THE NONEXISTENCE OF CERTAIN INVARIANT MEASURES

PAUL ERDÖS AND R. DANIEL MAULDIN

ABSTRACT. It is shown that there does not exist an uncountable group G and a nontrivial, σ -finite, countably additive measure defined on all subsets of G which is left-invariant.

The purpose of this note is to resolve a point left unclear in a recent paper of F. Terpe [1] and its review [2]. In [1], F. Terpe shows that the existence of a certain "maximal" integral is equivalent to the existence of a nontrival countably additive σ -finite measure m_I defined on all subsets of the interval I = [0, 1) and invariant under translation mod 1. In his review [2] of this paper, J. C. Oxtoby points out that the proof given there for the nonexistence of such a measure tacitly presupposes that the σ -field $2^I \times 2^I$ of subsets of $I \times I$ generated by generalized rectangles is invariant under the shear map S, where S(x, y) = (x + y, y) and addition is mod 1, and that by a theorem of Iwanik [3] this instance of Weil's measurability condition is satisfied if and only if all subsets of $I \times I$ belong to $2^I \times 2^I$. Thus, Terpe's reasoning actually established the nonexistence of m_I only under the hypothesis $2^{I \times I} = 2^I \times 2^I$. Finally, Oxtoby points out in his review that $2^{I \times I} = 2^I \times 2^I$ is implied by CH, but that CH makes the group argument unnecessary. Oxtoby ends his review by stating that the situation is unclear without CH.

We give a short argument below to show that no such hypothesis is needed.

THEOREM. Suppose G is an uncountable group and μ is a σ -finite countably additive left-invariant measure defined on all subsets of G. Then μ is trivial.

PROOF. Let *M* be a subgroup of *G* of cardinality \aleph_1 . Let *R* be the family of all right cosets of *M* and let *A* be a subset of *G* which intersects each set in *R* in exactly one point.

Let $\mathfrak{K} = \{mA : m \in M\}$. Then \mathfrak{K} is a family of \aleph_1 disjoint sets covering G and if H_1 and H_2 belong to \mathfrak{K} , then H_2 is a left translate of H_1 .

Let $\{K_n\}_{n=1}^{\infty}$ be a sequence of sets of finite measure covering G. For each n, the sets of the form $K_n \cap H$, where $H \in \mathcal{H}$ form a decomposition of K_n and therefore there are not uncountably many H's with $\mu(K_n \cap H) > 0$.

Thus, there is a set H_0 in \mathcal{K} with $\mu(K_n \cap H_0) = 0$ for each *n*. Therefore, $\mu(H) = 0$ for all $H \in \mathcal{K}$. This implies that κ_1 is a real-valued measurable

© American Mathematical Society 1976

Received by the editors September 30, 1975 and, in revised form, January 30, 1976.

AMS (MOS) subject classifications (1970). Primary 28A25, 28A70; Secondary 04A10. Key words and phrases. Left-invariant measure, measurable cardinal.

cardinal. But, assuming the axiom of choice (which we are in this paper), it is known that \aleph_1 is not measurable [4].

REFERENCES

1. Frank Terpe, Zur Existenz maximaler translationsaleicher Integrale, Theory of Sets and Topology (in honor of Felix Hausdorff, 1868–1942), VEB Deutscher Verlag, Berlin, 1972, pp. 495–502. MR 49 # 10861.

2. J. C. Oxtoby, Math Reviews 49 #10861.

3. A. Iwanik, On infinite complete algebras, Colloq. Math. 29 (1974), 195-199, 307. MR 49 # 179.

4. S. M. Ulam, Zur Masstheorie in der allgemeinen Mengenlehre, Fund. Math. 16 (1930), 141-150.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF FLORIDA, GAINESVILLE, FLORIDA 32611