Short communications

(v) Suppose that f(z) is transcendental, (3) is satisfied and p > k. Then

- (a) f(z) has at most a finite number of poles if and only if h(z) has at most a finite number of poles and if M, N denote the poles of f(z), h(z)respectively then $(p-k)M \le N \le (p+k)M$.
- (b) ρ_h(∞) = pρ_f(∞), where ρ_f(∞) = lim_{r→∞} (log n(r, f))/(log r), where n(r, f) is the counting function of poles used in Nevanlinna theory with similar meaning given to ρ_h(∞). It is deduced that ∞ is a Borel exceptional value of f(z) if and only if it is a Borel exceptional value of h(z).

(c) If, for any
$$\sigma > 0$$

$$\overline{\lim_{r\to\infty}}\frac{T(\sigma r,f)}{T(r,f)}=\sigma^{\rho},\quad (\rho=\rho_f),$$

then

$$\frac{(p+k)\,\delta(\infty,f)-2k}{p-k} \leq \delta(\infty,h) \leq \frac{(p-k)\,\delta(\infty,f)+2k}{p+k}$$

where $\delta(\infty, \cdot)$ denotes the Nevanlinna deficiency of the value ∞ . (In particular $\delta(\infty, f) = 1$ if and only if $\delta(\infty, h) = 1$.)

(vi) Suppose that f(z) has infinitely many poles and (3) is satisfied then

$$\overline{\lim_{r \to \infty}} \frac{n(r, h)}{n(r, f)} = \infty$$

unless $n(r, f) = O((\log r)^{\kappa})$ for some constant K (K>1).

Results (i)-(vi) remain valid, except the Remark in (iii), if (1) and (3) are replaced by (2) and (4) respectively.

Received May 20, 1976 and, in revised form, October 13, 1976.

On a geometric property of Lemniscates

P. ERDÖS and J. S. HWANG

In the Euclidean space R^3 , we define the product

$$p_n(w, w_k) = \prod_{k=1}^n |w - w_k|,$$

where $w = (w_1, w_2, w_3)$, $w_k = (w_{k1}, w_{k2}, w_{k3})$, and $|w - w_k|$ is the distance between w and w_k . Let C(n) be the class of all such products with the same degree n. For any product p, we call $E(p) = \{w : p(w) \le 1\}$ the lemniscate of p. With the help of those definitions, we prove the following

THEOREM. Let $p_n(w, w_k)$ and $p_n^*(w, w_k^*)$ be two products in C(n) such that $E(p_n) \subseteq E(p_n^*)$. If all zeros w_k of p_n lie on the same plane, then we have $p_n(w, w_k) = p_n^*(w, w_k^*)$.

The condition that all zeros w_k of p_n lie on the same plane is necessary. Without it, the theorem is no longer true.

Received July 6, 1976 and, in revised form, October 22, 1976.

