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ABSTRACT 

In this paper, we show that if n 14 and if G is a Z-connected graph with 
2n or 2n- 1 vertices which is regular of degree n -2, then G is 
Hamiltonian if and only if G is not the Petersen graph. 

We use the terminology of Behzad and Chartrand [2]. In particular, a set 
of vertices in a graph is independent if no two of the vertices in the set are 
adjacent. A graph is cubic if every vertex of the graph has degree three. 

Dirac [6] showed that if G is a graph with m r3 vertices and if every 
vertex of G has degree irn or more, then G is Hamiltonian. Dirac’s work 
has been extended in [lo], [ll], [3], [5], [8], and [4], but these results all 
require the existence of vertices of degree at least irn. Avoiding this latter 
requirement, Gordon [7] recently proved the following: 

Theorem. Let G be a finite graph with 2n vertices in which every vertex 
has degree at least n - 1. Then either G is Hamiltonian, G has a subgraph 
isomorphic to K,+l,,-l, G has a subgraph isomorphic to G,,,, for some 
b ES n, or G has a subgraph isomorphic to H, where GZ,~b and H are 
precisely defined non-Hamiltonian graphs. 

As a consequence of Gordon’s theorem, if n 23 and if C is a 
2-connected graph with 2n vertices which is regular of degree n - 1, then 
G is Hamiltonian. 
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We will need the following three theorems: 

Theorem A (Dirac [6]). Let G be a 2-connected graph with m vertices 
in which every vertex has degree k or more. Then either m < 2k or G 
includes a cycle of length 2k or more. 

Theorem B (Moon and Moser [9]). Let n 2 2. If B(n, n) is a bipartite 
graph with n vertices in each color class, and if every vertex in B(n, n) 
has degree greater than ia, then B(n, n) is Hamiltonian. 

Theorem C (Derived from Balaban et al. [l]). the Petersen graph is the 
only cubic block with at most ten vertices which is not Hamiltonian. 

While every Hamiltonian graph is 2-connected, it is not always neces- 
sary to include this property as a condition in a theorem whose conclusion 
is that a class of graphs is Hamiltonian (e.g., Dirac’s 1952 theorem). 
However, in the case of the theorem proved here, 2-connectedness must 
be required, as is shown by the class of graphs described below. Given a 
function f which assigns a non-negative integer to each vertex of a graph 
G, an f-factor of G is a spanning subgraph S of G such that the degree of 
each vertex u in S is f(u). It is not difficult to show the following 
theorem: 

Theorem 1. Let G be a graph with 2n - m, m E (0, l}, vertices which is 
regular of degree II - 2. Then G is not 2-connected if and only if there are 
subgraphs F and H of G such that G = F U H, there is a vertex 2) with 
V(F n H) = {v}, and there is an integer p such that 2 5 2p 5 n, F is formed 
from K,+-, by removing the edges of an f-factor of K,,+,-, with 
f(u)=2p-m and f(u)=2-m for all u in V(k,,+,-,)-{v}, and H is 
formed from K,, by removing the edges of an h-factor of K,, with 
h(v)=n-2p+l and h(u)=1 for all u in V(K,,)-{u}. 

In this theorem, note that FU H is not connected if 2p~{2, n}, and 
FUH has a bridge if 2p=n-1. 

Throughout the remainder of this paper, n is a positive integer, G is a 
2-connected graph with 2n or 2n - 1 vertices which is regular of degree 
n - 2, P is a cycle of maximum length in G, R = V(G)- V(P), r is the 
number of elements of R, and u and w are used only to name vertices in 
R. Further, given 2, E R and given a direction around P, C is the set of 
vertices of P adjacent to ~1, A is the set of vertices immediately preceding 
vertices of C on P, and B is the set of vertices immediately following 
vertices C on P. It is easily seen that 
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OBSERVATION: A U(u) and B U(u) are independent sets of vertices. 

In the proof of Theorem 2, we first show that R is independent. Using the 
independence of R, one can easily show that r 5 1, Finally, we examine 
the remaining case of r = 1 and find only the Petersen graph is not 
Hamiltonian. 

Lemma 1. Suppose v and w are in R, vf w, and suppose 2, and w are 
joined by a path of length k in G - V(P). If v is joined to a vertex c of P 
and w to a different vertex c’ of P, then between c and c’ on P there are 
at least k+ 1 vertices not adjacent to either v or w. 

Proof. If the lemma fails, we may suppose that between c and c’ there 
are k or fewer vertices joined to neither v nor w and no vertices joined to 
either v or w. But then a longer cycle than P can be formed by replacing 
the portion of P from c to c’ by the path of length k joining 21 and w 
together with the edges from u and w to c and c’. Thus the lemma is 
true. I 

Lemma 2. Let u and w be distinct vertices of a component S of 
G - V(P), and suppose there is a path of length k in S joining ~1 and w. 
Suppose the number of edges from 21 and w to vertices of P is j and 
suppose that, going around P, there are i cases in which a vertex of P 
which is joined to exactly one of v or w is followed by a vertex joined to 
the other of v and w with no vertices joined to either between them and 
i’ cases in which a vertex of P is joined to both v and w. Then 

2n-m-(k+l)rjV(P)Irj+ik+i’(k-l)+(j-i’). 

Proof. The upper bound is obvious. Since there are j - i’ vertices of P 
joined to 21 and/or W, it is sufficient to show that P has at least 
j + ik + i’(k - 1) vertices not joined to either u or w. Suppose v and w are 
both joined to a vertex c of P. Then between c and the next vertex c’ of P 
joined to either of o or w there are at least k + 1 vertices joined to 
neither. Allowing for two of these to be counted against the edges joining 
D and w to c, there are k - 1 vertices between c and c’ which are not 
counted against edges. If a vertex c of P is joined to either of v or w but 
not both, then the next vertex on P is joined to neither by Lemma 1 and 
the observation and can be counted against the edge to c; further if the 
next vertex c’ after c on P which is joined to either u or w is joined to the 
one of these not joined to c, there are still k of the vertices between c and 
c’ which are not counted against any edge from v or w to P. The lemma 
follows. I 
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In the remainder of this paper, the symbols i, i’, j, and k are as defined 
in Lemma 2. 

Lemma 3. If G - V(P) has a nontrivial component S, then II 54. 

Proof. Let d be the smallest degree in S for which there are two 
vertices of S of degree d in S. Since S has no more than four vertices but 
is nontrivial, S has at least two vertices of degree exactly d ~{1,2,3} 
joined by a path of length at least d. Then Lemma 2 together with 
j=2(n-2-d) and j-i’rn-2-d imply that 

2n-d-l-mr3(n-2-d)+id+i’(d-l), (1) 

which yields 

02(n-5)+d(i-2)+i’(d-l)+m. (2) 

If if 0, then i is at least two, so n is no more than 5 by (2). Thus i = 2 and 
n=S.NowwehaveOri’(d-l)+m,som=O.Sincen=5,Giscubic,so 
1 V(P)1 11 V(G)\ - 1 by Theorem C. Thus i = 0. 

Now from the definition of i, if there is a vertex of P joined to just one 
of u and w, then no vertex of P can be joined to the other of u or w. Thus 
i’ = j/2 = n - 2 - d. Substituting this into (l), we obtain 

d2+3d+3-mzdn. (3) 

If i’ = 0, then n = 5 and d = 3; but this case is finished. Thus i’>O and 
n 16. We now consider the three choices for d. 

Case 1. Let d = 1 and note that n E (67) by (3). If n = 7, then i’ = 4, so 
P has at least 12 vertices by Lemma 1. Thus 1 V(S)1 = 2 and each vertex of 
S is adjacent to the same equally spaced i’ = 4 vertices in P. If any vertex 
in A is adjacent to more than one vertex in B, then G has a cycle longer 
than P. Thus each vertex in A is adjacent to every vertex in C and this 
implies that the vertices of C have degree 6 or more, which is impossible. 
Thus nf 7. If n = 6, then i’= 3 and P has either 9 or 10 vertices by 
Lemma 1. In either case, P has a subpath c, b, u, c’ where c and c’ are in 
C. If b is adjacent to at least two vertices in A, then G has a cycle longer 
than P. Thus b is adjacent to at least two vertices in C, so C has a vertex 
with degree at least 5. Since this is impossible, d # 1. 

Case 2. Let d = 2 and note that n = 6. Also i’ = 2, so P has either 8 or 9 
vertices by Lemma 1. Since S does not have two vertices of degree 1, S 
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must have a cycle containing the two vertices u and w. Let x be another 
vertex on the cycle in S. Since x can be joined to at most 3 vertices of S, x 
must be joined to a vertex of P. But x cannot be joined to a member of 
C, and there is a path in S between x and each of v and w of length at 
least two. Thus a longer cycle than P exists in G no matter what vertex of 
P is joined to x. Thus df 2. 

Case 3. Let d=3 and note that ti=6 or n=7. Clearly, i'=n--d-22 
1. Also, S = K4 and this, by symmetry, implies that each vertex of S is 
adjacent to the same i’ vertices in P, Thus G has a vertex (in C) which 
has degree at least 6. Since this is impossible, the result follows. I 

Lemma 4. If n?S, then R has order rsl. 

Proof. If ((w}U A) has at least two edges, then w is adjacent to two 
vertices of A and we can easily find a cycle longer than P. Thus 
({w} U A) has no more than one edge. Similarly, ({w> U B) has no more 
than one edge. 

Let p be the number of edges in (A U R). Since {v} together with A is 
an independent set, p I r- 1 and G has exactly (n -2 + r)(n -2) -2p 
edges joining vertices in A U R to those in V(G) -(A U R). Thus 

and this implies that (r - 2 + m/2)(n - 3) 5 1 - m/2. 
Since n 2 5, we have I I 5/2- 3ml4. Thus, if m = 1, rs 1. Suppose 

m=O,sors2.Supposingthat r=2,notethatp<r-l=l.Ifp=O,then 
A U R is an independent set of n vertices and Theorem B implies that G 
is Hamiltonian. Thus (A U R) has n vertices and exactly one edge and, 
therefore, G - (A U R) has exactly one edge. Thus G is Hamiltonian by 
Theorem B if n 5 6. If n = 5, the lemma follows from Theorem C. I 

Let D=AflB andlet X=V(P)-(AUBUC). 

Lemma 5. If n 2 5, then X= #. 

Proof. Clearly 1x15 2 - m. Suppose that X=(x, y} and note that x 
and y are consecutive in P. Thus P contains the subpath c, b, x, y, a, c’ 
where {a} = A -B and {b} = B-A. If both x and y are adjacent to 
vertices in D, then we can easily find a Hamiltonian cycle in G. If x is 
adjacent to no vertex of D, then (B U{u, x}) = H has y1 vertices and one 
edge and this implies that G - V(H) has one edge. However, G - V(H) 
has the subpath y, 11, c’, which is a contradiction. Likewise if y is adjacent 
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to no vertex of D, then {A U{v, y}) has only one edge and this leads to a 
contradiction. Thus 1x1 # 2. 

Suppose that X = {x}. If m = 0, note that IA - BI = IB -Al = 2. Let 
A -B = {a, a’} and B-A = {b, b’}, where c, b, x, a, c’ and b’, a’ are 
subpaths of P. C is Hamiltonian if edges ab’ and u’b are both in G. If ub’ 
is not an edge of G, then (A U{u, b’}) = H has n vertices and one edge 
while G - V(H) contains xb and bc; this is impossible. Likewise, if u’b is 
not an edge, then (B U {v, a’}} = H’ has n vertices and one edge while 
G - V(H’) has edges xu and UC’; again this is a contradiction. Thus 
(XI # 1 if m = 0. If m = 1, then {A U B U(u)) has n vertices and at most 
one edge. If (AUBU{v}) has no edge, then n(n-2)r(n-l)(n-2), 
which is impossible. Otherwise, n(n -2)- 2 5 (n - l)(n - 2), whence n 5 4. 
Thus X = C#I. 

Theorem 2. If n z 4 and G is a 2-connected (n -2)-regular graph with 
2n or 2n - 1 vertices, then either G is Hamiltonian or G is the Petersen 
graph. 

Proof. If G is not Hamiltonian, then n > 5 and V(P) =A U B U C. 
Also, IV(P)I=2n-1-m and IA-BI=jB-Al=3-m. Let A-B= 
ia,, . . *, a,_,} and let B -A = (b,, . . . , b3+,}, where a,b, are edges of P 
for i=l,..., 3 - m and they occur in cyclic order on P. 

Suppose m = 0. If ((A U B)- D) = H has at least seven edges, then we 
can easily find a Hamiltonian cycle in G using edges aibj and ujb, for 
some i# j. Thus H has no more than six edges, and this implies that 
(A U B U{u}) has n +2 vertices and no more than six edges. Thus 
(n+2)(n-2)-12s(n-2)(n-2), or ns5. But if n=S, the theorem 
follows from Theorem C. The case m = 1 is similar. 

If n = 4, G is a a-connected 2-regular graph, i.e., G is a cycle. The 
theorem follows. I 
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