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AEXMCT. A technque of Bagemthl and Seidel IS apphed 10 two problems 

m annular functions. It IS shown that there exists a strongly annular 

function wth Maclaurm coefflclenls tendmg to zero, and that there exist 

annular funcbons that are far from bemg strongly annular. 

0. Introduction. We show that there is a function 

(0.1) 

such that 

j(s) = g U”Z”, IZI < I, 
“=(I 

linl u, = 0 
Y .oT 

and 

A function f, holomorphlc m the unit disk /I (briefly, f E ‘X (0)). is said to 

he .s/mnpj~ annulur if (0.3) holds; an / In L I( ( 1)) is cmdur if 

(0.4) 

for some sequence of Jordan curves J, in D with 0 in their interiors. An 

example of an annular function for which (0.2) holds was known previously 

14, p. lool. 12, p. 21 I. 

While it is known that not every annular function is strongly annular 131, 

one might speculate that cvcry annular function enjoys some of the special 

properties of the strongly annular functions. For example, given an annular 

function ,f. can the {J,,) satisfying (0.4) always be chosen so that the sequence 

of lengths I (J,) remains hounded’! Can the (J,,) be chosen so that the ratio of 

the distances to IzI = I from the closest and Furthest points of J,, is bounded 

away from zero as n increiiscs? In $2, WC construct a countercxamplc to these 

conjeclures. 

Both constructions make use of a technique of Bagemihl and Seidel [l, pp. 

188 1901. 
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1. strongly altmllar full&om with small lb¶aclaurla coeffll Let H(D) 

be provided with the topology of uniform convergence on compact subsets of 
D. We use the methods of [l] to obtain the following lemma. 

LEMMA. Let 53 be a farnib ofjmctions hdomo~hic in the dosed unit disk. 
Suppose that, given any number M > 0 and any neighbodwod 9L of 0 in 
H(D), there is aficnction g in $6 n % such that lg(.z)J > M on 121 = 1. Then 
there is a sequence (f,.) in 4 such that the function 

(1.1) f(z) = k2, fk (z), I4 < A 

is strongly annular. 

PROOF. Choose f, in % so that If,(z)1 > 1 for IzI = 1, then choose r,, 
0 < r, < 1, so close to 1 that the inequality holds on ItI = I,. Next, choose fi 
in Q, so that: (i) Ifi( < 2-2 in ]z] < r, and If,(z) + fi(z)l > 1 on ]z] = rl, 
and (ii) Ifi > 2 + Ij,(z)I on 1.~1 = 1. Choose r,, r, < r2 < 1, so that the 
last inequality continues to hold on ]zl = r,. Continue choosing the functions 
fk and the numbers r,, inductively, in the obvious way. 

THEOREM 1. There exists a strong& urtnular function (0.1) such that (0.2) 
holds. More explicitly, f is of the form (l.l), each fk being a pobnomial; the 
coefficients are small and noninterfering: 

(i) L(z) = $: a(k, v)z’, 

(1.2) {ii) la(k, v)l < l/k, 

(iii) a(k, ~)a(j, V) = 0 for v = 0, 1,. . . , wheneverj # k. 

Let S be the operator on the set of nonconstant complex polynomials 
defined by 

0.3) (&P)(Z) = P(z)P(zd+‘), d = degree of P, 

and let 6P = S(lv+‘), p = 2, 3.. . . We consider the particular poIynomia1 
Q(Z) = 1 - z + z2 + z3 + z4. One may verify that we have 

]Q(e”)l’= 5 + 2 cos 2B e 2 cos 48 = + + 4(cos 26 + t)2, 

so that the minimum modulus of Q(z) on Iz] = 1 is ~1 =fi /2 A 1.46. It is 
clear from (1.3) that the coefficients of S*Q are 2 1, and that its minimum 
modulus on ]z] = 1 is at least exp(ZP log p). 

DEFINITION. 93, is the sequence of polynomials 

g,(z) = p-‘z”@‘&‘Q(r), p = 1,2..., 

where m( 1) = 0 and m(p + 1) is one greater than the degree of $. 
PROOF OF THEOREM 1. Clearly the g, have small, noninterfering coefficients 

in the sense of (1.2). For ]z] < r, we have 

lg*(z)I < Fp’p-‘(I - r)-‘, 
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while on 111 = 1, we have 

1 $(+I > P - ‘exp(2P Jog P). 

Hence, the sequence 68, satisfies the hypotheses of the Lemma, and we can 
extract a subsequence fk = gprkI such that (1.1) is strongly annular. 

2. Fundons far from strongly annular. 

THEDREM 2. There exists un annular function f with the following property: If 
(J,,) is any sequence of Jordan cumes about 0 in D for which (0.4) ho&, then 
I (J,,) approaches it@@ as n increases. 

f’aOOF.ChooseO<r,<r,<... < 1. For each n, form a closed Jordan 
curve Z, in D which coincides with 121 = r,, in the left semidisk, while in the 
right semidisk it is a perturbation of ItJ = r,, by a sinusoidal function of large 
frequency and small amplitude. These are chosen so that I (I”) is greater than 
n and Z, lies in the interior of In+,. *The set N(n, en) of points of D that lie less 
than E, from Z, is open, and we may choose E,, so small that for each Jordan 
curve J about 0 that lies in N(n, E,,), we have I(J) > n. We require further 
that N(n, e,) n N(n + I, en+,) is empty. 

Fern= 1, 2,..., we define a compact set K,. It is the portion of the 
region between I,, and I,,, that lies in the closed right semidisk and meets 
neither N(n, E,) nor N(n + 1, E,,+ ,). The set K, does not disconnect the 
plane. 

Let f,(z) = 2 for all z. Suppose that, for some n > I, we have found an 
entire function f, such that 

I f,(t)1 > j for all z on I, and for j = 1, . . . , n, 
If,(z)1 < 1 for all I in I-J::: $. 

We then define an entire function n”(r) that has small modulus on Z, (and 
hence in I,,), approximates -f,(z) on K,, and has large modulus on In+,; 
such a function exists (cf. Remark 1). We choose the tolerances so that we 
have 

If,(z) + a(z)1 > j for all z on $j = 1, . . . , n + 1, 

If.(z) + rl,,(z)l < 1 for z in U;,, K,, 
and so that, if f,, , = f, + B, the sequence {f,) converges almost uniformly 
in the unit disk. The limit function f is annular, and has modulus at most 1 on 
U 4. Hence, each sequence (J,,} for which (0.4) holds meets only finitely 
many of the K,, so that the lengths /(J,) must grow without bound. 

REMARK 1. We add a few words about the existence of TV,,. Take g,,(z) = 0 
on .I. and its interior and g,(z) = - f,(r) on K,. By Runge’s theorem, some 
entire function h. approximates g,, on these two sets. Let JI, be the contmuous 
extension of a conformal map of the interior of J,+ , onto [WI < 1, and let M 
be a number larger than n + 1 + mx(if,(:) + h,(z)/: 11) 4 1:. For k 
sufficiently large, ihe function M$i has modulus M on J,,+, but is small on 
Z,, u K,,. Approximate it@: by an entire function qfl, and take b = h, + qn. 

REMARK 2. Instead of the sequence Iz\ = r,,. one may use a sequence 
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12 - anI = r,,, with r,, increasing to 1 and a, decreasing to zero, so that the 
circles do not intersect, and so that 

’ - (‘rd + CI,) 
!i! 1 - (r, - a,) = Oe 

If the E. are taken small enough, the construction will give a function f that is 
far from strongly annular in an additional sense. That is, for each sequence 
{J.) for which (0.4) holds, the ratio of the distances to 1.~1 = 1 from the 
closest point of J,, and from the farthest point approaches zero. 
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