on this because this estimate is based only on 
properties of abstract sets, whereas in our case the geometry may help. The 
next simplest set K is the four sides of a unit square. For this set we haven’t 
settled the question even in E*, either for congruence or similarity. 

If we restrict the kinds of colorings we allow, then we do get some pos- 
itive results. We say that a line coloring is a coloring of edges so that any two 
collinear edges have the same color. 

Let KI be the set of edges (in the coordinate directions) of the unit 
t X t square lattice. 

Theorem 23. If the edges of E3 are line colored with 2 colors, 
there is a K; similar to Kt which has all its edges the same color. 

Proof. We use the following fact. Let kIr > 0. Then for large enough 
n >, ra(k, r) depending on k and Y, and for any r-coloring of the points 
of an n X n square lattice of points (with distance d between adjacent 
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points), there is a k X k square sublattice (with distance d’ > d) with 
all points the same color ( G r ii n w a 1 d quoted in [ 51). 

Now let the edges of E 3 be line colored with 2 colors. Consider 
a plane Hc E3, say the x, y-plane, and let each point p of H be 
colored according to the color of the line orthogonal to H through p. 

Then for arbitrarily large y1 there is a monochromatic n X n square lat- 
tice L in H. We can assume that L = ((x, y, 01x and y are integers 
between 0 and n - 1). 

Let H’ be the y, z-plane, and let L’ be the rz X n lattice 
((0, y, z)ly, z are integers between 0 and n - 1). Let each point p 

of L’ be colored according to the color of the line through p orthogo- 
nal to H’. Then if n is large enough, there is an m x m square sub- 
lattice 15” with all points the same color, where we take m to be n(t, t). 
We may assume L” = {(O, id, jd) I 0 Q i,j < m - 1) (for some d with 
d(m - 1) < (n - 1)). 

Let H” be the x, z-plane and let L”’ be the lattice {(id, 0, jd) ( 0 < 
<i,j<m- 1). Coloring points of L”’ according to the colors of the 
lines through the points orthogonal to H”‘, there is a lattice, say L@‘) = 
= {(id’, 0, jd’) I 0 Q i, j < t - 1) with all points one color (for some d’). 

By definition of the colorings, the lattice L* = {(id’, jd’, kd’) I 0 < 
< i, j, k < t - 1) has all lines in any coordinate direction a single color, 
depending on the direction. Since there are only 2 colors, two directions 
have the same color, say the x and y directions. Then K; = 
= ((id’, id’, 0) I 0 < i, j < t - 1) has all lines the same color, and Kj is 
similar to Kt. This completes the proof. 

This result clearly extends to higher dimensional lattices and more 
colors by the same kinds of argument. One could also extend get argument 
to coloring “faces” by “plane colorings” in an analogous way. 

As a final example, we show that although we don’t always get mono- 
chromatic triangles similar to a given one, there may be sets of triangles 
one member of which must occur monochromatically. 
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Theorem 24. The edges of E2 can be line coiored with 2 colors 
so that no triangle with all angles at most 90” has all three edges the 
same color. On the other hand, for every line coloring of E2 with 2 col- 
ors and every e > 0 some triangle with all angles less than 90” + E has 
all three edges the same color. For every E > 0 and every 2-coloring of 
the edges of E2, some triangles with all angles at most 108” + E has all 
three edges the same color. 

Proof. Consider a line coloring of E2 with 2 colors, and suppose 
all triangles with all angles at most 90” have edges of both colors. If any 
two perpendicular lines are the same color, say red, then all lines not par- 
allel to either of these must be blue, a contradiction, since this would give 
blue 90” triangles. Thus we can assume all pairs of perpendicular lines 
have opposite colors. 

This implies that all parallel lines have the same color, and the color 
of a line (or edge) is determined only by the angle it makes with the x- 
axis. Suppose two red lines L, and L, make angles 6,) O,, with 
0 < e2 - 8, < 90”, and some blue line E, makes an angle 8, with 
0, < e3 < 9,. Then L, , L, and any L; perpendicular to L, and not 
throvgh L, n L, makes an acute triangle with red edges, a contradiction. 
These observations imply that for some 8, and 6, with 10, - 8,I = 
= 90”, all edges with angles in (or, 8,) are red, and all others blue. This 
establishes the first two statements. 

For the third statement we consider a special set of eight points, Let 
pr , p2, p3, p4, p5 be the vertices of a regular pentagon. Let q be the 
point where the extensions of the sides p5, p1 and p3,p4 meet. Let L 
be a line parallel to the side p4,p5 meeting the extended sides in points 
qr and q5 lying respectively between p5 and q, and p4 and q. 
Choose L sufficiently close to q so that the angles formed by q1p3q5 

and q1p1q5 are less than e > 0. Now let K be the set of edges given 
as follows: pipj, i,j= 1,2,3; p,qj, i= 1,2,3, j= 1,. . .,5; qiqj, 
Ii - jl E 1 (mod 5). That is, K is the edge of a triangle and a pentagon 
and all edges connecting them. But this figure can be seen to have the 
property that for every 2-coloring of the edges there is a monochromatic 
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triangle [4]. All triangles have angles of at most 108” + E. This completes 
the proof. 

[II 

VI 

[31 

[41 

[51 

[61 

REFERENCES 

V. Chvatal - F. Harary, Generalized Ramsey Theory for 
Graphs, III. Small off-Diagonal Numbers, (to appear). 

P. ErdBs - R.L. Graham - P. Montgomery - 
B.L. Rothschild - J. Spencer - E.G. Straus, Euclidean 
Ramsey Theorems, I. J. ofComb. Theory, Ser. A, 14 (1973), 341-363. 

P. Erdds - A. Hajnal, On a property of families of sets, Acta 
Math. Acad. Sci Hungar., 12 (1961), 87-123. 

R.L. Graham - J. Spencer, On small graphs with monochro- 
matic triangles, in Recent Trends in Graph Theory, (M. Capobianco 
et al., eds.) Springer, New York, 1971, 137-141. 

R . R a d o , A note on combinatorial analysis, Proc. London. Math. 
Sot., Ser. 2, 48 (1942), 122-160. 

H . J , R y s e r , Combinatorial Mathematics, ( 1963), The Mathemati- 
cal Association of America, Carus Mathematics Monographs, No. 14, 
Dist. by John Wiley and Sons, Inc., New York. 

- 557 - 


