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1. Intro&ction 

Much work has been done on obtaining estimates from below for the greatest 
prime factors of the terms of certain sequences of integers. Let P(W) denote the 
greatest prime factor of nz and letf(x) be any irreducible polynomial with degree > 1 
and integer coefficients. 

It can easily be deduced from Siegel’s work [& 121 that P(f (x)) + w as x 3 co 
and recently Sprindzhuk and Kotov [7], using deep techniques of Baker, have shown 
that indeed 

P(f (x)) > c log log x 

for all integers x where L’ = c(f) > 0; the case of quadratic and cubic f was in fact 
covered by earlier works of Schinzel [lo] and Keates [6]. 

In another context Birkhoff and Vandiver Cl] proved, by elementary methods, 
that for distinct positive integers a, b, P(a”--b”) > nf 1 for all integers 12 > 6. 
Recently, again using techniques of Baker, the second author [14] obtained some 
new results in this connexion; for instance, for the Fermat numbers we have (see [15]) 

P(Y”$- I) > cn2”, 

for all positive integers )I where c is a positive absolute constant. Reiated work has 
been carried out on the Fibonacci and, more generally, the Lucas and Lehmer numbers; 
moreover non-trivial lower bounds have been established (see [13]) for P(u,) where 
I{,, denotes the rz-th term of a general recurrence sequence. 

In yet another direction it follows from the work of Tchebychev, Nagell and 
Ricci (see [2]) that P(f(1) . ..j(x)) < cxlogx 

for all sufficiently large integers X, where c is a positive number depending only on 
the degree of f. The first author [2] improved the exponent of logx here to 
c log log log x where c = c(f) > 0 and, indeed, stated without proof that the number 
on the right could be replaced by xe (log x)r for all sufficiently large x where 0 < c( < 1. 
Hooley [s], using sieve techniques, showed that if f is a quadratic polynomial then 
logx can be replaced by xe for some E > 0. It seems probable in fact that iff is 
irreducible of degree n > 1 then 

P(f(l) .J(x)) > ad 

for c = c(f) > 0 and for all integers x, but a verification seems hopeless at present. 
As regards estimates from below for least prime factors of sequences of the above 

kind very little of significance is apparently known. In fact the only substantial result 
of which we are aware is that p(f (x)) > xc infinitely often, where p(m) denotes the 
least prime factor of m, f is a poiynomial as above such that f(l), . . . . f (Fc) have no 
common divisor for some integer k, and c > 0 depends only on the degree off; this 
can be deduced from Brun’s sieve. 
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In the present paper we shall discuss the sequences n! + 1 and p1 . . . pn + 1 where 
pk denotes the k-th prime; for these it would seem that no significant lower estimates 
for either the least or the greatest prime factors have hitherto been recorded. Perhaps 
our ignorance can best be illustrated by observing that we cannot exclude, even with 
recourse to the deep results of Baker and others, the possibility that infinitely often 
n! + 1 is composed solely of the two smallest primes exceeding n. Nevertheless, we 
can prove by elementary arguments a few results which are, perhaps, not entirely 
trivial. 

We begin by noting that p(n! $1) > n + 1 for all n and by Wilson’s theorem, 
equality holds here when n-t- 1 is a prime. We shall show first that, by contrast, a 
better estimate obtains when n + 1 is composite. 

THEOREM 1. For any positive integer n such that n+ 1 is not a prime we have 

p(n!+l) > n+(l-o(l))logn/loglogn. 

Further, for almost all integers n, we have 

p(n! + 1) > n + &(n)nl’Z, 

where E(n) is any positive function that decreases to Oas n + 00. 

(1) 

(2) 

We believe that the estimate (1) is best possible; this is certainly the case, see the 
proof of (l), if i! + 1 is the product of a small number, less than e’ say, and a prime 
for infinitely many odd integers i. A similar estimate to (1) can be obtained for the 
greatest prime factor, without restriction. We prove 

THEOREM 2. For all positive integers n we have 

P(n!+l) > n+(l-o(l)) logn]loglogn. (3) 
Furthermore 

lim sup P(n! + 1)/n > 2 -i-S 
n+m 

(4) 

where 6 is an efictively computable positive constant. 

It should be noted that the proof of (4) also suffices to establish that p(n! f 1) < 
(2 -S’)n, where 6’ = (S/( 1 +S)), f or infinitely many composite integers n f 1. 

Theorems 1 and 2 follow from a generalisation of Wilson’s theorem; for the proof 
of (3) the well known result of Liouville that (p- l)! + 1 is not a power of the prime 
p(> 5) is invoked. Both theorems hold with n! - 1 in place of n! + 1 and the proofs 
apply virtually unchanged; the exception is the proof of (3) where the result of Liou- 
ville is not applicable and a theorem of ErdGs and Oblath [3] to the effect that the 
equation n! - 1 = x” has no solution in integers n > 1, x > 1 and m > 1, is required 
instead. 

We turn now to the sequence p1 . . . pn + 1 and prove: 

THEOREM 3. For infinitely many integers n (> 0) 

P(P, *** t&+-l) >Pntk 

where k > clog n/log log nfor some positive absolute constant c. 
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The main reason for the discrepancy in the relative strengths of Theorems 1 and 
2 as compared with Theorem 3 is that we do not have an analogue of Wilson’s theorem 
for the product of the first n primes. 

It is certainly not known, witness Theorems 2 and 3, whether n! + 1 or p1 . . . p,, + 1 
is a prime infinitely often and curiously enough it is not even known if p1 . . . pn+ 1 is 
infinitely often not a prime. From Wilson’s theorem and a slight generalisation it 
follows that there are infinitely many even and infinitely many odd integers n for 
which n! + 1 is composite and Schinzel [ll] has shown that for any rational number c, 
cn! + 1 is infinitely often composite. We would guess, of course, that both n! + 1 and 
Pl ‘*a pn + 1 are composite for almost all values of n. 

Finally we shall prove the following result, a special case of which is needed for 
the proof of Theorem 3. 

THEOREM 4. The equations 
n p = x”-y” 
pSn 

and 
np=.P+ym 

p<ll 

have no solutions in positive integers x, y, n( > 2) and m (> 1). 

For the proof of Theorem 4 we shall adopt a similar approach to that used by 
Erdas and Oblath [3]. They showed that for primes p and integers n the equations 
n! = xp-yp (p > 2, n > 1) and n! = xpsyp (p > 1, n > 2) have no solutions in 
positive integers x and y. 

We close with the curious observation, related to the first of the above equations 
with IyI = 2 andy = 1, that 4p, . . . pn+ 1 is a square for n = 1,2,3,4 and 7. C. Bach 
has checked the expression for all II < 28 with the aid of a computer and has found no 
more squares; and we would guess that n = 7 gives the last such square. 

2. Proof of Theorem 1 

For the proof of (l), we shall use the result, which follows immediately from 
Wilson’s theorem, that for a prime p 

(p-i- l)! i! s (-l)‘+’ (mod& 0 < i < p- 1. (5) 

Now if n + 1 is not a prime and a prime p divides n! -I 1 then since p > n-k 1 we may 
write p-i - 1 = n for some positive integer i. From the above identity it then follows 
that p divides i! + (- l)‘+ ’ and thus that i! > p-l. But now since p-l = n+i we 
have i! - i 2 n and (1) therefore follows. 

We shall now prove (2). We assume, therefore, that there exists a decreasing 
function E for which (2) fails to hold on a set of integers of upper density 6 > 0 and 
we shall show that this leads to a contradiction. Accordingly, we can find arbitrarily 
large integers n such that between n and 2n there are 6n integers t for which 
p(t!+l) < t+E(t)t”2. 

We first remove those integers t for which t+ 1 or i-t-2 is a prime, leaving, by the 
prime number theorem, a set T of at least (6/2)n integers t for which 2 < pt- t c 
.z(t)t’12 where pt = p(t! + 1). Now from (5) pr divides Cp,- t- l)! + (-l)‘+’ and since 
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2 c pt- I < r where r = [s(n) (2n)l”] we have 
some integer b = bt (= pt--f--l) with 1 < b 
then b, # b,. Therefore 

STEWART 

that eitherp,]b!+l orp,lb!-I for 
c r. Further, if pr = pre for t # t’ 

(6) 

JJIIT~tl ,F2 tb!+l) W-1) tie 0) 

and thus 
fi (b!)* > ndn12. 

b= 2 

On the other hand, since b! < bb, we have 

fi (b!)2 <exp i 
b=l (b=12blog+ 

But E --f 0 as n + M), and so, by definition, r c n ‘1’ for n sufficiently large; whence the 
exponential expression on the right above is less than n”...*’ and so also less than 
n2e2n. This contradicts (6) for n sufficiently large and the theorem follows. 

3. Proof of Theorem 2 

We observe that (3) follows from (1) if n+ 1 is not a prime. If n+ 1 is a prime 
p (> 5) then, from a result of Liouville [8], (p - I)! -t 1 is divisible by a prime other 
than p. We can therefore conclude, by the same argument used in the proof of (l), 
that (3) is valid. 

We next observe that we can easily establish that the expression on the left-hand 
side of (4) is > 2. For if p 1 i! + 1 for some odd integer i (> 1) then from (5) 
pl (p-i-l)!+l. In particular we see that as i tends to infinity so also do p and 
p-i - 1; furthermore, the maximum of p/i and p/Q-i - l), 0 < i < p - 1, is clearly 
> 2. The proof that the aforementioned inequality is strict, however, is considerably 
more involved. 

We shall now assume that (4) does not hold and show that this leads to a con- 
tradiction. Accordingly, given a positive constant 6 (< l/2) we can find an integer 
N = N(6), satisfying (logN)- ’ < d2/2, such that for all integers n > N, P(rt! + 1) < 
(2+S)n. Now by the prime number theorem we can find an integer n > N! + 1 such 
that the interval ((2~-6)n, (2+46)n} contains at most 66n/log n prime numbers. 
Furthermore, if a prime p divides m! + 1 for some odd integer m > II, then from (5) 
pi (p-m-l)!+1 and as n > N!+l we have p > N!+l and thus p-m-l > N. 
Therefore, by assumption, both p/m and p/@-m - 1) are less than 2+6 and thus if 
n < m < n+Sn weplainlyhave (2-S)n < p c (2+46)n. 

Let ml < . . . < m, denote the odd integers in {n, (1 +J)n>. If p’ ] m! + 1 then, upon 
observing thatp > (2-Q, m < (l-k& m! c mm and 6 < l/2, we see than I < 3n/2. 
Further, if p” 1 mi! + 1 and pIz] mj! -I- 1 (mi > mj) then, on setting 2 = min {II, 12}, we 

find that p1 I nli Yni-l . . . mj+l - 1 and thus 1 < mi-mj. Accordingly, there can be at 
most 2k integers mi! + 1 divisible by p’ where 2 2 Sn/2k; hence p divides (ml! + 1) . . . 
(mt! + 1) to at most the power 3n/2+Sn logn/log 2. But now, as there are less than 
66n/log n primes in { (2 - S)n, (2 + 4S)n) and as 6 < l/2 we have 

(ml! + 1) . , . (mt! + !) < {4n)(3n(Z+J* 10~ nflog 2) 6dnllag n 

which is < nCr((dfl)2+“2/b n) f or some absolute constant c’; whence the above product is 
less than ncdzn2 with c = 3c’/2, since N was chosen such that (log N)-’ < a2/2. 
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On the other hand, as (ml! + 1) > n! > (n/e)” and as t is certainly > &z/3 we have 

(ml ! + 1) . * . (m,! $1) > (n/e)6n2’3 

which is > ncldn2 for some positive absolute constant cl. This, however, contradicts 
our earlier estimate if 6 < cl/c and the result now follows. 

4. Proof of Theorem 3 

By the prime number theorem we can find, for arbitrarily large integers n, an 
interval {n, n+t}, with t = c(logn)2/loglogn for some small positive constant c, 
which contains r = (1 + o( 1)) t/log n primes. We shall prove that for some prime pm 
from the interval {n, rift), p1 . . . pm+ 1 has a prime factor greater than pm+,,36 This 
will then prove the theorem, for we have chosen r to be (1 + o(l)) c log n/log log n and 
it follows from the prime number theorem that m = (1 +-o(l)) n/logn. 

Denote by pk and pk+r the least and the greatest prime numbers in (n, n+ 1) and 
observethatp, ...pk+d+l andp, . . . pkfb -t- 1 cannot both be divisible by the same prime 
factor&d, 1 < a < b < d < r. For ifthey are we have 

Pk+a+i -*- Pk+b - 1 = O(modp,+,J, 

and thus, on writing t, = pk+d-pk+,,, 

But now as the t, in the above product are all less than t and as there are fewer than 
I’ of them we have t’ > pk+ J > n and this contradicts our choice of t for c sufficiently 
small. 

We now consider the integers pi . . . pk+,, + 1, u = 1, . . . ,2r/J. Each of these integers 
has at least two distinct prime factors; for, from Theorem 4 it follows that the integers 
cannot be a power of a prime and if one of them is a prime then the theorem clearly 
holds. Not all of these primes can be less than n + t, for we would then have, by the 
preceding paragraph, 4r/3 primes between n and n -I- t and this contradicts our original 
assumption. Thus for some integer m, k+ 1 < m < k+ 2r/3, pI . . . pm + 1 is divisible 
by a prime greater than n+ t and hence greater than P,,,+,,~. The theorem now follows 
by our earlier remarks. 

5. Proof of Theorem 4 

We shall give a detailed proof that the first equation of Theorem 4 has no solution. 
For the proof that the second equation, involving a sum of powers, has no solution 
we shall merely need to make some minor adjustments to this proof. 

We note that for both equations we may assume x and y are relatively prime 
positive integers and further that m is a prime 4. 

The proof of the first assertion now proceeds in three stages. 
We observe that for 4 = 2 the equation cannot hold since we would then have that 

2 divides (x-y) (x+y) to exactly the first power, which is clearly impossible. 
Next we observe that for primes 4 > 2 we have, on denoting (x4-yq/(x-y) by 

A, that (x-y)’ < A and thus that (x4-yQ)’ < A 3. But now ~7 divides A to at most the 
first power, while all other prime factors of A are congruent to 1 (mod 4) by a classica 
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result of Euler [4]. Thus, if the equation is to hold, we must have 

( ) 

213 
I-IP <4rI P (7) 
psn “,‘i’n (mod d . 

for some integer n (> 2). 
It follows from a result of Rosser and Schoenfeld (see 3.14 of 191) that the 

logarithm of the left-hand side of (7) is greater than 6On for t2 2 563. The final stage 
of the proof involves obtaining a good upper bound for the right-hand side of (7) 
for comparison with this estimate. 

To this end we note that the expression 

jq,q = qMq- I)1 (q-tl)...((k-l)q+l) 

k! 

is an integer for all positive integers k. Indeed, the exponent of a prime p in the prime 
decomposition of k! is [k/p] f [k/p*] + . . . and, if (p, q) = 1, this is clearly at least the 
exponent to which p divides the product in the numerator of B(k); further, it is plain 
that the sum of the above series is < [k/(p - l)]. 

Now since (jq + l)/(j+ 1) < q, we have B(k) < qtk/(q-l)l*k- ‘. Furthermore, we 
certainly have 

4*Et( ~dq)SHwd+~) m 
pSll 

<qn1q(4-w41+2 , 

which, on taking logarithms, is less than pl((log 3)/2+2(logq)/n) since q > 3. 
From the original equation and the result of EuIer [4], it follows that n > q. 

Accordingly it follows from the above paragraph that for M > 563, the logarithm of the 
expression on the right-hand side of (7) is less than n((log 3)/2-i- (2 log 563)/563), 
which in turn is less than *58n. This contradicts our lower bound of *6On, however, 
and therefore the original equation cannot hold for n > 563. It is now a straightfor- 
ward task to check that (7) and hence also the equation, cannot hold for 1 < n < 563. 

To prove that the product of the primes < 12 cannot be the sum of q-th powers we 
first observe that the equation cannot hold for q = 2 and y1 > 2, since if it could we 
would have 3 ] x2+y2 for relatively prime positive integers xandy, which is, of course, 
impossible. For primes q > 2, on writing (xQ+y”)/(x+y) as A and noting that 

(x+Jy < (x+y)2+3(x-y)2 < 4(x3+y3Mx+y), 

we find that (X”+J~)~ < 4A3. But now from a slight generalisation of the result of 
Euler [4] and from the preceding remark, if our original equation has a solution then 
(7) holds with the product on the right-hand side of the inequality now multiplied 
by the cube root of 4. We may now proceed as before to conclude that the equation 
cannot hold for it > 563 and a simple check extends this to n > 2. For n = 2 we note 
that we have the trivial solution 2 = 14 + lq. 
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