1 §. INTRODUCTION

Let X_1, X_2, \ldots be a sequence of independent and identically distributed random variables with $P(X_1 = 0) = P(X_1 = 1) = \frac{1}{2}$ and let $S_0 = 0$, $S_n = X_1 + X_2 + \ldots + X_n \ (n = 1, 2, \ldots)$ and

$$I(N, K) = \max_{0 \leq n \leq N - K} (S_{n+K} - S_n) \quad (N \geq K).$$

Define the r.v.'s $Z_N \ (N = 1, 2, \ldots)$ as follows: let Z_N be the largest integer for which

$$I(N, Z_N) = Z_N.$$

This Z_N is the length of the longest head-run. Studying the properties Z_N resp. $I(N, K)$ Erdős and Rényi proved the following:

Theorem A. ([1]) Let $0 < C_1 < 1 < C_2 < \infty$ then for almost all $\omega \in \Omega \ (\Omega$ is the basic space) there exists a finite $N_0 = N_0(\omega, C_1, C_2)$
such that

\[[C_1 \log N] \leq Z_N \leq [C_2 \log N] \]

if \(N \geq N_0 \).

The aim of this paper is to get sharper bounds of \(Z_N \). In connection with this problem our first result is

Theorem 1. Let \(\varepsilon \) be any positive number. Then for almost all \(\omega \in \Omega \) there exists a finite \(N_0 = N_0(\omega, \varepsilon) \) such that

\[Z_N \geq [\log N - \log \log \log N + \log \log \varepsilon - 2 - \varepsilon] = \alpha_1(N) = \alpha_1 \]

if \(N \geq N_0 \).

This result is quite near to the best possible one in the following sense:

Theorem 2. Let \(\varepsilon \) be any positive number. Then for almost all \(\omega \in \Omega \) there exists an infinite sequence \(N_i = N_i(\omega, \varepsilon) \) \((i = 1, 2, \ldots)\) of integers such that

\[Z_{N_i} < [\log N_i - \log \log \log N_i + \log \log \varepsilon - 1 + \varepsilon] = \alpha_2(N) = \alpha_2. \]

Theorems 1 and 2 together say that the length of the longest head-run is larger than \(\alpha_1 \) but in general not larger than \(\alpha_2 \). Clearly enough for some \(N \) the length of the longest head-run can be much larger than \(\alpha_2 \). In our next theorems the largest possible values of \(Z_N \) are investigated.

Theorem 3. Let \(\{\gamma_n\} \) be a sequence of positive numbers for which

\[\sum_{n=1}^{\infty} 2^{-\gamma_n} = \infty. \]

Then for almost all \(\omega \in \Omega \) there exists an infinite sequence

\(N_i = N_i(\omega, \{\gamma_n\}) \) \((i = 1, 2, \ldots)\) of integers such that

\[Z_{N_i} > \gamma_{N_i}. \]

This result is the best possible in the following sense:

*Here and in what follows \(\log \) means logarithm with base \(2; [x] \) is the integral part of \(x \).
Theorem 4. Let \(\{\delta_n\} \) be a sequence of positive numbers for which
\[
\sum_{n=1}^{\infty} 2^{-\delta_n} < \infty.
\]
Then for almost all \(\omega \in \Omega \) there exists a positive integer
\(N_0 = N_0(\omega, \{\delta_n\}) \) such that
\[
Z_N < \delta_N
\]
if \(N \geq N_0 \).

Theorems 1-4 are characterizing the length of the longest run containing no tail at all. One can ask about the length of the longest run containing at most \(T \) tails. In order to formulate our results precisely introduce the following notation: Let \(Z_N(T) \) be the largest integer for which
\[
l(N, Z_N(T)) \geq Z_N(T) - T.
\]
This \(Z_N(T) \) is the length of the longest run containing at most \(T \) tails.

Our Theorems 1-4 can be easily generalized for this case as follows:

Theorem 1*. Let \(\varepsilon \) be any positive number. Then for almost all \(\omega \in \Omega \) there exists a finite \(N_0 = N_0(\omega, T, \varepsilon) \) such that
\[
Z_N(T) \geq [\log N + T \log \log N - \log \log \log N - \log T! + \log \log \varepsilon - 2 - \varepsilon] = \alpha_1(N, T)
\]
if \(N \geq N_0 \).

Theorem 2*. Let \(\varepsilon \) be any positive number. Then for almost all \(\omega \in \Omega \) there exists an infinite sequence \(N_i = N_i(\omega, T, \varepsilon) \) of integers such that
\[
Z_{N_i}(T) < \alpha_2(N_i, T) = [\log N_i + T \log \log N_i - \log \log \log N_i - \log T! + \log \log \varepsilon - 1 + \varepsilon].
\]

Theorem 3*. Let \(\{\gamma_n\} \) be a sequence of positive integers for which
\[\sum_{n=1}^{\infty} \gamma_n T^{2^{-\gamma_n}} = \infty. \]

Then for almost all \(\omega \in \Omega \) there exists an infinite sequence
\[N_i = N_i(\omega, T, \{\gamma_n\}) \]

of integers such that
\[Z_{N_i}(T) \geq \gamma_{N_i}. \]

**Theorem 4*. Let \(\{\delta_n\} \) be a sequence of positive integers for which
\[\sum_{n=1}^{\infty} \delta_n T^{2^{-\delta_n}} < \infty. \]

Then for almost all \(\omega \in \Omega \) there exists a positive integer
\[N_0 = N_0(\omega, T, \{\delta_n\}) \]

such that
\[Z_N(T) < \delta_N \]

if \(N \geq N_0. \)

The last two Theorems clearly can be reformulated as follows:

Theorem 3. Let \(\{\gamma_n\} \) be a sequence of positive integers for which
\[\sum_{n=1}^{\infty} \gamma_n T^{2^{-\gamma_n}} = \infty. \]

Then for almost all \(\omega \in \Omega \) there exists a sequence \(N_i = N_i(\omega, \{\gamma_n\}) \)

of integers such that
\[S_{N_i} - S_{N_i - \gamma_{N_i}} \geq \gamma_{N_i} - T. \]

Theorem 4. Let \(\{\delta_n\} \) be a sequence of positive integers for which
\[\sum_{n=1}^{\infty} \delta_n T^{2^{-\delta_n}} < \infty. \]

Then for almost all \(\omega \in \Omega \) there exists a positive integer
\[N_0 = N_0(\omega, T, \{\delta_n\}) \]

such that
\[S_N - S_{N - \delta_N} < \delta_N - T \]

if \(N \geq N_0. \)
2§. A THEOREM ON THE DISTRIBUTION OF $I(N, K)$

The proofs of Theorems 1-4 are based on the following

Theorem 5. We have

\[
\left(1 - 2^{-K-1} \frac{K^T + 1}{T!} (1 + o_K(1))\right) \left[\frac{N - 2K}{K}\right] + 1 \leq \leq \ \leq \ \leq \ P(I(N, K) < K - T) \leq \leq \leq \left(1 - 2^{-K-1} \frac{K^T + 1}{T!} (1 + o_K(1))\right) \left[\frac{1}{2} \left[\frac{N - 2K}{K}\right]\right] + 1
\]

if $N \geq 2K$.

Before the proof of this Theorem we prove our

Lemma 1. We have

\[
P(I(2N, N) \geq N - T) = \begin{cases}
2^{-N-1}(N + 2) & \text{if } T = 0, \\
2^{-N-1}(N^2 + 4 - 2^{-N+1}) & \text{if } T = 1, \\
2^{-N-1} \frac{N^T + 1}{T!} (1 + o(1)) & \text{if } T > 1.
\end{cases}
\]

Proof. Let

\[A = A(T) = \{I(2N, N) \geq N - T\},\]

\[A_k = A_k(T) = \{S_{k+N} - S_k \geq N - T\} \quad (k = 0, 1, 2, \ldots, N),\]

and

\[S_{-j} = -\infty \quad (j = 1, 2, \ldots).\]

Then we clearly have

\[A = A_0 + A_0A_1 + A_0A_1A_2 + \ldots + A_0A_1\ldots A_{N-1}A_N\]

where
\[P(A_0) = \sum_{j=0}^{T} \binom{N}{j} 2^{-N}, \]

and

\[p_k = P(\bar{A}_0 \bar{A}_1 \ldots \bar{A}_{k-1} A_k) = \]

\[= \sum_{k+1 \leq l_1 < l_2 < \ldots < l_T < k+N} P(\bar{A}_0 \bar{A}_1 \ldots \bar{A}_{k-1} A_k), \]

\[X_k = X_{l_1} = X_{l_2} = \ldots = X_{l_T} = 0 \]

\[= \sum_{k+1 \leq l_1 < l_2 < \ldots < l_T < k+N} P(A_k, X_k = X_{l_1} = X_{l_2} = \ldots \]

\[\ldots = X_{l_T} = 0, S_{k-1} - S_{l_T-N-1} < k - l_T + N, \]

\[S_{k-1} - S_{l_{T-1}-N-1} < k - l_{T-1} + N - 1, \ldots \]

\[\ldots, S_{k-1} - S_{l_1-N-1} < k - l_1 + N - (T-1)) = \]

\[= 2^{-N-1} \sum_{k+1 \leq l_1 < l_2 < \ldots < l_T < k+N} P(S_{k-1} - S_{l_{T-1}-N-1} < k - l_T + N, S_{k-1} - S_{l_{T-1}-N-1} < k - l_{T-1} + N - 1, \ldots \]

\[\ldots, S_{k-1} - S_{l_1-N-1} < k - l_1 + N - (T-1)). \]

Especially if

(i) \(T = 0 \) then \(p_k = 2^{-N-1} \)

(ii) \(T = 1 \) then \(p_k = 2^{-N-1}(N - 2 + 2^{-k+1}) \)

(iii) \(T > 1 \) then \(p_k = 2^{-N-1} \left(\frac{N}{T} \right) (1 + o(1)) \)

what clearly implies our Lemma.

Proof of Theorem 5. Let

\[B_k = \{ S_{k+K} - S_k \geq k - T \} \quad (k = 0, 1, 2, \ldots, N - K), \]

\[C_l = \sum_{k=\lceil lK \rceil}^{(l+1)K} B_k \quad \left(l = 0, 1, 2, \ldots, \left\lceil \frac{N-2K}{K} \right\rceil \right), \]
Then by Lemma 1

\[P(C_i) = 2^{-K-1} \frac{K^{T+1}}{T!} (1 + o_K(1)) \]

and since the events \(C_0, C_2, \ldots \) are independent we have

\[
P(\bar{D}_0) = P(\bar{C}_0)P(\bar{C}_2)\ldots = P(\bar{C}) 2^{\left[\frac{1}{2} \left(\frac{N-2K}{K} \right) \right] + 1} = \left(1 - 2^{-K-1} \frac{K^{T+1}}{T!} (1 + o_K(1)) \right) \left[\frac{1}{2} \left(\frac{N-2K}{K} \right) \right] + 1
\]

and similarly

\[
P(\bar{D}_1) = \left(1 - 2^{-K-1} \frac{K^{T+1}}{T!} (1 + o_K(1)) \right) \left[\frac{1}{2} \left(\frac{N-2K}{K} \right) \right] + 1
\]

Clearly

\[D_0 \subset \{ I(N,K) \geq K-T \} = D_0 + D_1 \]

and

\[P(I(N,K) < K-T) = P(\bar{D}_0 + \bar{D}_1) = P(\bar{D}_0 \bar{D}_1) \geq P(\bar{D}_0)P(\bar{D}_1) \]

which proves Theorem 5. The right side of the last inequality follows from

the simple inequality

\[P(D_1 | B_k) \geq P(D_1) \quad (k = 0, 1, 2, \ldots, N-K). \]

§3. THE PROOFS OF THEOREMS 1* - 4*

The following two Lemmas are trivial consequences of Theorem 5.

Lemma 2. Let \(N_j = N_j(T) \) be the smallest integer for which \(\alpha_1(N_j, T) = j \). Then
\[
\sum_{j=1}^{\infty} P(Z_{N_j}(T) < \alpha_1(N_j, T)) = \\
= \sum_{j=1}^{\infty} P(I(N_j, \alpha_1(N_j, T)) < \alpha_1(N_j, T) - T) < \infty.
\]

Lemma 3. Let \(\delta \) be a positive number and let \(N_j = N_j(T, \delta) \) be the smallest integer for which \(\alpha_2(N_j, T) = \lfloor j^{1+\delta} \rfloor \). Then
\[
\sum_{j=1}^{\infty} P(I(N_j, \alpha_2(N_j, T)) < \alpha_2(N_j, T) - T) = \infty
\]
if \(\delta \) is small enough.

Now Theorem 1* follows immediately from Lemma 2.

In order to prove Theorem 2* the following version of the Borel--Cantelli lemma will be applied:

Lemma A. ([2]) *If \(A_1, A_2, \ldots \) are arbitrary events, fulfilling the conditions
\[
\sum_{n=1}^{\infty} P(A_n) = \infty
\]
and
\[
\liminf_{n \to \infty} \frac{\sum_{k=1}^{n} \sum_{l=1}^{n} P(A_k A_l)}{\left(\sum_{k=1}^{n} P(A_k) \right)^2} = 1.
\]

Then there occur with probability 1 infinitely many of the events \(A_n \).

Hence Theorem 2* will follow from

Lemma 4. If the event \(A_j \) is defined as
\[
A_j = \{I(N_j, \alpha_2(N_j, T)) < \alpha_2(N_j, T) - T\}
\]
then (1) holds true.
Proof of Lemma 4. Let

\[B_{ij} = \left\{ \max_{0 \leq k \leq N_i - \alpha_2(N_j, T)} (S_k + \alpha_2(N_j, T) - S_k) < \alpha_2(N_j, T) - T \right\} \]

\((i < j) \),

\[C_{ij} = \left\{ \max_{N_i \leq k \leq N_j - \alpha_2(N_j, T)} (S_k + \alpha_2(N_j, T) - S_k) < \alpha_2(N_j, T) - T \right\} \]

\((i < j) \).

Then

\[P(A_i A_j) = P(A_i) P(C_{ij}) (1 + o(1)) \]

and

\[P(A_j) = P(B_{ij}) P(C_{ij}) (1 + o(1)) \]

hence

\[P(A_i A_j) = \frac{P(A_i) P(A_j)}{P(B_{ij})} (1 + o(1)). \]

By Theorem 5 we also have: \(P(B_{ij}) = 1 + o(1) \) what proves Lemma 4 and Theorem 2 at the same time.

Since

\[P(S_n - S_{n-a} \geq a - T) = \sum_{j=0}^{T} \binom{a}{j} \frac{1}{2^a} \approx \frac{a^T}{T!} \frac{1}{2^a}. \]

Theorem 4** follows from the Borel – Cantelli Lemma and Theorem 3** is a simple consequence of Lemma A. (To check the conditions of Lemma A is quite easy.)

REFERENCES

P. Erdős – P. Révész