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Abstract 

Let P+,(n) denote the number of partitions of n into summands chosen from the set 
A = (a,. n2, I. .}. De Bruijn has shown that in Mahler’s partition problem (a” = I”) there is a 
periodic component in the asymptotic behaviour of P,,(n). We show by example that this may 
happen For sequences that satisfy a, - v and consider an analogous phenomena for partitions into 
primes. We then consider corresponding results for partitions into distinct summands. Finally we 
obtain some weaker results using elementary methods. 

1. Introduction 

Let A = {G, aI,. . . } be an infinite set of monotone increasing integers. Let 
pA(n) denote the number of ways of representing n as the sum of summands 
chosen from A. Mahler (1940) showed that when a, = r” as n 4% 

1% PA (ml = 210gr --‘-(log(n(log n))“+ (; + & + F) log n 

- ,+loglogr 
i log r ) 

log log n + 0 {l} . 

De Bruijn (1943) has shown that this O-term is actually of the form 

u 
i 

log n - log log n + log lo_gr 
i 1 

+ o (log log n)2 
log r log n 1 

where U is a periodic function with period one and de Bruijn determined the 
Fourier expansion of U. This result has been generalized by various authors, for 
example, Pennington (1953) and Schwarz (1967) and it seems to be common with 
sets A which have lim inf (log a,)/~ > 0 for there to be a periodic or almost 
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periodic function analogous to de Bruijn’s U, In this paper we consider the 
question of whether partition functions pn (n) with lim inf,,, (log a,)/~ = 0 may 
also exhibit the de Bruijn-Mahler phenomenon. We first show that pA (n) with A 
defined to be the set of integers which are not positive powers of a fixed integer 
has a periodic term very similar to that of de Bruijn (see theorem 1). We then 
investigate how large this term corresponding to de Bruijn’s U function may be. 
It is seen that when A is the set of primes it may be large indeed and we obtain a 
direct connection with the Riemann hypothesis. In this case there is a close 
analogy with the number of primes less than a given limit. 

Finally we consider these questions for qa (n) the number of partitions into 
distinct summands chosen from the set A and obtain some results using 
elementary methods. 

2 

Let A be the set of integers which are not powers of the fixed integer r. 
Then the number pa(n) of partitions of n into summands from A satisfied (from 
the theorem of Roth and Szekeres (1954)) 

pA {n) = @TA,)-iexp an - ~~nlog(l-e-““))[I+O{n~~}] 

where 

(2.2) A2= c u2 eu0 
rlEA (e*= - 1)2 

and cy is defined by 

From Mellin’s transformation formula 

where I(t) denotes the usual gamma-function, f(t) denotes the Riemann 
zeta-function and 

Now 
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thus lA((t) is defined in the entire plane except for simple poles at f = 1 and 
t = 2rrikilog r (k = O,l, 2,. . . ) . The arguments of Pennington (1953) show that 
we may shift the contour of integration to a line u < 0 and obtain (using 
l(O) = - 1) that 

n=ff -2 7r2/6 - a 
-’ w 

(2.4) 

where y denotes Euler’s constant and CL denotes summation over nonzero V. 
We may solve this for CY to obtain 

[ 
v% v% (Y = n-‘“-& 1- n-1’z2r logr log;+ 

1 

(2.5) TrIr(l+ s)[(l+ @)exp(2rrivlog($))] 

+ 0{n-“3log%}. 

From Mellin’s transformation formula 

-&log(l-e-““) = ~~~+‘~a-Ii(IC1)r(f)in(f)af (a>l). 
m--I* 

Again shifting the contour of integration to g < 0, using S’(O) = 4log 27r and that 
(with z<(s + 1) = 1+ yz + yzt2 + * * *) 

l(r + l>utk(f> = j-q& - i 
1 10R2 r 

y*+T+Jf 
12 2log27r + 2 l2 f+0{1} 

log r 1 

yields 

-~&log(l-e-““)= *-1% - v + F+ ;log27r 

X exp 2Tlv10g(y 
( - log r 1 

+ O{a}. 
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From (2.4) and (2.6) we obtain 

m - c log{1 - ,-,a}= a-12$ - loszo _ log+ I,og2n 
lzEA log r log r 2 

V-7) - 

2 2 

!%!- 
y*+$+k 

12 log r - &i(1+ S) Y 

x (1+%)r($+)exp(=$$q 

Note that 

+0{a}. 

Thus from (2.7), (2.8) and (2.5) applied to (2.1) we obtain 

THEOREM 1. Let A be the set of integers which are not positive powers of the 
fixed integer r. Then 

logpA = rn+ d 
2 log’(VGr/7r) v&i 
T- log r +%og 71. 

( > 

- Q-r 
12 

- gog g - 
( 1 

vz+r+;+g 1 
-__ 

log r log r 

+0{ n-“210gZn }. 

This theorem shows that even sequences for which a,/~ = 1 + 0 {v-l log Y} may 
exhibit the de Bruijn-Mahler phenomenon. The asymptotic formula is in terms 
of elementary functions. In our attempt to determine how large this oscillatory 
component may be we shall consider an example in which the asymptotic 
formula cannot be so expressed. 

THEOREM 2. Let A be the set of primes. Let CY = n(n) be defined by 

then 
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+$I 

-1/z log- l ’2 n, 

F(a) = Ly-1 
I 

re-ul”p”/“’ (2+u)r(l+u)~(2+u)du. 
0 

Thus by standard results on the Laplace Transform 

F(&) = a~lp!c- 

‘U1og”“d 

+ 0 a-‘log-N+~~ ( 
I 

where 

(2+U)r(l+U)[(2+u) = $W, co = g 

a) There exists a constant C > 0 such that 

logPa( F(a)+0 6 exp ( ’ (-clog:(~)loglog-:#. 

b) Let 13 = l.u.b. of the real parts of the imaginary roots of the Riemann 
zeta-function. Then for every E > 0 

log pA (n)- F(a)’ o{a-@-‘}. 

c) Conversely if 

log pa(n) - F(a) = O{(Y-@}, 

then 8 5 @ where # is defined in part b). 

PROOF. The proof of parts a) and b) is very similar to classical proofs in the 
theory of primes. It is also very similar to the proof of Theorem 7.1 of Richmond. 
In particular it is shown in Richmond that 

From the Roth-Szekeres (1954) theorem and the Mellin transformation formula 
it follows that 

I 

m+i- 
l”gpA(n)= & _, a-’ (1 + t)r{t)C(t + l)& (t)dt + 0{ log n}, (@>I> D II 

where 
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It is well-known that (see p. 12 of Tichmarsh (1951)) 

(2.9) 4%(t) = 1% c(t) + h(f) > h(t) = 2 5A 
m=Z m 

where h(t) is holomorphic for R t > f . One obtains with standard residue 
arguments that 

There is a constant C > 0 such that c(t) has no zeros in (p. 87 of Montgomery 
(1971)) 

c 
Rf = l- logz’3 1 t 1 log log 1’3 1 t 1 

Thus by a classical argument (pp. 77-88 of Prachar (1957) by the I-function or 
see Richmond) 

1 
-/“+i-a-‘(l+r)r(t)((t+l)[5*(r)- log&]dr 27ri rr--iw 

co *-‘e-clog: 1 loglog-“’ 1 
I ( 1 

. 
ff ( >I cx 

This proves part a) of the theorem and part b) follows in the same way. 
To prove part c) note that 

logpA (n)- F(a)= &16_:- a-‘(1 -t- t)r(t)c(l+ t) 

We can think of p,(n) as a function of LY and it is known that (see Roth and 
Szekeres (1954) or Richmond) 

a(n+l)-a(n)=O[ nzlog$} 

logp, (n + l)-logp*(n)=O { *10gd]. 

Prom this one may readily deduce (Richmond) that F(a(n + 1)) - F(cu(n)) = 
O{a log l/a} hence we suppose the hypothesis of c) to hold for all a. 

By the Mellin inversion formula 
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(l+t)5.(1+t)T(t)( &(I)-log&}= ~~‘~‘-‘[p~(~(a))-F(a)Ida. 

The integral on the right converges for all t with Rr > +, hence represents a 
holomorphic function for Rt > 4. By eq. (2.9) we obtain our result. 

The proof of part c) of Theorem 2 shows that one cannot have 

logpa(F(a)=O{C+} 

for any positive constant ti since &,(t) - log (l/(t - 1) is not bounded at t = l/2. 
Also parts b) and c) show that the size of log PA (n) - F(cr) is directly related to 
the question of where the roots of l(t) lie. 

To see that log PA(n)- F(a) corresponds to the de Bruijn-Mahler 
phenomenon we consider the following representation: 

Let p = p + iy run through the complex zeros of l(t). Bracket all zeros such 
that any two zeros for which 

IY-~‘I<exp(-Ayllogy)+exp(-Ay’llogy’) 

are included in the same bracket. With the bracketing above by the arguments of 
Tichmarsh (1951) {on pp. 185-187) 

logpa(F(a!)= xR~es{a-~(l+ S)r(S)[(S + l)&,(S)}s=P +0 
P 

3 

In this section we consider the corresponding problems for +(n), the 
number of partitions of n into distinct summands chosen from A. The 
Roth-Szekeres results and the Mellin transformation techniques in §2 apply with 
minor modifications and we have 

THEOREM 3. Let A be the set of integers which are not positive powers of a 
fixed integer r. Then 

=-llog(48) 
210gr 4 

Note that when r = 2 the oscillatory component drops out and the next 
theorem shows that this must be expected. 
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THEOREM 4. Let A be the set of integers which are not positive powers of 2. 
Let q(n) denote the number of partitions of n into distinct integers. Then 

qAW=qW-dn -2). 

PROOF. This theorem follows from generating series techniques however we 
give the following proof due to H. Shank. We wish to prove that q(n - 2) is the 
number of partitions of n into distinct summands at least one of which is a power 
of 2. Let 2’ be the smallest power of 2 in such a partition of n. Then 
2’-2=2+22+.*. +2’-’ and we obtain a partition of n -2 into distinct 
summands. Clearly different partitions of n give different partitions of n - 2. On 
the other hand suppose we have a partition of n - 2 into distinct parts. If it 
contains a 2 let 2,2’, . * . ,2’ be the longest string of consecutive powers of 2 it 
contains. We may replace this string of 2”s by 2’+’ to obtain a partition of n. In 
this way different partitions of n -2 give rise to different partitions of n 
containing a positive power of 2. We now prove 

THEOREM 5. Let A be the set of integers which are not positive powers of a 
fixed integer r. Let k be any constant integer. Then for all sufficiently large n the 
k-th difierences of p*(n) and q,(n) are positive. 

PROOF. The result for p,4 (n) follows at once from the work of Bateman and 
Erdiis (1956) since if one removes an arbitrary subset of A having elements, the 
remaining elements of A have greatest common divisor unity. 

To prove the result for qa(n) we first of all note that it is sufficient to show 
that X qA(n)x” can be written as 

xqA(n)x” = c b.x” 0 c CJ” 

where the k-th difference of the b, is positive for n sufficiently large and where 
C, 2 0. Suppose r has an odd Factor d. We write 

CqA(n)x” = n(l--x’)*lJ(l+xr’)-’ 

= fi(1 - x2’+‘)-’ ‘ pp (1+ py. fj (I- xi) 
i=1 ;=I 

= fi*, . (l- x’)-’ 
/#d’ 

x E(l+xd’+ **. + x”‘(r/d)’ .fl (1 - x*‘~)-’ 
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However the k-difference of the coefficients of the first product are positive 
from some point on by the results of Bateman and Erdiis (19.56) and we obtain 
our result from the remark above. Suppose r = 25. Then 

Clearly 2r’/r’+’ and we again have that the k-difference of the coefficients of the 
first product are positive from some point on by the results of Bateman and 
Erdiis (1956). 

Finally we show by elementary arguments 

THEQREM 6. Let A be the set of integers which are not positive powers of a 
fixed integer r. 

log+(n)= Zn? + O{logn}. 

PROOF. We first prove 

(3.1) 4(n)>4aIn)>n-‘q(n). 

The first inequality is obvious. Also 

~(l+x’)&(n)x” = &(n)x”. 

Since the coefficients of the Taylor series expansion of the infinite product are 
zero or one and since the qn (n) are monotone increasing we readily obtain the 
second inequality. 

Note that 

The infinite product is C p,(n)x” where p,(n) is the number of partitions of n 
into powers of r. Erdiis (1942) has shown that log p,(n) - logZn/2 log r. From this 
and the fact that pA(n) and p,(n) are monotone increasing we obtain that 
pt+vWexp-t~ +Pl og r)-l) log’ n. ErdGs (1942) has shown using elemen- 
tary arguments that p(n) - Cn-‘exp(ntr t/2/3) (Newman (1951) showed also 
by elementary arguments that C = 1/(4v/3)). The first part of theorem 6 follows 
immediately. Since the number of partitions of n into distinct summands equals 
the number of partitions of n into odd summands one can apply the method of 
Erdiis to obtain q(n) - Cn-;exp (n” r/X&) and this with (3.1) gives the second 
part of Theorem 6. 
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