A Class of Hamiltonian Regular Graphs

Paul Erdös

HUNGARIAN ACADEMY OF SCIENCES

Arthur M. Hobbs TEXAS A & M UNIVERSITY

ABSTRACT

In this paper, we show that if $n \ge 4$ and if G is a 2-connected graph with 2n or 2n-1 vertices which is regular of degree n-2, then G is Hamiltonian if and only if G is not the Petersen graph.

We use the terminology of Behzad and Chartrand [2]. In particular, a set of vertices in a graph is *independent* if no two of the vertices in the set are adjacent. A graph is *cubic* if every vertex of the graph has degree three.

Dirac [6] showed that if G is a graph with $m \ge 3$ vertices and if every vertex of G has degree $\frac{1}{2}m$ or more, then G is Hamiltonian. Dirac's work has been extended in [10], [11], [3], [5], [8], and [4], but these results all require the existence of vertices of degree at least $\frac{1}{2}m$. Avoiding this latter requirement, Gordon [7] recently proved the following:

Theorem. Let G be a finite graph with 2n vertices in which every vertex has degree at least n-1. Then either G is Hamiltonian, G has a subgraph isomorphic to $K_{n+1,n-1}$, G has a subgraph isomorphic to $G_{2n,b}$ for some $b \le n$, or G has a subgraph isomorphic to H, where $G_{2n,b}$ and H are precisely defined non-Hamiltonian graphs.

As a consequence of Gordon's theorem, if $n \ge 3$ and if G is a 2-connected graph with 2n vertices which is regular of degree n-1, then G is Hamiltonian.

Journal of Graph Theory, Vol. 2 (1978) 129–135 © 1978 by John Wiley & Sons, Inc. 0364–9024/78/0002–0129\$01.00 We will need the following three theorems:

Theorem A (Dirac [6]). Let G be a 2-connected graph with m vertices in which every vertex has degree k or more. Then either m < 2k or G includes a cycle of length 2k or more.

Theorem B (Moon and Moser [9]). Let $n \ge 2$. If B(n, n) is a bipartite graph with *n* vertices in each color class, and if every vertex in B(n, n) has degree greater than $\frac{1}{2}n$, then B(n, n) is Hamiltonian.

Theorem C (Derived from Balaban et al. [1]). the Petersen graph is the only cubic block with at most ten vertices which is not Hamiltonian.

While every Hamiltonian graph is 2-connected, it is not always necessary to include this property as a condition in a theorem whose conclusion is that a class of graphs is Hamiltonian (e.g., Dirac's 1952 theorem). However, in the case of the theorem proved here, 2-connectedness must be required, as is shown by the class of graphs described below. Given a function f which assigns a non-negative integer to each vertex of a graph G, an f-factor of G is a spanning subgraph S of G such that the degree of each vertex u in S is f(u). It is not difficult to show the following theorem:

Theorem 1. Let G be a graph with 2n - m, $m \in \{0, 1\}$, vertices which is regular of degree n-2. Then G is not 2-connected if and only if there are subgraphs F and H of G such that $G = F \cup H$, there is a vertex v with $V(F \cap H) = \{v\}$, and there is an integer p such that $2 \le 2p \le n$, F is formed from K_{n+1-m} by removing the edges of an f-factor of K_{n+1-m} with f(v) = 2p - m and f(u) = 2 - m for all u in $V(k_{n+1-m}) - \{v\}$, and H is formed from K_n by removing the edges of an h-factor of K_n with h(v) = n - 2p + 1 and h(u) = 1 for all u in $V(K_n) - \{v\}$.

In this theorem, note that $F \cup H$ is not connected if $2p \in \{2, n\}$, and $F \cup H$ has a bridge if 2p = n-1.

Throughout the remainder of this paper, n is a positive integer, G is a 2-connected graph with 2n or 2n-1 vertices which is regular of degree n-2, P is a cycle of maximum length in G, R = V(G) - V(P), r is the number of elements of R, and v and w are used only to name vertices in R. Further, given $v \in R$ and given a direction around P, C is the set of vertices of P adjacent to v, A is the set of vertices immediately preceding vertices of C on P, and B is the set of vertices immediately following vertices C on P. It is easily seen that

OBSERVATION: $A \cup \{v\}$ and $B \cup \{v\}$ are independent sets of vertices.

In the proof of Theorem 2, we first show that R is independent. Using the independence of R, one can easily show that $r \le 1$. Finally, we examine the remaining case of r=1 and find only the Petersen graph is not Hamiltonian.

Lemma 1. Suppose v and w are in R, $v \neq w$, and suppose v and w are joined by a path of length k in G - V(P). If v is joined to a vertex c of P and w to a different vertex c' of P, then between c and c' on P there are at least k+1 vertices not adjacent to either v or w.

Proof. If the lemma fails, we may suppose that between c and c' there are k or fewer vertices joined to neither v nor w and no vertices joined to either v or w. But then a longer cycle than P can be formed by replacing the portion of P from c to c' by the path of length k joining v and w together with the edges from v and w to c and c'. Thus the lemma is true.

Lemma 2. Let v and w be distinct vertices of a component S of G - V(P), and suppose there is a path of length k in S joining v and w. Suppose the number of edges from v and w to vertices of P is j and suppose that, going around P, there are i cases in which a vertex of P which is joined to exactly one of v or w is followed by a vertex joined to the other of v and w with no vertices joined to either between them and i' cases in which a vertex of P is joined to both v and w. Then

$$2n - m - (k+1) \ge |V(P)| \ge j + ik + i'(k-1) + (j-i').$$

Proof. The upper bound is obvious. Since there are j-i' vertices of P joined to v and/or w, it is sufficient to show that P has at least j+ik+i'(k-1) vertices not joined to either v or w. Suppose v and w are both joined to a vertex c of P. Then between c and the next vertex c' of P joined to either of v or w there are at least k+1 vertices joined to neither. Allowing for two of these to be counted against the edges joining v and w to c, there are k-1 vertices between c and c' which are not counted against edges. If a vertex c of P is joined to neither of v or w but not both, then the next vertex on P is joined to neither by Lemma 1 and the observation and can be counted against the edge to c; further if the next vertex c' after c on P which is joined to either v or w is joined to the one of these not joined to c, there are still k of the vertices between c and c' which are not counted against any edge from v or w to P. The lemma follows.

In the remainder of this paper, the symbols i, i', j, and k are as defined in Lemma 2.

Lemma 3. If G - V(P) has a nontrivial component S, then $n \le 4$.

Proof. Let d be the smallest degree in S for which there are two vertices of S of degree d in S. Since S has no more than four vertices but is nontrivial, S has at least two vertices of degree exactly $d \in \{1, 2, 3\}$ joined by a path of length at least d. Then Lemma 2 together with j=2(n-2-d) and $j-i' \ge n-2-d$ imply that

$$2n - d - 1 - m \ge 3(n - 2 - d) + id + i'(d - 1), \tag{1}$$

which yields

$$0 \ge (n-5) + d(i-2) + i'(d-1) + m.$$
⁽²⁾

If $i \neq 0$, then *i* is at least two, so *n* is no more than 5 by (2). Thus i = 2 and n = 5. Now we have $0 \ge i'(d-1) + m$, so m = 0. Since n = 5, *G* is cubic, so $|V(P)| \ge |V(G)| - 1$ by Theorem C. Thus i = 0.

Now from the definition of *i*, if there is a vertex of *P* joined to just one of *v* and *w*, then no vertex of *P* can be joined to the other of *v* or *w*. Thus i' = j/2 = n - 2 - d. Substituting this into (1), we obtain

$$d^2 + 3d + 3 - m \ge dn. \tag{3}$$

If i'=0, then n=5 and d=3; but this case is finished. Thus i'>0 and $n\geq 6$. We now consider the three choices for d.

Case 1. Let d = 1 and note that $n \in \{6, 7\}$ by (3). If n = 7, then i' = 4, so P has at least 12 vertices by Lemma 1. Thus |V(S)| = 2 and each vertex of S is adjacent to the same equally spaced i' = 4 vertices in P. If any vertex in A is adjacent to more than one vertex in B, then G has a cycle longer than P. Thus each vertex in A is adjacent to every vertex in C and this implies that the vertices of C have degree 6 or more, which is impossible. Thus $n \neq 7$. If n = 6, then i' = 3 and P has either 9 or 10 vertices by Lemma 1. In either case, P has a subpath c, b, a, c' where c and c' are in C. If b is adjacent to at least two vertices in A, then G has a cycle longer than P. Thus b is adjacent to at least two vertices in C, so C has a vertex with degree at least 5. Since this is impossible, $d \neq 1$.

Case 2. Let d = 2 and note that n = 6. Also i' = 2, so P has either 8 or 9 vertices by Lemma 1. Since S does not have two vertices of degree 1, S

must have a cycle containing the two vertices v and w. Let x be another vertex on the cycle in S. Since x can be joined to at most 3 vertices of S, x must be joined to a vertex of P. But x cannot be joined to a member of C, and there is a path in S between x and each of v and w of length at least two. Thus a longer cycle than P exists in G no matter what vertex of P is joined to x. Thus $d \neq 2$.

Case 3. Let d = 3 and note that n = 6 or n = 7. Clearly, $i' = n - d - 2 \ge 1$. Also, $S = K_4$ and this, by symmetry, implies that each vertex of S is adjacent to the same i' vertices in P. Thus G has a vertex (in C) which has degree at least 6. Since this is impossible, the result follows.

Lemma 4. If $n \ge 5$, then R has order $r \le 1$.

Proof. If $\langle \{w\} \cup A \rangle$ has at least two edges, then w is adjacent to two vertices of A and we can easily find a cycle longer than P. Thus $\langle \{w\} \cup A \rangle$ has no more than one edge. Similarly, $\langle \{w\} \cup B \rangle$ has no more than one edge.

Let p be the number of edges in $(A \cup R)$. Since $\{v\}$ together with A is an independent set, $p \le r-1$ and G has exactly (n-2+r)(n-2)-2pedges joining vertices in $A \cup R$ to those in $V(G)-(A \cup R)$. Thus

 $|E(G)| = n(n-2) - m(n-2)/2 \ge (n-2+r)(n-2) - 2p + p,$

and this implies that $(r-2+m/2)(n-3) \le 1-m/2$.

Since $n \ge 5$, we have $r \le 5/2 - 3m/4$. Thus, if m = 1, $r \le 1$. Suppose m = 0, so $r \le 2$. Supposing that r = 2, note that $p \le r - 1 = 1$. If p = 0, then $A \cup R$ is an independent set of *n* vertices and Theorem B implies that G is Hamiltonian. Thus $\langle A \cup R \rangle$ has *n* vertices and exactly one edge and, therefore, $G - (A \cup R)$ has exactly one edge. Thus G is Hamiltonian by Theorem B if $n \ge 6$. If n = 5, the lemma follows from Theorem C.

Let $D = A \cap B$ and let $X = V(P) - (A \cup B \cup C)$.

Lemma 5. If $n \ge 5$, then $X = \phi$.

Proof. Clearly $|X| \le 2-m$. Suppose that $X = \{x, y\}$ and note that x and y are consecutive in P. Thus P contains the subpath c, b, x, y, a, c' where $\{a\} = A - B$ and $\{b\} = B - A$. If both x and y are adjacent to vertices in D, then we can easily find a Hamiltonian cycle in G. If x is adjacent to no vertex of D, then $\langle B \cup \{v, x\} \rangle = H$ has n vertices and one edge and this implies that G - V(H) has one edge. However, G - V(H) has the subpath y, a, c', which is a contradiction. Likewise if y is adjacent

to no vertex of D, then $\langle A \cup \{v, y\} \rangle$ has only one edge and this leads to a contradiction. Thus $|X| \neq 2$.

Suppose that $X = \{x\}$. If m = 0, note that |A - B| = |B - A| = 2. Let $A - B = \{a, a'\}$ and $B - A = \{b, b'\}$, where c, b, x, a, c' and b', a' are subpaths of P. G is Hamiltonian if edges ab' and a'b are both in G. If ab' is not an edge of G, then $\langle A \cup \{v, b'\} \rangle = H$ has n vertices and one edge while G - V(H) contains xb and bc; this is impossible. Likewise, if a'b is not an edge, then $\langle B \cup \{v, a'\} \rangle = H'$ has n vertices and one edge while G - V(H') has edges xa and ac'; again this is a contradiction. Thus $|X| \neq 1$ if m = 0. If m = 1, then $\langle A \cup B \cup \{v\} \rangle$ has n vertices and at most one edge. If $\langle A \cup B \cup \{v\} \rangle$ has no edge, then $n(n-2) \leq (n-1)(n-2)$, which is impossible. Otherwise, $n(n-2) - 2 \leq (n-1)(n-2)$, whence $n \leq 4$. Thus $X = \phi$.

Theorem 2. If $n \ge 4$ and G is a 2-connected (n-2)-regular graph with 2n or 2n-1 vertices, then either G is Hamiltonian or G is the Petersen graph.

Proof. If G is not Hamiltonian, then $n \ge 5$ and $V(P) = A \cup B \cup C$. Also, |V(P)| = 2n - 1 - m and |A - B| = |B - A| = 3 - m. Let $A - B = \{a_1, \ldots, a_{3-m}\}$ and let $B - A = \{b_1, \ldots, b_{3-m}\}$, where $a_i b_i$ are edges of P for $i = 1, \ldots, 3 - m$ and they occur in cyclic order on P.

Suppose m = 0. If $\langle (A \cup B) - D \rangle = H$ has at least seven edges, then we can easily find a Hamiltonian cycle in G using edges $a_i b_j$ and $a_j b_i$ for some $i \neq j$. Thus H has no more than six edges, and this implies that $\langle A \cup B \cup \{v\} \rangle$ has n+2 vertices and no more than six edges. Thus $(n+2)(n-2)-12 \leq (n-2)(n-2)$, or $n \leq 5$. But if n=5, the theorem follows from Theorem C. The case m=1 is similar.

If n = 4, G is a 2-connected 2-regular graph, i.e., G is a cycle. The theorem follows.

ACKNOWLEDGMENT

The authors wish to thank the referee for substantial suggestions which significantly reduced the length of this paper.

References

 A. T. Balaban, R. O. Davies, F. Harary, A. Hill, and R. Westwick, Cubic identity graphs and planar graphs derived from trees. J. Austral. Math. Soc. 11 (1970) 207-215.

- [2] M. Behzad and G. Chartrand, Introduction to the Theory of Graphs. Allyn and Bacon, Boston (1971).
- [3] J. A. Bondy, Properties of graphs with constraints on degrees. Studia Sci. Math. Hung. 4 (1969) 473-475.
- [4] J. A. Bondy and V. Chvátal, A method in graph theory. Discrete Math. 15 (1976) 111–135.
- [5] V. Chvátal, On Hamilton's ideals. J. Combinatorial Theory 12B (1972) 163–168.
- [6] G. A. Dirac, Some theorems on abstract graphs. Proc. London Math. Soc., Ser. 3, 2 (1952) 69–81.
- [7] L. Gordon, Hamiltonian circuits in graphs with many edges. Unpublished report, Sydney University, Australia.
- [8] M. Las Vergnas, Sur une propriété des arbres maximaux dans un graphe. C. R. Acad. Sci. Paris 272 (1971) 1297–1300.
- [9] J. Moon and L. Moser, On Hamiltonian bipartite graphs. Israel J. Math. 1 (1963) 163-165.
- [10] O. Ore, Note on Hamiltonian circuits. Amer. Math. Monthly 67 (1960) 55.
- [11] L. Pósa, A theorem concerning Hamiltonian lines. Maygar Tud. Akad. Mat. Kutató Inst. Közl. 7 (1962) 225–226.