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For each natural number n, let noOr) = II, and if a,(u),..., a,()$) have already 
been defined, let ai+l(n) > o,(n) be minimal with (ai+l(n), a,,(n) ... a,(n)) = 1. Let 
g(n) be the largest o,(~I) not a prime oi the square of a prime. We show that 
g(n) ,- II and that g(n) IJ II + cn’/* lo&r) for some c > 0. The true order of 
magnitude of g(n) - n seems to be connected with the fine distribution of prime 
numbers. We also show that “most” U,(II) that are not primes or squares of 
primes are products of two distinct primes. A result of independent interest 
comes of one of our droofs: For every sufficiently large n there is a prime p < n”’ 
with [n/p] composite. 

1. INTKODUCT~~N 

In a recent paper [3], one of us (P.E.) considered the following family of 
sequences. For each natural number H, let a&n) = n, and if a,,(n),..., ni(tt) 
have already been defined, let LZ,+~(R> > a,(n) be minimal with 

So, for example, if n = 31, then the sequence is 

31, 32, 33, 35 ,<.., 

where the succeeding terms, other than 13?, l?, 192, 232, and 29”, are just 

the primes. The following facts were established in [3]: 

1. Every prime p > tl appears in H’S sequence and every Ui(/l) > n2 
is prime. For every prime p, there is a unique member of II’S sequence 
divisible by p. Denote this number by n’J’)(l~). 
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2. Let fO(n) denote the number of ai which are squares of primes 
and letf&) denote the number of remaining composite a,(n). Then 

0 < +> - 7w2 - 1) - h(n) < fi(n), (1-l) 
0 <f*(n) < n(n*/2). U-2) 

Hence, fo(n) = x(n) -I- 0(7r(@)). 

3. The largest n for which every ai( i > 0, is a prime power is 
n = 70. 

Also stated without proof in [3]: 

4. For all sufficiently large n, some ni(n> with i > 0 is the product of 
two distinct primes. 

In addition, the following two problems were raised in [3]: 

5. Can one do better than (1.2) in estimatingf,(n)? 

6. For n > 70, let gl(n) denote the largest ai(n) which is not a prime 
power. Is n(n) - n? 

In this paper we deal with these and related questions. In particular, 
relevant to (4), we show that 

$2(n) = 7r(n*/2) + 0(7r(n’~“)), (1.3) 

whereJ2(n) denotes the number of a,(n) which are products of two distinct 
primes (Section 2). We also show that n = 272 is, the largest n for which 
no a,(n), i > 0, is the product of two distinct primes (Section 5). 

Sincef?(n) <fl(n), (1.2) and (1.3) show that 

f*(n) = T(r7’/2) + o(Tr(rz”3)), (1.4) 

which deals with (5). Note that (l.l), (1.4), and the fact that So(n) < 
I - 7~(fG/~ - 1) - f2(n) give 

fo(n) = %+I) - 27r(n’9 i- 0(7r(n’/3)). 

For each II > 4, let 

g(~) “2’ max(a(“‘(n): primes p < rrl/*). 

Then g(n) is the largest a,(n) that is neither a prime nor the square of a prime. 
In our opening example we have g(31) = 35. Note that gl(n) < g(n) for all 
n > 70. We show that g(n) - n, which answers (6) affirmatively (Section 2). 
We conjecture that gl(n) = g(n) for all sufficiently large n. In fact we con- 
jecture g+) is the product of two distinct primes but for finitely many n 
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(Section 6). Our numerical work suggests that 118 is the largest value of }I 
for which g,(n) < g(rz) and that 1478 is the largest value of II for which 
g(n) is not in the form pq. We prove that g(n) < 2n for all but 10 exceptional 
values of n, the largest being n = 371 (Section 5). 

Many of these problems seem to be intimately connected with some deep 
questions in the distribution of primes. For example, we show a relationship 
between g(n) - )I = o(n) and the order of magnitude of the error term in 
the prime number theorem (Section 2). in addition, the above-mentioned 
question on whether every sufficiently large g(H) is in the form p9 is related 
to the order of magnitude of the difference between consecutive primes. 

We show how a certain result of Selberg [13], which says that the distribu- 
tion of primes in very small intervals is “usually well-behaved,” shows that 
the set of n for which some ai(n) is a prime power with exponent at least 3 
has density 0 {Section 5). We use a new result of Warlimont [ 151 that is 
similar to Selberg’s theorem to show that the set of values of g(n) has 
density 0 (Section 6’). 

We show that the asymptotic density d(t) of the set of u for which 
II + t = d&z) for some i exists and that d(t) - ~-~/log t, where y is Euler’s 
constant (Section 4)‘ The proof uses a result of Hooley [7] on the mean 
square of the differences of the members in a reduced residue system module 
an integer. 

We prove that (g(n) - n)/nl~z - co (Section 3). Our proof uses the upper 
bound obtained from Brun’s method for the number of representations of 
a number as a sum of two primes. 

Many of the theorems, arguments, and conjectures of this paper carry 
over almost intact to the family of sequences {&(N)), where b,(n) = 
n > b,(n) > **. > b;(n) and bi+I(~) < b,(n) .is maximal with (bi+l(r~), 
b,(n) **. hi(n)) = I. This family of sequences is studied in a forthcoming 
paper of Eggleton, Erdos, and Selfridge. Some other somewhat related 
papers are those by Erdijs and Selfridge [4, 51 and Eggleton ~1 ul. [Z]. 

2. UPPER BOUNDS FOR g(rr) 

THEOREM 2.1. g(n) - n. 

Proof. Let E > 0 be arbitrary and let p < fr1j2 be a prime. We now show 
that if 

r((l -I- f) dp) - edP) a 4Pl - 4PKl + cl) + 4f”q (2-l) 

holds, then u(P)(~r) < (I + l )n. Let 9, ,..., q$ be the primes in (rr/p, (1 -t- E) ,r/p]. 
p1 ,.,., pI the primes in (p/(1 Y- c), p), and r1 ,.,,, I’,~ the primes below p*:2. 
Then (2.1) implies s > I -i II. For I .< i -$ s, consider pq, . If p9) = CZ(P)(II), 
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then a(P)(n) < (I + 6) 11. SO say no pq< = a”“(n). Then for each i, there is a 
numberj(i) with Oj(<)(n) < pqf and (a,(i)(n), pqi) > I. If p ] rrjc,)(n), then 

ayn> = a,(,)(n) < pqi < (1 t c) n. 

SO say no aj~~~(n) is a multiple ofp. Then qi 1 ajci,(n) for each i. Now ajci)(n)/qi E 
(p/(1 + E), p), SO if Oj(;)(t7)/qi is a prime, it is one ofp, ,..., pI . If it is composite, 
it is divisible by one of rl ,..., rll . Hence there can be at most t + u choices 
for a,(i)(n). But i +-j(i) is one-to-one, since if qiqi, / nj(<,(n), then ajc,,(n) >pyi , 
a contradiction, Thus there are at most t + II choices for i, contradicting 
s -- I -I-- I/. Hence if (2.1) holds, n”‘)(w) < (1 -k Ejt7. 

Thus d/l> d (1 + > .z n will follow if we can prove (2.1) holds for every 
prime p < /7’/“. Now by the prime number theorem we have 

for all sufficiently large n. We also have 

4P) - n(p/(l -I- e)) < (E - 42) Plbg p 

< (E - $/2) n112110g $I*, 

7T(p’*) < p112 < nrbt < ~~tz’/~/(4 log d/“-) 

for all sufficiently large p and n. Hence there is a p. so that (2.1) holds for all 
sufficiently large n and all p with p,, < p < n112. But for p <p. , the right 
side of (2.1) is bounded, so (2.1) holds for all sufficiently large n and all 
p < nlJ”. As we have seen this implies that a(p)(n) .< (1 + E)n, and so 
s(n) < (1 + E)tf. 

We recall now that fI(n) is the number of a;(n) that are products of two 
distinct primes. We have the following. 

COROLLARY. For each E > 0, 1’/tcrcJ is at1 ilo so r/tat for a/i II > n,,(e), 

0 < n(n’in) -f.(n) < (3 + E) n(n*‘3). (2.2) 

Prooj: Let Us be such that for all ?I > nI(c), g(n) < (1 + c)n. Let 
11 > nl(c). For each prime r < x1/3, we have a(‘)(n) divisible by no more 
than two primes in I = ((I + ) E tt1r3, n1/2], since r((1 + C) n1/3)3 > rn > 

‘For) > a”‘(n). Hence with at most 2r(t71!3) exceptions, for every prime p E I, 
a(PJ(t?) is not divisible by any prime r < n*i3. Then for these p, u(p)(n) is the 
product of two distinct primes. Indeed, 

afP)(n)/p < g(n)jp < (1 4- E) n/p < tW, 
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so that a(P)(n)/p is prime. Thus (2.2) now follows from the fact that 
7r((l + E) n1i3) < (1 + C) 7+P) for all sufficiently large n. 

In Section 5 we show that the largest n for which no ai( i > 0, is the 
product of two distinct primes is n = 272. Now, however, we return to the 
topic of this section. The following theorem shows we can get good upper 
bounds for ~(p)(n) provided p “keeps its distance” from n112. 

THEOREM 2.2. For every 8 > 0, E > 0, there is an n,(6, E) such that for 
all n > n,(6, 6) and primes p < (1 - S) n1f2, we have 

a(P)(n) < n + p(n/P)7/12+r < n + r~~~/**+~. (2.3) 

Proof. Let 7 = (n/p)- 5/12+r. It follows from the proof of Theorem 2.1 
that (2.3) will hold ifwe have 

7t.W + 4 4~1 - +dp> 2 T(P) - n(p/U + 7)) + ~(~19. (2.4) 

We now use a recent result of Huxley [8] that, when combined with results 
of Hoheisel and Tchudakoff as reported by Ingham [9], yields 

77(x + xy - T(X) - P/log x as x-+cc (2.5) 

if B > 7/12. Now (I + T) n/p = n/p + (n/p)7/12+‘, so that (2.5) implies 

dU + d n/p> - +dp> - M(P hz(n/p>> as n/p-+ a3. 

Then using p -C (1 - S) rz1i2, we have 

4U + 4 NP) - WP) > (1 - WI MP lo&/p)) (2.6) 

for all n > n,(6, c). Now using (1 f T)-’ > 1 - T and (2.5), we have 

T(P) - T(Pl(l -I- TN G n(P) - N - T)P) - TPl@ P as p-+co. 

Thus since p < (1 - S) nIla, we have 

T(P) - n(plu T 7)) < (1 + 8) Tpilog P < (1 - 8) MP log(nlP)) (2.7) 

for all p > ~~(6, E). Now using the trivial estimate n(~*/~) < p1j2 < rzl/l 
and the fact that w/p > r~‘/~*, we have from (2.6), (2.7), 

41 + ~1 4~) - +dp) - T(P) + 7QlCl i- 7)) - ncP”2) 

l=- 7 M4P Mn/PN 

for all n > ~(6, c), p > ~~(6, 6); (2.4) foltows for these p, n. Now for 
p < p,(S, r), the right side of (2.4) is bounded. Hence it follows from (2.6) 
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that there is an ~(6, E) such that for all n > ~~(8, c) and allp < (1 - 8) nij2, 

we have (2.4). 

Remark 2.1. It is known that if the Riemann hypothesis holds, then 
(2.5) is true for all 6 > -? . t. Hence on the Riemann hypothesis, we have: 
For each 8 > 0, G > 0, there is an rr,(S, E) such that for all II > rt,(8, E) 
and ail primes p ( (1 - S) n1j2, 

dp)(n) < n + p(n/p)l’y+-c < n + n3t4~~. P3) 

We remark that even if (2.5) is true for some 0 < 4 , we cannot by our 
method improve (2.8) very much. This is due to the term n(~9) in (2.4) 
which would no longer be negligible. 

THEOREM 2.3: For each E > 0 there is tin no(~) SO that for all n > n,(c) 
andprimesp < n5/17-c, we have u(*)(n) < pq, where q is thefirstprime above n/p. 

Proof By (2.5) we have q < n/p + (njp)7/12+f, all n > no(~). Then by a 
simple calculation we have 

pq - n < p(r~/p)‘I’~?f < n/p < q. 

Hence (p - q) q < n, so that q divides no a,(n) < pq. Thus a(p)(n) < pq. 

Remark 2.2. ff the .Riemann hypothesis is valid, the conclusion of 
Theorem 2.3 is true for all primesp < n 1/3--r. Moreover, from the conjecture 
of Cramer [l] (in slightly weaker form), 

where pn denotes the nth prime, we have the conclusion of Theorem 2.3 
true for all p < cn’/2/log n and all 17 > I, where c > 0 is an absolute constant. 
Thus for these p we would have 

a’“‘(n) - n < p log’ n < n1J2 log n. (2.10) 

We now turn to an improvement of Theorem 2.1. Let E(x) be a concave 
function for all .Y > .x0 such that 

I d$ - /i(x)\ -< E(s) for all s > x0. 

We omit the details, but following the proof of Theorem 2.1 for the case 
p > rr1iz/2 and the proof of Theorem 2.2 for the case p < n’12/2, we have 
the following. 
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THEOREM 2.4. Given E as rrboue, there is a cotwtatlf c such fhal for all 
n > 4 we have 

g(n) < n + Cn3qog ny (E(n”*))““, 

Remark 2-3. Since it is known [14, Chap. V] that we can take 

E(x) = clx * exp(-&log x)316 [loglog x)+~), 

where c1 , c2 > 0 are constants, we have for all n > 4 

g(n) < n + cp * exp(--c,(log n)3/s (loglog n)-lj5), (2.11) 

where cD , cq > 0 are constants. If the Riemann hypothesis is true, it would 
follow that we can take E(x) = cx112 log x, so that in this case we would have 

It is known [lo] that 

&I - II < n7ja log II. (2.12) 

E(x) # o(.# logloglog x/log X), 

so no improvement in the error term in the prime number theorem could 
establish by our methods that g(n) - n < n7/S. 

Remark 2‘4. Although we cannot do better than (2. II) for all n, one 
might try to do better for infinitely many II. In particular, is 

liy+$f log(g(/l) - n)/log II < 1 ? 

At present we cannot answer this question (see Remark 3.2 and Fig. 1). 

Remark 2.5. Let Gtl be the set of all subsets A of the natural numbers 
such that the terms in A are pairwise relatively prime and such that each 
prime divides some member of A. For each n > 4 let 

g(A, n) “Lr maxi, a - N 1: a E A and 3 prime Q < u’/~ 3 1) i 0). 

G(rt) z’min{g(A, it): A f flj. 

For each II, let A(nj == [a,,(u), a,(/&...:. Then A(,?) E d and g(A(n), n) -= 
g(n) - 11 if II > 4. Hence g(n) - II > G(n). Thus from (2.11) we have 

C(n) < n * exp( --c,(log ,I)~/~ (loglog I/)-‘:“). (2.13) 

We cannot do better than (2.13), not even for infinitely many 11. From 
(2.12) we would have G(ir) < f17is log u if the Riemann hypothesis holds. 
But we conjecture that G(n) < IG”?+’ for every E > 0 (compare with Remark 
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3.2). Tt will follow from the proof of Theorem 3.1 that there is a constant 
c > 0 such that 

G(n) > cdl” log n 

for all sufficiently large n. 

3. LOWER BOUNDS FOR g(n) 

Because of the many constants in this section, we have numbered them 
C] , L-2 )... . From the corollary to Theorem 2.1 we easily obtain 

g(n) > n + c,n112/log n (3.1) 

for all large n where cr > 0 is a constant. The following short argument 
removes the “log N”: Let E > 0 be small and suppose that g(n) < n i- ~trl/~. 
The set {a(p)(~): p --z R’/~) lies in [II, n -j- ~nl/~) and has cardinality asymptotic 
to a(nll’) (again using the corollary to Theorem 2.1). Delete from this set 
those Q(~)(H) with p < nllQ. The cardinality of the resulting set is still asymp- 
totic to T(H’/?). Also, this set still lies in [n, n + ~nr/~) and its members are 
not divisible by any prime up to n1i4. By Brun’s method, an upper bound for 
its cardinality is c, E N*/log n 1 * 2. Hence we cannot choose E c l/c,. This 
proves that 

g(n) > n + c33n1/2 

for all large n, where ca > 0 is a constant. 
We now show that (g(n) - n)/n1i2 tends to infinity. 

THEOREM 3.1. There is a constnnt c4 > 0 such that for aN large n 

g(n) > n + c4n1:2 log n. 

Prooj: Let n be large. Consider the function 

F(x) = x + [n/x] - [2rW] 

defined for integers x E [I, n1f2). Then F(x) is integer valued and decreasing 
(but not strictly). Say j = I;(.r,,) > F( x0 -/- I), Then define bj = x,, + l/2. 
We have 

x + [n/x] = [27W] + .j for integers X E (bj+l , bj). (3.2) 

Let m be maximal, so that 

n1j2 > b, > b, > 6.4 > b m > n112 - d/3. 
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We note that 

m N n1/6 f b, - b++l N ijn1/4j-112 for 1 ,< j < tn - 1, 

- 6, Q n1/6, b, - n1/2 + n1/a < nl/“. 
(3.3) 

nl/2 

Let E > 0 be small and let t = [E log n]. Assume that g(n) < ?t -t- (t - 1) n1j2. 
We shall show that this assumption leads to a contradiction. For every prime 
p E (n1/2 - n1f3, n112) with p f n, we have 

a(P)(n) = p([n/p] + i) for some i, 1 Q i < f. (3.4) 

We now consider a subset 5’ of these primes: S is the set of primes p for 
which p Y n, a’P)(n)/p is prime, and b, <p < b, . If @(n)/p is composite, 
it is divisible by a prime q -C 2#, so the number of suchp is less than rV. 

Then from (2.5) and (3.3) we have 

i S 1 = (2 + O(1)) tllf3/10g n, (3.5) 

where ) S / denotes the cardinality of S. 
Let 1 <j<m- 1 and suppose p E (bj+l , b,) n S is prime. Then by 

(3.4) we have q = [n/p] + i prime for some i, 1 < i < 5, and so by (3.2), 

p + q = [2n’9 + i + j. (3.6) 

By Brun’s method we have for fixed j, i that the number of primes 
p E (b,+l , b,) for which there is a prime q satisfying (3.6) is at most 

cdbj - bj+J [2n1/2] + i + j 
10g2(bj - bj+& ’ ‘p([2n1’2] -f i + j) ’ 

where c6 is an absolute constant. Hence using (3.3) we have 

, s, < (18 + 41)) c5n1/4 i Tjl [2rW] + i + j 
log2 n ipl j=l j1'254[2n11zl + i +j) a (3.7) 

Similar to the old result of Landau, z8cz l/cp(s) N c6 log X, we can prove 

c +4s> = C6X 4 @log x). 
s-3 

Hence (using m N nlr6) 

m-1 

c 

[2rW] + i + j 

js1 i112(p(Pn1’21 + i + j) 
= (c,m + U(log n))/(nz - 1)‘/2 

+ f f-l .v-3’2 ,& &;~;~]y& c!, 
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(S 
,1/a 

= cgm1i2 -+ 0 y-l12 loglog 11 dy 
1 1 

m-1 

+ + ',,,I2 I (I 

n‘ 

y-lf2 ay + 0 
m1/o y- 

3/2 log 12 dy) 

- 2c,m1J2 . 

Thus from (3.7) we have 

, s , ( (36 + 4)) w,n1’4 i m’,* 
log* n i=l ’ 

so that there is a constant c, with 

1 S 1 < c+W/log2 n Q s,m1/3/log n. 

This upper bound contradicts (3.5) if E is sufficiently small. 
Hence our assumption that g(n) < n + (t - 1) n1i2 is false, and so 

g(n) >, n + (t - 1) n1i2 > n + $-cn’/* log n. 

This proves our theorem. 

Remark 3.1. Using a method similar to the proof of Theorem 3.1 we 
can show that if E > 0 is sufficiently small then a positive proportion of the 
primes in (n1j2 - n1j3, n1r2) do not have a multiple in [n, n + dl*). No 
doubt this is true for a positive proportion of all the primes up to n112. 
That is, we conjecture that for a positive proportion P(E) ofp < n112 we have 
n/p - [n/p] 2 E, where E > 0 is fixed, but small. In fact we conjecture that 
p(e) is continuous, monotonic, and that p(O+) = 1, p(I-) = 0. The same 
should be true if we replace ‘W2” in the definition ofp(E) with ‘trier’ for any c 
with 0 < c < + , The method of proof of Theorem 3.1 also demonstrates that 
for almost all primes p E (n1f2 - nljs, nfj2), we have [n/p] composite. We 
conjecture that, except for o(~(nl/~)) primes p < n112, [n/p] is composite. 

Theorem 3.1 is not best possible for all n. Indeed we have 

THEOREM 3.2. There is a constant c, > 0 such that, for infinitely many n, 
we have 

g(n) > n + c,n112(log n)(loglog n)(loglogloglog n)(logloglog n)-2. 

ProoJ From Rankin [l 11, we know that for each r > ed’, there is a 
sequence of at least 

a(r) d~FC,r(log* r)(loglogIog r)(loglog r)-2 
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consecutive integers, each divisible by one of the first r primes. Let 
m, E [O, P,] be 1 less than the first member ‘of Rankin’s string, where P, 
denotes the product of the first r primes. Then 

(m,, p,> = 1, h, + i, P,) > 1 for 1 < i < Ly(r). (3.8) 

Let p denote the first prime in the arithmetic progression m, (mod P,) 
for whichp > P, . Thenp is either the first or second prime in the progression. 
By a theorem of Fogels [6] generalizing Linnik’s well-known work, there is an 
absolute constant q,, so that p < P$o. Let x be such that if 

n=p2fx 

then P, 1 n and 0 < x < P, < p. Finally, let i be such that cl(P)(n) = p(p + i). 
Since p E m, (mod PJ and P, ] n, we see by (3.8) that i > a(r). Hence, 

g(n) 2 afp)(n) > p2 + pa(r) > n + +N2a(r). (3.9) 

Now note that log P,. - r log r, so that n -C 2pe < 2Pf”lo implies 

r > c,, log n/loglog n, (3.10) 

where cl1 > 0 is a constant. Our theorem follows from (3.9) and (3.10). 

Remark 3.2. Let 

/7(n) “Zf log(g(n) - nyrog n. 

From Theorem 3.1 we have h(n) > p for all but finitely many n. We can show 
that the problem of finding the largest n for which h(n) < 4 is effectively 
computable. We have not rigorously determined this value of n, but our 
numerical work suggests that it is 1331. We have computed h(n) for every 
n < 27,500 and for many other larger values of n. These data suggest that 
n = 4366 is the largest n for which h(n) < 0.6. The largest n we found with 
h(n) > 0.95 was n = 12,834. We cannot prove h(rt) has any limit points 
exceeding $- (compare with Remark 2.4). Ail we know for sure is that all the 
limit points of h(n) lie in [$- , I]. From (2.12) we would have all limit points in 
[+ , Q] if the Riemann hypothesis is true. Let 

Our numerical work suggests that 01 > $- ; perhaps 01 is as large as $ . We 
also believe that j3 is near -2 . For a < x < 8, let 8(x) denote the asymptotic 
density of the set of n for which h(n) < X. We conjecture that 8(x) exists 
for each x, 6(x) is monotonic and continuous, and that S(a) = 0, S(g) = 1. 
In Fig. 1, we have three numerica experiments recorded that may approxi- 
mate the graph of S(x). 
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EXPERIMENT 1. We computed II(~) for every II E (IO”, 2 x 10-l] = II . 
A point (x, y) on the dotted curve in Fig. 1 means that JJ/IO~ of the n E I1 
have II < x. 

EXPERIMENT 2. We computed h(n) for one random rr in each consecutive 
subinterval of length 10 in (105, 2 x IO51 = I?. The dashed curve represents 
the approximate distribution of h(n) for n E Z, . 

EXPERIMENT 3. We computed h(n) for one random n in each consecutive 
subinterval of length 1000 in (106, 2 x 106] = I,. The solid curve in Fig. 1 
represents the approximate distribution of h(n) for n E I3 . 

4. THE SIZE OF n(")(n) FOR FIXED p 

We now say a word about fixed p: Tf p is a fixed prime, what can be said 
about n(“)(o) as n -+ co? If p = 2, we meet with immediate success, for 
&)(nj = n or n + 1. But already for p = 3 we have a difficult problem. 
It is clear from Theorem 2.2 that &j(n) < n +- ~~~~~~~~ for every E > Cl 
and every n > n&c). Moreover if Cramer’s conjecture is true, Remark 2.2 
gives us a(“)(n) - n < log2 n. On the other hand, if II is the product of the 
primes p < .X with p = 2 (mod 3) and if n = 1 (mod 3) then af31(n) > n -+ X. 
This proves there are infinitely many n for which 

d3)(n) > n + c log n, 

where c > 0 is a constant. No doubt this can be improved slightly using a 
Rankin-type result, as in Theorem 3.2. These comments for the case p = 3 
can be generalized easily for any odd prime, 

For each integer t > 0, let N, = P,u) denote the product of the primes 
up to t. Let p be an odd prime. It is possible to determine whether a(,)(,> > 
n + t solely by considering to what class II belongs module pM, . Moreover, 
there is at least one of these classes for which a(P)(n) > TV + t, namely, 
if p 1 n - 1 and n is divisible by every other prime up to f. Hence D(p, t), 
the asymptotic density of the set of n for which a’]‘)(,~) > n + t, exists 
and is positive. In the next theorem we shall in addition insist that II is in a 
fixed residue class modulo p. 

THEOREM 4.1, For each two integers t > 2, n, and each odd pritne p, 

let D(p, t, a) denote the asymptotic density of the set of n a (mod p), with 

u(*)(n) > n + t. Then Ihere is an absolute cotutant c slrch that 

D(p, t, a) < c log’ t/t. 

We shall use the following: 
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LEMMA. There is un absolute constant c’ such that for any y >, 1, t 2 2, 
we haue 

f(Y, t> -=c wx2 NY. 

Here f( y, t) denotes the asymptotic density of the set of n with each n + i, 
0 < i < y, diuisibie by a prime not exceeding t. 

Proof. LetAr==M,andlet l=b,<b,<...<b,(,,=N-1 bethe 
integers in [l, N] relatively prime to N. Say (n + i, N) > 1 for each i, 
0 < i < y. Then every n’ = n (mod N) has the same property, so we shall 
assume that 0 < n < N. It is clear that 1 < n < N - 1, so that there is 
some j with bj < n < bi,, . Hence, bj+l - bj > b,+l - II > y. Thus the 
number of such 11 < N is less than 

c’ &+I - bj -=c ; c’ @t,l - b,Y < I; “(F-l (b,,, - b,)2 < f N(IogIog ~12, 
1=1 

where C’ denotes the sum over all bj+, - bj > y and where for the Iast 
inequality, we use a theorem of Hooley [7] (c” is an absolute constant). 
The lemma now follows, since loglog N - log t. 

We note that Hooley’s is not the best result known on the mean square 
gaps in a reduced residue system. Certain improvements have been obtained 
independently by Hausman and Shapiro [16] and Norton [18], These 
improvements, hobvever, do not appear to be of help in a possible strength- 
ening of the lemma. 

Proof of Theorem 4.1. Since we trivially have D(p, t, a) < 1/p, we may 
assume that t -; 3p. Say a’“J(nj > n -I t. Let m = [n/p] + 1 and let nz f ~7 = 
[(n i I)/JJ]. Then J’ 2 1. Say that for some i, 1 < i < y, m -+ i is divisible 
by no prime up to t. Then a’“‘(n) S; (m -t- i)p f n 4 t, contradicting our 
assumption. Thus by the lemma, 

1 c’ log2 I 
WP, f, 4 -c p 

1 c’ log2 t ( 3c’ log2 t .------<-.---.--, 
J P VP - 2 t ’ 

which proves our theorem. 

Remwk 4.1. Theorem 4.1 implies that for each prime p, D(p, t) < 
cp(log2 t)/!, so that lim,,, D(p, t) = 0. Thus for each E > 0, there is a 
t = !(E, p) such that aO’J(n) .< 17 + t but for a set of n of density at most E. 

THEOREM 4.2. Let d(t) denote the asymptotic density of the set of n for 
which ai = n + t for some i. Then (y is Euler’s constant) 

d(t) - c-‘//log t as f -+ ~3. 
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Prooj: We first observe that whether a,(n) = n + t for some i is deter- 
mined solely by what class n is in modulo A!!, so that d(r) exists. Moreover, 
if (n + t, III,) = 1, then n J- t = a,(n) for some i. Hence 

d(I) > n (1 - l/p) - eeY/log t 
D<l 

by Mertens’ theorem, Now assume that II + t = q(w) for some i. Either 
n + t is divisible by a prime p < t/log3 t or not. For p in the former case 
we have, by definition, a(?)(,?) = II + t. Hence by Theorem 4.1 the asyrqltotic 
density of such n is at most 

Dfv, f - 1, -1) < c log2(t - 1)/(r - 1). 

Then summing over p < r/log3 t and considering II in the latter case, 

c 1ogyt - 1) 
d(r) < - 

t-l ’ 7r h&, + p<$l (I - l’FJ) - -& 
n 

since the first term is O(l/log” t). This completes the proof of our theorem. 

Remark 4.2. Even though Theorem 4.2 shows that d(t)--+ 0 as I -t- co, 
the local behavior of cl(t) is probably irregular. The values of d(f) for 
0 < 1 < II are 1, 1, l/2, l/3, l/3, 21.5, 4/15, 217, 2/7, l/3, 4/15,2/11. 

5. MULTIPLICATIVE PROPERTIES OF THE O,(H) 

Our first goal is to show that n = 272 is the largest n such that ai is 

never the product of two distinct primes for all i > 0. To show this, the 
following result of independent interest will be useful. 

THEOREM 5.1. The set ofnjbr which Q(H) > 2/r is { 10, 27, 5 I, 52, I5 I, 153, 
170, 367, 368, 371). 

ProoJ From the proof of Theorem 2.1 we see that g(n) < 2n will follow 
if for every prime p < S2 we have 

We consider separately the following cases: 

(i) 9tW/lO < p < n1J2, 

(ii) 3N/4 < p < 9n11’/l 0, 

(iii) 3 < p < 3n1j2/4, 

(iv) p < 3. 
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We suppress the details, but using the estimates 

s 
logx - i 

< r(x) for all x > 67, 

3 
77(s) < -A-- (1 + ____ 

log x 2 log x 1 for all x > 1, (5.3) 

due to Rosser and Schoenfeld [I2], we are able to show that (5.1) holds 
for all p in case (i) if II > 13,111, all p in case [ii) if n Z 3476, all p in case 
(iii) if II 2 3 I I, and all p in case (iv) if n > 17. Hence, we conclude g(n) < 2n 

for all n > 13,l I I. A computer check up to this point reveals the 10 values 
of II stated in the theorem. 

TIIEoKI;M 5.3. The .rct of n for which no a,(n), i > 0, is the product of 

two cli.rtinc/ primes i.r { 1, 2, 3, 4, 6, 7, 8, 1 I, 12, 15, 17, 18, 22, 23, 24, 29, 30, 
35, 39, 43, 44, 69, 70, 103, 104, 119, 268, 271, 272). 

Proof. Let S(/l) denote the set of primes p E ((2n)‘j3, n1j2] such that 
u”‘)(n)/r, is composite. By Theorem 4.1, for each n > 371 and each p E S(n), 
we have c~“‘)(IJ) divisible by a prime r < (2n) 1/3, Moreover, aI”) is divisible 
by at moqt one other prime in s(n). Hence 

i S(n)i -< 27r((2n)‘i3). (5.4) 

Now if ill, pz are two primes in ((2n) 113, n112] and not in S(n), then both 
Q(P~)(JI), c~[‘~+z) are the product of two distinct primes and are unequal. 
Hence, one is an a,(n) for i > 0. Thus we would like to show two such primes 
exist: that is, that 

n(n’/2) - 37r((Zn)‘/3) > 2, G.3 

using (5.4). From (5.2) and (5.3) we have (5.5) for all n > 108,037. Using 
a table of primes, we have (5.5) for all 17 2 26,569. Hence for these n, there 
is some u,()l), i > 0, the product of two distinct primes. A computer check 
for !I < 26,569 reveals the 29 cases reported in the theorem. 

Rer~tark 5.1. From the corollary to Theorem 2.1, the number of a,(n) 

in the form pg is asymptotic to r(n’f*), and hence tends to infinity. Thus for 
each k. the set of n for which fewer than k of the a,(n) are in the form pq is 
finite. In fact, the above proof shows that for any such n > 371, 
X(/G/~) - 37r((2!~)‘/~) < k. The set of such FI can then be computed using 
(5.2) and (5.3). 

It has been conjectured by Erdijs [3] ( see also [4]) that for every k and all 
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sulKciently large n, there js a square-free integer 177 with exactly k prime 
factors such that 

n < I77 < n -I- p(m), (5.6) 

where p(m) denotes the least prime factor of tn. Since every m satisfying (5.6) 
must be an ai( this conjecture would imply that for every k and all sufli- 
ciently large n there is some Qn), i > 0, that is the product of k distinct 
primes, Another conjecture is that for all sufficiently large 17 there is some 
Q(H), i > 0, composed entirely of primes below n1/2. Much weaker than these 
conjectures is this: For all sufficiently large ?I there is some a,(/!>, I’ > 0, 
not in the form p, p2, or pq. We tested this last conjecture numerically and 
found there are fairly large choices for n, where every ui(j7), i > 0, is in the 
form p, p2, or pq (e.g., n = 362,610). We also found that n = 1,021,4X2 
has no a,(n), i ; 0, divisible by three distinct primes. 

Tn a somewhat different direction, we conjecture that the set of II for 
which every ai( i > 0, is square-free or the square of a prime is infinite. 
In fact we think that this set has positive asymptotic density. Our numerical 
work suggests this density may be larger than l/10. If true, this conjecture 
would imply that the set of n for which every IN satisfying (5.6) is square-free 
has positive. lower density. We can, however, give a direct proof of this last 
statement and in fact show the density exists, but we do not present the 
details here. 

Another conjecture supported by our calculations is that there are infinitely 
many n for which no Q,(n) < g(n) is the square of a prime. 

For each n, let M(n) denote the set of 1~ satisfying (5.6). As a corollary 
to Theorem 3.1 we have that for all large n there is a.prime p < n’/” with 
p +‘n and p dividing no member of M(n). The analogous statement is also 
true if we replace (5.6) with the inequality n - p(m) < m < n. 

We now prove the following. 

THEOREM 5.3. The number of n < x for which some n,(n) = p3 for SOIUE 
prime p is O(x/log x). 

ProoJ We shall use the following result of Selberg [13]: If Q(s) is a 
positive increasing function with 

1$-i&f log @(x)/log x > 19/77, 

then “(y + Q(y)) - n(y) - @(y)/log y for all values of y < x but for an 
exceptional set of measure O(x/logx). That is, for each E > 0, the set of 
y < x for which 

I 4Y + Q(Y)> - V(Y) - @(YYk Y ! z 4YYbY 

is O,(x/log x). 
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Let 5’ be the set of n < x for which 

Then for each 11 E S, we have 

[(n - 1)2/3, n2/3] C { 4’: 0 f I’ ,< xzj3, n( L’ -i- 6~“~) - c(y) < 4~‘12/log y + l}, 

so that by Selberg’s theorem, we have 

A simple calculation then shows the number of II ES is O(.u[log x). Hence 
except for at most O(x/log x) choices of n ,< x we have 

r(n2i3 + 60) - n(n213) > 6n1J3/log n. 

Another calculation shows that except for O(x/log x) choices of n < x, 
there are no primes in the interval [n113, nt13 -+- 31. 

Let E > 0 be small and let pi < a** <p? denote the primes in [n1j3, 
(1 A- E) W). By Theorem 2.1, if p is another prime, then alp)(n) # p3. 

Let 41-c an* < q1 be the primes in (n *f3, n2J3 + 60). By the above con- 
siderations, except for Q(x/log x) choices of II < x, we have 

Now 

p1 > n1f3 + 3 and t 3 6rii13/log n. (5.7) 

qt < n213 + 6n1f3 < (nlia + 3)* < p12, 

so that each pLqt < pip12 ( pi3. Hence to show no dv)(n) = p3, it will 
suffice to show each &PI)(~) & piqr . But if alJ’*)(n) > piqt , then each 
a’“))(n) < p,ql . Thus each &‘)()I) is divisible by a prime beIow pi . No 
&ill(n) is divisible by a q,’ withI #j. Hence 

“(d/3) + i > t. 

But “rQ~l/~) N 3n1iR/log it and i S s N 3cn1/3/log II. Thus, we have contra- 
dicted (5.7) if II is sufficiently large. 

Remark 5.2. If Cramer’s conjecture (2.9) is true, then Theorem 5.3 
can be considerably strengthened. Indeed if some a,(n) = p3, then Theorem 
2.1 and (2.10) imply n113 < p -< /t1/3 + U(n-*l” log2 n). Hence for all suffi- 
ciently large n there would be at most one u,(n) == p3. Moreover the number 
of n & x with such an a,(n) would be 0(x2/3 log x). 

THEOREM 5.4. There is a constant c > 0 such fhat the rruntber ofn < x 
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for which som ai = pk for .rome prime p ad sunle integer k > 4 is at 
most .~~-~jior’ all suftYcienfisv large x. 

Proof. If a(p)(yI) =pk where h- Z 4, then by Theorem 2.1, we have 
p < 2n1t4 for all large n. Then by Theorem 2.2, we have 

n < pk = a(~)(n) < n $ ~711/1Gtr 

for all n > n,,(e), Then since k > 4, we have for n > q,(e), 

n’lk < p < nit’: + n-l/lOfca (5.8) 

Since k < log n, a simple computation shows that the number of II < x 
for which some prime p satisfies (5.8) for some integer k is at most x15/1G+D(1). 

6. THE NUMBERS g(/r) 

In this section we shall look at the distribution of the numbers g(n) as well 
as their multiplicative properties. 

THEOREM 6.1 j The number of values ofg(n) -< x i.y O(x/log x). 

Proof. We shall use the following recent result of Warlimont (151: 
Let pm denote the mth prime and let c/, ==P,~+~ - p,,, . Then there is an 
absolute constant K > 0 such that for all E > 0 we have 

The actual value “g” does not appear in Warlimont’s paper, but we obtain 
this number by using Huxley [S]. We shall apply this result with c = l/12, 
so let K/12 = c. Then 

fi,, Q e-c. (6.1) 

Let p be an arbitrary prime. From (6.1) we immediately have that the 
number s,(x) of n Q x for which there are no primes in the interval [n/p, 
n/p + (n/p)*‘“] satisfies s*(x) <p(x/~~)‘-~ uniformly. Let c’ > 0 satisfy 
c’ < c/(1 + c) and c’ < 5/17. Then 

,J s,,(x) < x’-c’“‘(‘+c) < s/log s. 

So we may assume that if n < A-, p < s”, there is a prime q E [U/P, n/p I- 
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(n/~)‘/~]. Theorem 2.3 then implies for each such n and each prime p < UC’, 

ayn> < n + p(n/p)‘~” < n + N’ < g(n), 

the last inequality coming from (3.1). Hence excep’t for O(x/log x) choices of 

n < x we have g(n) not divisible by any primes p < n”‘. Since n < g(n) < 211 
for large /I, our theorem now follows. 

If g(n) is not in the form pq, then it is divisible by a prime r ( g(n)li3 < 
(2n)‘j3 for II > 371 (using Theorem 5.1). Suppose that Cramer’s conjecture 
(2.9) holds. Then by (2.10) we have a(?)(n) - n << n1i3 log2 n. Then (3.1) 
contradicts U(~)(U) = g(n) if n is large. Hence Cramer’s conjecture implies 
that all but finitely many values of g(n) are products of two distinct primes. 
Moreover, if the prime factorization of g(n) is pq where p < q, then (2.10) 
implies that if p < IZ’/~/IO~~ n, then g(n) = U(P)(~) < n + cn11z/log2 n 
again contradicting (3.1). Hence p 3 n1/2/log4 n. Then by Theorem 2.1 
and a simple computation we find that Cram& conjecture implies the 
number of g(n) < x is 0(x loglog x/log2 x). 

For the numbers below 27,500, the largest value of g(n) not in the form 
pq is 1519 = 72 * 31. We conjecture that 1519 rg(l478) is the largest 
such value of g(/z). We cannot, however, even prove that g(n) is infinitely 
often in the form pq. We also conjecture that the ratio of the two conjectured 
primes in g(n) approaches 1 (or, at least, is bounded). 

From the proof of Theorem 6.1 we have the following: There are positive 
constants E and N such that for all large x there are fewer than x1-* choices 
of n < x for which g(n) has more than N prime factors. Indeed, we just 
choose N = 1 + [l/c’]. We are not sure what the exact value of K is in 
Warlimont’s theorem. If this value of K were large enough we could prove 
the above statement for N = 2 thus obtaining infinitely many g(n) in the 
form ~4. Also if K were large enough we could improve the estimate in 
Theorem 5.3 to xl-+. 

For each II, let Y(U) be the number of integers m with g(m) = n. Then 
from Theorem 6.1, we have r(n) = 0 on a set of density 1. Are there infinitely 
many II for which r(n) = l? Our numerical data suggest the answer is yes, 
but that these n have relative density 0 among all n for which &I) > 0. 
In fact, our data suggest that 1 is the second most popular nonzero value 
for y, the most popular being 2. 

Theorems 2.1 and 6.1 imply that y(n) is unbounded. Our numerical 
work has uncovered some values of n for which r(n) is very large. For 
example, ~(2623) = 190 and ~(23,381) = 514. We conjecture that 

c = lic+Fp log y(lr)/log I? > 0; 

perhaps c > + . We note that (2.12) implies that on the Riemann hypothesis, 
c<_<f. 



RELATIVELY I’RIXIC SLQUENCES 471 

7. ADDITIONAL C~MMINT~ 

Let P($ denote the largest prime factor of an integer II > 1. For each )I, 
let C(U) denote the set of r(il,(n)j for all i > 0 such that n,(n) is not a prime 
nor a square of a prime. Then for n :> 30, C(n) is not empty. There is a 
positive constant c and an no such that 

max C(n) >a cn2i3 for a11 n > jr0 , (7.1) 

where, of course, max C(n) denotes the largest member of C(n). lndcetl, 
ii” E > 0, it follows from the corollary to Theorem 2.1 that for al1 large II, 
there are primes p < (3 + e) n’lS with n(J’)(n)//r prime. Hence, c can be 
taken as any number less than i, . We can prove that c can bc taken a little 
larger, but we cannot show max C(tl)/tP/” -* co. It is an easy conscquencc or 
Theorem 2.1 that for all suficiently large II 

max C(n) < (n -!- I )/2. (7.2) 

Equality holds for all sufficiently large II of the form 2p - I, where p is 
prime. flowever, if n is the product of the first k primes, then as Ii -+ Ye, 

max C(jr) -< (1 -: o( 1)) n/log II. (7.3) 

We do not know how to narrow the gap between (7.1) and (7.3). 
In Section 5 we conjectured that for all sufficiently large t7, there are some 

a,(n), i > 0, composed entirely of primes below nl/‘; that is, min C(G) < n’ie. 
We now conjecture that for every E ‘> 0, there is an tIU(c) such that 

min C(t7) < tzc for all II > 11Jt). (7.4) 

Perhaps it is possible to prove (7.4) for almost all 17, but we cannot quite show 
this. It is easy to see that for each prime p, there are infinitely mnny II’ for 
which min C(n) = p. However, if p2(n) denotes the second smallest member 
of C(n), then 

J%(n) - cfz as n-+c.o. (7.5) 

Indeed, let K be large. Tfp,(n) < K, then there are 0 < i < j with Uj(!7) < S(H) 
and P(Ui(n)) < K, P(Qj(/t)) G K. From a result of Mahler, for each E > 0, 
there is an n,(K, e) such that for all n >- ,r,(K, E), a,(n) - a,(,?) > nl-c. 
But from Theorem 2.2, aj(n) - ai < M I9 /“. ‘tr. Then for small E we have a 
contradiction. Thus for II > ?r,(K, c), pp(n) > K, 

Now let s(n) be the largest a;(n), i > 0, not the square of a prime but not 
square free. In Section 5 we conjectured that S(U) does not exist for a positive 
density of n. Now we conjecture that the upper asymptotic density of the set 
of n for which s(n) > n + I tends to 0 as t --+ co. 
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In another direction, we conjecture that all sufficiently large integers HI 
are of the form g(n) - n. In fact this may be true for every nonnegative 
integer m. We have verified that every m in the interval [0, IOOO] is so 
representable. We cannot even show that such nz contain a positive density 
of integers. 

WC now say a word about ai(lt) for fixed i. Clearly ai = n $- i for 
i = 0, 1 for all n. It is not diflicult to show az(n) = n -i-p where p is the 
least prime which does not divide ~1. Moreover, if n is odd, then a3(n) = 
H-l-1 -L Q, where 9 is the least prime that does not divide n + 1. If n is even, 
we do not have a simple formula for u.JN), but we do note that a&) < n + p2 
and that equality can hold for every p and infinitely many n. We conjecture 
that for every fixed i, 

a,(n) < II -i (1 + O(l)) log n as n 4 @. (7.6) 

By the above comments we have (7.6) for i = 0, I, 2 and for i = 3 in the 
case II is odd. We note that from recent work of Iwaniec [17] we have 

a,(n) .< N + ci2 log2 tr, 

where c is an absolute constant. Finally we conjecture that iffk(/r) is the 
least integer larger than n + k, with (J$-, (n + i), fk(n)) = 1, thenf,(n) < 
II -+ (1 -+ o(l)) log ~1 as n --r uj, We note that if we ignore a sequence of n 
of density Ed (where Ed -+ 0) we have Sk(n) = F,(n), where F,(n) is the least 
number larger than n + k and relatively prime to k!. Furthermore, except 
for density Ed choices of n, F,(n) < rr -/- k + clog k. 

It is clear that a,(n) - n N i log i for fixed n as i -+ co. It might be 
interesting to determine for which range of i, n this result becomes true. 

8. PROGRAMMING NOTE 

This is an abstract of the computer program used for the majority of the 
results in the paper “On a Class of Relatively Prime Sequences,” by Erdiis, 
Penney, and Pomerance. The heart of the program is the construction of the 
integer ~~+~(,r) mentioned in the Abstract and on the first page of the paper 
itself. We remind the reader that for a given natural number n, we put 
aO(n) = n, and if a,(n),..., a,(n) have been defined, then ai+l(n) is the least 
integer exceeding a,(n) that is relatively prime to all the previously constructed 
terms aO(n),..., a,(n). 

The results of the paper require the computation of no term of the sequence 
beyond S(H), the largest ai that is neither prime nor the square of a prime. 
Tn addition, no prime members of the sequence need actually be computed. 
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It is easy to see that in the finite sequence actually computed, each prime 
p < nl/* will appear as a factor of at most one term of the sequence, and that 
terms of the sequence not divisible by such primes will be squares of primes 
q > n1/2, 

The program used takes advantage of. these observations as follows. 
Suppose that n is given. Note that we always have a, = n + 1. Initially 
store the primes p < nllz in array A. Move to array B those primes in A 
that are divisors of n or of n + 1, The other prime factors of n and n f I are 
stored in a third array, say, C. 

The inductive step proceeds as follows. Suppose that CI~, LIP ,..., ai have 
been chosen. Form a fourth array D by this method: For each prime p 
remaining in A, let mp be the least multiple of p exceeding ai. The array D 
consists of all such multiples, together with q* where q is the least prime 
exceeding n112 that is not already stored in C. 

The array D is then examined; its Ieast element extracted. If this is y*, 
we have found the value of di+l. Otherwise, this element must be tested; 
if it is divisible by any prime in each B or C, it must be replaced by the next 
larger multiple of its “corresponding” prime, and D reexamined. If not, 
we have found ai+1 . 

The process terminates when A is exhausted. Running records are kept of 
various information needed for the paper, including statistics on g(n) and h(n), 
existence of terms in each sequence of forms other than pq and p’, and several 
other related records. Certain accelerating options-su’ch as use of only odd 
multiples of the primes p in A in construction of D-were used, since this 
program does not run rapidly with values of n > 10’. We omit data on such 
accelerators from this abstract, since they are many in number and about 
as trivial as the example cited. All programs were rurk in FORTRAN on the 
University of Georgia’s CDC Cyber 70 Model 74, under Batch mode in the 
interactive system NOS 1.2, release 446. The program consists of a driver/ 
prime generator and seven subroutines, amounting to about 350 lines of 
FORTRAN, and a photocopy may be obtained from the author of this 
note (D.E.P.). 
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