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We dedicate this paper to the memory of our friends H . Davenport, Ju.V .
Linnik, L. J. Mordell, L. Moser, A. Rényi and W . Sierpinski, all of whom were
alive when we started our work in 1966 at the University of Illinois at Urbana .

0. Introduction

It was conjectured about 150 years ago that the product of consecutive
integers is never a power . That is, the equation

(n+1) • • (n+k)=x`

	

(1)

has no solution in integers with k >_ 2, 1 >_ 2 and n >_ 0 . (These restrictions
on k, 1 and n will be implicit throughout this paper .) The early literature on this
subject can be found in Dickson's history and the somewhat later literature in
the paper of Obláth [5] .

Rigge [6], and a few months later Erdös [1], proved the conjecture for 1 = 2 .
Later these two authors [1] proved that for fixed 1 there are at most finitely
many solutions to (1) . In 1940, Erdös and Siegel jointly proved that there is
an absolute constant c such that (1) has no solutions with k > c, but this proof
was never published . Later Erdös [2] found a different proof ; by improving
the method used, we can now completely establish the old conjecture . Thus
we shall prove

THEOREM 1 . The product of two or more consecutive positive integers is
never a power .

In fact we shall prove a stronger result :

THEOREM 2 . Let k, 1, n be integers such that k >_ 3, 1 >_ 2 and n + k >_ p (k) ,
where p(k) is the least prime satisfying p (k) >_ k. Then there is a prime p >_ k for
which ap # 0 (mod 1), where ap is the power of p dividing (n + 1) . . . (n + k) .

Theorem 2 implies Theorem 1, since it is easy to see that (n + 1)(n + 2) is
never an lth power and if n < k then by Bertrand's postulate the largest prime
factor of (n + 1) . . . (n + k) divides this product to exactly the first power .
Moreover, this shows that in proving Theorem 2 it will suffice to assume n > k .

One could conjecture the following strengthening of Theorem 2 : if k >_ 4
and n + k >_ p (k) , then there is at least one prime greater than k which divides
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(n + 1) . . . (n + k) to the first power . This conjecture, if true, seems very deep .
The requirement of k >_ 4 is motivated by

(50) = 1402 .3

Now we start the proof of Theorem 2. We suppose that Theorem 2 is false
for some particular k, I and n, and show that in every case this leads to a con-
tradiction . As noted above, we assume n > k .

1 . Basic lemmas

First observe that by the well-known theorem of Sylvester and Schur [3]
there is always a prime greater than k which divides (n + 1) . . . (n + k), since
n > k . Such a prime divides only one of the k factors, so n + k >_ (k + 1) l ,
whence

n > k` .

	

(2)

Furthermore since we suppose Theorem 2 is false, for 1 < i < k we have

n + i = a ix„

	

(3)

where a i is Ith-power free and all its prime factors are less than k .
In the proof [1] for the case I = 2, it was shown that a i aj if i j . In

fact for 1 > 2 it is also known that the products a,aj are all distinct . In this
paper we need the stronger result

LEMMA 1 . For any l' < 1, the products a i , . . . a i ,, (i

	

are all
distinct .

In fact we prove that the ratio of two such products cannot be an lth power .
First we show that (2) ensures

(n + ü) . . . (n + ü-,) # (n + ji) . . . (n + j,-1),

	

(4)
provided the two products are not identical .

Cancel any equal factors . Since (n + i, n + j) < k and n > ki , it follows
that no factor of one member of (4) divides the product of the factors remaining
in the other member, so the nonequality in (4) is proved .

Now we prove the lemma . For some rational t, suppose that
a . . . . a.,-, = ail . . . ai,_,t .

	

O5

We shall show that (5) implies the subscripts must all match . Assume without
loss of generality that (n + ü) . . . (n + ü_ i ) > (n + j i ) . . . (n + j,_ and
put t = u/v, with (u, v) = 1 . Then

x1

(n + i,) . . . (n + i,-i) = ai, . . . a,
u,

Y~(n + i,) . . . (n + j,-,) = a„ . . . a ~

	

ui
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where x = ux ;, . . . x i ,_, and y = vxj ,

	

x;,_, in the notation of (3) . By (5),
we may put

A - a . . . . a . _, - aj, . . . aj
u'

	

v'

	

,

so Ax' > Ay' and therefore x >- y + 1 . Thus

(n +

	

. . . (n + i,- i)

- (n + j i ) . . . (n + ji-i ) > A{(y + 1)' - y'} > Aly'-1

Note that (5) implies A is a positive integer . Also Ay` _ (n + j1 ) . . .
(n + j,_,) > n", so with (6) we have

n1-1 (1-1)/1
(n + i,) . . . (n + ü 1) - (n + j,) . . . ( n + Ji-~) > AI	 A

(7)
> ln('-1)2/1 .

On the other hand,

(n+i,) . . .(n+i,-1)

- (n + j,) . . . (n + j,-,) < (n + k)` -i - ni-i < kln L-2 ,

where the last inequality is obvious if 1 = 2 and for l >- 3 it may be seen as
follows. Clearly it suffices to show that

'-1
kn

1-2 > Y (l - 11 n,-i-'k
-z

	

i

	

'
that is

1 >
i-2 CI I

1)

Cn) -1
Now

C

l - 1) <
l

;
i

	

2'- 1

also n > k', k >_ 3 and I >- 3, so n > kl and moreover n > k1 2 . Therefore

1 < l

	

kl

	

1 -

	

k12

	

< 112 <
1 .

( i )
(k)'-

	

n(2n)

	

2n - kl

	

n

The lemma now follows, since (7) and (8) require k > n t l', contrary to (2) .
Now we prove :

LEMMA 2. By deleting a suitably chosen subset of 7r(k - 1) of the numbers
a,(1 < i < k), we have

a, . . . a j, , I (k - 1) !

	

(9)

where k' = k - n(k - 1) .

For each prime p < k - I we omit an a,,, for which n + m is divisible by p
to the highest power. If I < i < k and i

	

m, the power ofp dividing n + i

(6)

(8)
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is the same as the power of p dividing i - m . Thus p"l Jai,

	

a i ,, implies
p" I (k - m)! (m - 1)!, so p" I (k - 1)! and our lemma is proved .

Change of notation . In the remainder of this paper it will be convenient to
have the a's renumbered so that a l < a2 < . . . < a, . We shall employ this
new notation in Sections 2 and 3 .

Note also that to prove Theorem 2 for any particular Z it is enough to prove
it for some divisor of l, so it suffices to consider only prime l .

2. The case / > 2

2. L The case k >- 30000 . Now we show that (9) leads to a contradiction
for k >- 30000, using only the distinctness of the products a iap It is known [4]
that the number of positive integers b 1 < . . . < b, < x for which the products
b ib; are all distinct satisfies

c x 34
r < ~r(x) + (log

x)32 ,

	

( 10)

and this is best possible apart from the value of cl . However, when r is small
this result is not adequate for our needs, so we shall now establish a bound
which is sharper for small r .

First we need a graph theoretic lemma . A subgraph of a graph is called a
rectangle if it comprises two pairs of vertices, with each member of one pair
joined to each member of the other. We prove :

LEMMA 3 . Let G be a bipartite graph of s white and t black vertices which
contains no rectangles . Then the number of edges of G is at most

s +
(_)

Call a subgraph of G comprising one vertex joined to each of two others a
V-subgraph . Since G contains no rectangle, there can be at most one V-sub-
graph with any given pair of black vertices as its endpoints . Let s i be the number
of white vertices of valence i, so 1i>1 s i = s. Counting the number of V-
subgraphs with black endpoints gives

E si (2) < (2) .

	

(11)
If E is the number of edges of G, then by (11)

E= E is, =s+ E (i-I)si <s+ E, si a <s+ t

C~i_>1

	

i>2

	

i>_z

	

2

	

(2)

which proves Lemma 3 .
Now let u 1 < . . . < us < x and v 1 < . . . < v, <- x be two sequences of

positive integers such that every positive integer up to x can be written in the
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form u i vj . If b 1 < . . . < b, < x are positive integers such that all the products
b ib; are distinct, form the bipartite graph G with s white vertices labelled
u	u., and t black vertices labelled v	v, and an edge between ui and
vj if u ivj = b,„ for some m . Distinctness of the products b ib; ensures that G has
no rectangles so by Lemma 3,

r<s+(2
)

.

	

(12)

Lemma 1 shows in particular that the bound (12) applies to the sequence
a 1 < . . . < a, Using (12) we next prove that the product of any k - 7r(k) of
the a's exceeds k! provided k >_ 30000. Because of Lemma 2 this implies
Theorem 2 for k >_ 30000 and l > 2 . Evidently it suffices to prove

k-n(k)

F1 ai > k! if k > 30000 .

	

(13)
i=1

We shall now obtain lower bounds on a i (1 < i < k) . We clearly have

a i >- i,

	

(14)

and using (12) we shall show two further inequalities

a i >_ 3.5694(1 - 304),

	

(15)

ai > 4.3402(1 - 1492) .

	

(16)

Of these, (14) is sharpest for i < 422, (15) is sharpest for 422 < i < 6993, and
(16) is sharpest for i > 6993 . With these inequalities, a routine calculation using
Stirling's formula suffices to verify (13) when k = 30000, and (16) ensures that
(13) holds when k > 30000 .
To prove (15), we take v 1 < . . . < v, to be the t = 25 positive integers up

to 36 which have no prime factor greater than 7 (so v .1 = 1 and v21 = 36) .
Next we obtain a suitable set of positive integers u 1 < . . . < u, < x so that
every positive integer m < x is expressible in the form u ivj . For convenience,
let V denote the set of v's. Clearly any positive integer m < x with all prime
factors greater than 7 must be included in the u's : let U 1 denote the set of such
numbers . Next, suppose m < x is a positive multiple of 7 and m = dd', where
d is the largest divisor of m with no prime factor greater than 7 . If d ~ V then
d >- 42, since 7 1 d. Thus x >- m = dd' > 42d', so 7d' < x/6 . Hence we
include in the u's all positive integers of the form 7d' <- x/6 with least prime
factor 7 : let U2 denote this set of numbers . Similarly, if m < x is a positive
multiple of 5 and m = dd', where d is the largest divisor of m with no prime
factor greater than 5, then d ~ V requires d >- 40 and 5d' < x/8. Hence we
include in the u's all positive integers of the form 5d' <- x/8 with least prime
factor 5, and let U3 denote this set . Likewise we include in the u's all positive
integers of the form 3d' < x/14 with least prime factor 3, and all positive
integers of the form 2d' < x/20, denoting these sets by U4 and US respectively .
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Now every positive integer m < x is expressible in the form m = u i v j for some
u i c U and vj e V, where U denotes the union of U l , . . . , U5 .
The number of u's in each U i can readily be calculated . For example

IU21 = X30 ) 42
X

	

2x
+

E2(x)

	

315 + E2(x),

where the error term has the bound E 2(x) < 14/15 . Likewise ejx) < 53/35,
8 3(x) < 2/3, E 4(x) < 1/2 and E 5(x) < 0. Thus the total number of u's is

s=IU1= IUil=Cg +? + - + 1 + llx
35

	

315

	

120

	

84

	

40

+ Y~ 8 i( x) < 353 x + 4 .
i= 1

	

1260

Now (12) implies that the number of a's up to x is less than 353x/1260 + 304,
whence (15) .

To prove (16), we take the v's to be the t = 55 positive integers up to 100
with no prime factor greater than 11, and the u's to be all positive integers up
to x with all prime factors greater than 11, together with all those up to x/10
with least prime factor 11, all those up to x/15 with least prime factor 7, all
those up to x/21 with least prime factor 5, all those up to x/35 with least prime
factor 3, and finally all even integers up to x/54 . The first of these subsets of
u's contains 16x/77 + ejx) numbers, where a o (x) < 194/77 . The error terms
in counting the other subsets of u's are the same as before, so the total error is
less than 7 . With (12), this leads to (16) . Now we shall work upwards from
small k to resolve the cases with k < 30000 .

2.2. The case k = 3 . It is easy to see that (1) has no solution when k = 3,
for (n + 1)(n + 2)(n + 3) = m(m2 - 1), where m = n + 2, shows that the
product could only be an lth power if m and m2 - 1 are lth powers, but
m2 - 1 and m2 cannot both be lth powers . But for Theorem 2 we need to
show ap # 0 (mod 1) for some prime p >- 3, where ap is the power of p in
(n + 1)(n + 2)(n + 3) . Suppose there is no such p . If n is even, (n + 1,
• + 3) = 1 ensures a i = a2 = 1, contradicting Lemma 1 . If n is odd, (n + 1,
•

	

+ 3) = 2 ensures a, = 1, a2 = 2 and a 3 = 2", with 1 < a < l, and Lemma
1 is contradicted by a, - 'a, = az .

2 .3 . The case 4 < k < 1000, 1 = 3 . Here we restrict attention to those
a's with no prime factor greater than the mth prime, say f(k, m) in number. If
• and v are positive integers with prime factors similarly restricted, there are
3' rationale u/v no two of which differ by a factor which is the cube of a rational .
The number of formally distinct expressions a ila j is f(k, m){f(k, m) - 1}, so
there are two whose quotient yields a solution to (5), thus contradicting Lemma
1, if

f(k, m){f(k, m) - 1} > 3m .

	

(17)
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Since the a's arise as divisors ofk consecutive integers, and have all prime factors
less than k, it is straightforward to calculate a lower bound for f(k, m) . Thus
we verify (17) for 4 < k < 10 with m = 2, for 10 < k < 28 with m = 3, for
28 < k < 77 with m = 4, for 77 < k < 143 with m = 5, for 143 < k < 340
with m = 6, for 340 < k < 646 with m = 7, and for 646 < k < 1000 with
m = 8 .

This method could be continued beyond k = 1000, but certainly fails before
reaching k = 10000. Fortunately we have an improvement available, and we
now proceed with it .

2.4 . The case 1000 < k < 30000, 1 = 3 . Let q, < . . . < q, be the r
largest primes satisfying q, < k", where r is to be suitably chosen . We now
restrict attention to those a's, say F(k, r) in number, which have no prime
factor greater than k112 , and at most one prime factor (counting multiplicity)
among the q's . If u and v are positive integers with prime factors similarly
restricted, there are 3' ( " ,)- ' R rationale a/v no two of which differ by a factor
which is the cube of a rational . In this count the factor R = r 2 + r + 1 arises
from the fact that a and v each contain at most one of the q's as a divisor. As
in (17), the number of formally distinct expressions a,/a; is enough to ensure
that there are two whose quotient yields a solution to (5), and therefore con-
tradicts Lemma 1, if

F(k, r){F(k, r) - 1} > 3n ( q,)-1 (r 2 + r + 1) .

	

(18)

To obtain a lower bound for F(k, r), note that for each prime p in (k1 / 2 , k)
we omit at most [k/p] + 1 of the a's ; similarly for the products q 2 and q,q j , so

F(k, r) > k -
kl

	

<k

([
P
k] + 11

	

1_ ;<r ([qqj]
+ 11

>k -

	

I
([p]

+1) -
[

	

r

I +
(i l

1 2l ]

-(

r 2 1) .
kl/z<p<k

For example, with k = 1752 = 30625 and r = 31 (so q, = 29) this bound is
adequate to verify (18) . Indeed, for 1000 < k < 30000 we can readily verify
(18), in each case taking q, around k" .

2 .5 . The case 4 < k < 30000, 1 > 3 . Here it is inconvenient to work with
ratios of products of a's, so we work directly with the products themselves,
since we do not need the extra sharpness .
With the a's selected as in Section 2 .3, the inequality corresponding to (17) is

Cf(k, m) + I - 21 >
lm .

	

(19)
l-1

The left member of (19), derived by counting the number of nondecreasing
sequences of I - 1 a's, is the number of formally distinct products of I - 1 a's,
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and the right member is the number of lth-power free positive integers with all
prime factors among the first m primes . When (19) holds, (5) has a solution,
contradicting Lemma 1 . It is easy to verify by direct computation that (17)
implies (19) for 4 < k < 1000 and m chosen as in Section 2 .3 .

Similarly, with the a's selected as in Section 2.4, the inequality corresponding
to (18) is

CF(k, r) + l - 2~ > 1n(q,)_1 1 + r - 11 .

	

( 20)
l - 1

	

Z - 11

The left member of (20) is the number of formally distinct products of Z - 1 a's,
and the right member is the number of lth-power free positive integers with no
prime factor greater than k1 / 2 and at most l - 1 prime factors among the q's
(counted by multiplicity) . When (20) holds, (5) has a solution, contradicting
Lemma 1 . For 1000 < k < 30000 and the values of r chosen as in Section 2.4,
(20) easily holds when (18) holds .

This completes the proof of Theorem 2 for I > 2 . It seems certain that one
could get a more general inequality than (19) and (20), leading to a more elegant
method valid for all k .

3 . The case / = 2

It remains to prove that (n + 1) . . . (n + k) always contains a prime p >- k
to an odd exponent . (We already know that the product is not a square, by the
results of Rigge and Erdös cited earlier.)

The a's are now square-free and, by Lemma 1, all distinct . So, by Lemma 2,
k

ai
=1

(k - 1)! [1 p

	

( 21)
p<k

We shall now show that for k >- 71 this leads to a contradiction .

3 .1 . The case k >- 71 . Since 12 of every 36 consecutive integers are
divisible by 4 or 9, at most 24 of any 36 consecutive integers are square-free .
Thus for k >- 64 we have

11 a i > k! -~ .

	

( 22)
=1

	

2

For any positive integer m and prime p, the power to which p divides p'! is
(p' - 1)/(p - 1). From this we can deduce that if the powers to which 2 and
3 divide (k - 1)! are a and /3 respectively, then

a >- k - 1 _1092k and Q >- 1 (k- 1) - log, k.

On the other hand, since the a's arise from k consecutive integers and are square-
free, we calculate that if the powers to which 2 and 3 divide a, ak are y and
S respectively, then

y < 3{k +loge (3k + 1)} and 6 < á{k + 1 + 21093(2k+ 1)} .
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Since (21) implies that a i

	

ak < (k - 1)!21- "3s-
Q rlpIk A we now deduce

from (22) that for k >- 64,

_3 22k/3 3 k/4 < 14
k2 p

2

	

3

	

P

However rlp<k p < 3 k , so (23) fails for k >_ 297 . Indeed, rip<k p < ek for
k < 10 $ by Theorem 18 of [7], so (23) fails for k >- 71 .

3.2 . The case k < 71 . For k = 3, it is impossible for the a's to be distinct .
For k = 4 the only possibility is aI = 1, a2 = 2, a3 = 3 and a4 = 6 . Then
ala2a3a4 = 62, so

(n + 1)(n + 2)(n + 3)(n + 4)

must be a square ; but this product equals (n2 + 5n + 5) 2 - 1 and we have a
contradiction .

For 5 < k < 20, we will count the number of a's with no prime factor
greater than 3 ; if this is at least 5, it is impossible for the a's to be distinct, and
we have a contradiction . This works unless k = 6 and 5 I n + 1, or k = 8,
7 1 n + 1 and 5 1 n + 2. But in either of these cases we have four consecutive
integers whose product is a square, and this was shown above to be impossible .

Similarly we obtain a contradiction for 20 < k < 56 by noting that there
are at least 9 a's with no prime factor greater than 5, and for 56 < k < 176,
where there are at least 21 a's with no prime factor greater than 7 . (This method
could be extended . For example, with 176 < k < 416 there are at least 42 a's
with no prime factor greater than 11, and with 416 < k < 823 there are at
least 65 a's with no prime factor greater than 13 .)

This completes the proof of Theorem 2 .

4. Remarks and further problems

No doubt our method would suffice to show that the product of consecutive
odd integers is never a power, in the sense of (1) . In fact, the proof would
probably be simpler . More generally, for any positive integer d there must be
an integer td such that (n + d)(n + 2d) . . . (n + td) is never a perfect power if
t > td . Without t d this result fails since x(x + d)(x + 2d) = y 2 has infinitely
many solutions .

By our methods we can prove that for fixed t,

(n + dj . . . (n + dk) = x~, 1 = d i < . . . < dk < k + t

	

(24)

has only a finite number of solutions . Our theorem shows that there is no
solution with t = 0 . With t = 1 we have the solutions 4!/3, 6!/5 and 10!/7 ;
perhaps there are no others . _Suppose that t is a function of k, or of k and 1.
How fast must t grow to give an infinite number of solutions to (24)? The
Thue-Siegel theorem implies that (24) has only a finite number of solutions when
dk and 1 are fixed, with I > 2 . For fixed k it seems probable that lim,-~ dk = oo .

(23)



Another question which arises naturally from our method is the following .
Let air) be the largest divisor of n + i which is lth-power free and has all prime
factors less than k . Our proof for 1 = 2 implies that for -1 < i < k, the a~ 2)
are not all distinct when k + 4, 6, 8. An easy argument also shows that the
a i2) cannot all be distinct when k = 8 . To what extent do these results extend
to I > 2? For how many consecutive values of i can the a,(I) be distinct?
We mention one final problem . Let a I be the largest divisor of n + i which

has all prime factors less than k. Our proof of Theorem 2 shows that for any
n >_ 0 and k >_ 30000, the products a,aj cannot all be distinct . Very likely this
holds for much smaller values of k, perhaps as small as k >_ 16. To see that it
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We

k

not hold for 3 < k < 16, it suffices to check for k = 3, 5, 7, 11, 13, 15 .
conclude with a table of examples for these cases .

a l

	

a 2 a 3 a4 a5 a6

	

a7 a8 a9

	

alo ai, a12 a13 a14 a,5
3 2

	

1

	

2,
5 12

	

1

	

2

	

3"1

	

222

7 60

	

1

	

2

	

3

	

2"1 5,Z 2.3"3

11 90

	

7,1 2,Z 3

	

2

	

5a3 12

	

1 14

	

3"4 40
13 90 11,1 2a2 3

	

14

	

5"3 12

	

1

	

2

	

3"4 40

	

7a1 66
15 104

	

11,1 18

	

7a2 20

	

3

	

2

	

1

	

3.2,3 5

	

14

	

3,4 44 13a s 6 .5a6
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