
Some old and new problems in various branches of combínatories

Paul Erdt5s

During my very long life I published very many papers which

consist almost entirely of open problems in various branches of

combinatorial . mathematics (i .e . graph theory, conbinatorial number

theory, combinatorial geometry and combinatorial analysis) .

First of ail I give a list (with I hope few (or no) omissions) :

1 .

	

Problems and results in graph theory and combinatorial

analysis, Proc . 5th British Comb . Conf. Aberdeen 1975, Cong .

Numerantium XV, 169-192 .

2 .

	

Problems and results on finite and infinite graphs, Recent

Advances in Graph Theory, Proc . Symp . Prague 1974, Acad .

Praha 1975, editor M. Fiedler, 183-190 .

3. tritemal problems in graph theory, Theory of Graphs and Its

Applications, Proc . Symp . Smolenice 1963, Aced . Press, New

York 1964, M. Fiedler, editor, 29-36 .

4 .

	

Problems and results on finite and infinite combinatorial

analysis, Coll . Math. J Bolyai 10, Finite and Infinite Sets,

Yeszthely, Hungary 1973, 403-424 .

5 . Some unsolved problems in graph theory and combinatorial

analysis, Comb . Math . and Its Applications, Oxford

Conference. 1969, Acad . Press, London 1977, 97-109 .

6 .

	

Problems and results in chromatic graph theory, Proof

Techniques in Graph Theory, Acad . Press, New York 1969,

27-35 .

7 .

	

Extremal problems on graphs and hypergraphs, Hypergraph

Seminar held at Columbus, Ohio 1972, Lecture Notes in

Math . 411, Springer Verlag, 75-83 .
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8 .

	

Topics in combinatorial analysis, Proc . Second Conference in
Combinatorics, Graph Theory and Computing (1971), 2-20 .

9 .

	

Some new applications of probability methods to combinatorial

analysis and graph theory, ibid . vol . 5 (1974), 39-54 .

10 . Some recent progress on extremal problems in graph theory,

ibid . vol . 6 (1975), 3-14 .

11 . Some recent problems and results in graph theory,

combinatorics and number theory, vol. 7 (1976), 3-14 .

12 . Problems and results in combinatorial analysis, vol . 8 (1977),

3-12.

13 . Problems and results in combinatorial analysis and

combinatorial number theory, vol . 9 (1978), 29-40 .

14 . Some extremal problems on families of graphs, Comb . Math .

Proc . Int . Conf . Canberra (1977), Lecture Notes i_z Math . 686,

13-21 .

15. P . Erdős and D .J . Kleitman, Extremal problems among subsets

of a set, Discrete Math . 8 (1974), 289-294, see also Proc .

Second Chapel Hill Conference 1970, 144-170 .

16 . Problems and results in graph theory and combinatorial

analysis, Problémes combinatoires et théorie des graph,

Coll . Internationaux Centre Nat . Rech . Sci . 260, Orsay

1976, 127-129 .

17 . Problems and results in combinatorial analysis, Combinatorics,

Proc. Symp . Pure Math XIX Amer . Math. Soc . 1971, 77-89 .

18 . Some old and new problems in combinatorial analysis, Proc .

2nd Intern .Conf. on Comb . Math . (New York 1978), to appear .



I refer to these papers by their number .

In the present paper I first of all give a progress report on

some of my favourite problems and later I state a few recent

problems and give some proofs of new results .

1 .

	

Hajnal and I stated in 1963 the following problem : Denote by

mk (r) the smallest integer for which there is a k-chromatic

r-uniform hypergraph of mk (r) edges . Determine or estimate

mk (r) as accurately as possible . (In the older literature the

edges of a two chromatic hypergraph were said to have property B .

This concept was first used by Miller) . We proved m 3 (r) 5 (

2r-1r ),

more generally mk (r) <- ((k-1)T-k+2), also m3 (2) _ 3, m 3 (3) = 7 .

M3 (4) is unknown. Later I proved

(1)

	

log 2 .2n < m3 (n) < cln22n .

The lower bound in (1) was improved by W . Schmidt to

(1 - n)2n < m3 (n) . I conjectured that m3 (n)/2n a W and I

further conjectured that to every r there is a c r which tends

to infinity with r so that if (A1, . . .,At}, ~A,~ z r, 1 5 i <_ t

is a three chromatic family of sets then

(2)
t

	

1

iF1 2I Ail >
e
r'
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Beck proved both these conjectures, he proved in fact that

l/3 2nm

	

. It would be interesting to3 (n) > c n

	

get an asymptotic

formula for m3 (n) and for mk (n) .

Following G . Dírac we call the family {A 1	At ) critical

if it is three chromatic but if we omit any of the sets A .i the

remaining family is two chromatic . Assume that (A,, . . .,At) is

critical and max IAi l zr, then perhaps (2) remains true .
hi<_ ri_r

It is well known and easy to seg that m 2 (k) _ ( z) . In

other words every k-chromatic (ordinary i .e . r = 2) graph has at

least (2) edges, equality only for the complete graph K(k) .

The generalization for hypergraphs fails in view of m 3 (3) = 7

and the smallest complete three chromatic hyp ergraph for r

	

3
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is K3 (5) with 10 edges . I conjectured nearly twenty years igo
that for k > k0(r) mr(k) - ((k-1Ír11), equality only for the

complete r-graph Kr((k-1)r+l), This conjecture is still open

even for r = 3 .

P . Erdős and A . Hajnal, On a property of families of sets,

Acta Math . Arad . Sci . Hungar . 12 (1961), 87-123 .

P . Erdős and L . Lovász, Problems and results on 3-chromatic

hypergraphs and some related questions, Finite and Infinite Sets,

Coll . t-lath . Sec . J Bolyai 10, Keszthely 1973, North Holland/Amer .

Elsevíer, 609-627 .

J . Beck, On three-chromatic hypergraphs, Discrete Math, 29

(1978), 127-137 .

2 .

	

Rényi and I conjectured that almost all graphs

	

G(n;[c n log n])

are Hamiltonian for sufficiently large c, and in fact we

conjectured that this holds for every c > 2 . (G (n; X) denotes a

graph of n vertices and R edges) . P6sa proved our first

conjecture and the second was recently proved by Koml6s and

Szemerédi, their proof will soon appear . At the end of 9, Spencer

and 1 formulate the following conjecture . Let

	

G(n;t) be a

random graph of n vertices and t edges with the added condition,

that wa lmow that every vertex has valency a 2 . Is it then true

that for t = c nIog n (c > 0 arbitrary) almost all of these

graphs are Hamiltonian . This was also proved by Kcml6s and

Szemerédi . We further stated in 9 several other conjectures all

(or most) of which were also proved by Komlós and Szemerédi .

I conjectured that there is an interesting function f(c),

f(c) - 1 as c +

	

so that for c > c0 almost all G(n ;c,n)

have a path of length > f(e)n. Szemerédi disagreed, he

believed that the expected length of the longest path is o(n) .

Komlós and Szemerédi now proved that I was right, in fact they

proved that my conjecture holds for every c > 1 . f(c) = 0

c :-
Z

follows from results of Rényi and myself - the largest

for
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connected component in fact has size o(n) . The behaviour of f( )

for 2 < c 5 1 is not yet cleared up . As I put it in a nutshell,

Komlós and Szemerédi proved that I was right - I would have

preferred it if I would have proved that Szemerődi was right!

Rdnyí and I proved that if En Z nlogn + nf(n) where

f(n)

	

as n m and n is even then almost all graphs

G(n ;P )n have a matching (or a linear factor) . During my last

visit to Jerusalem (197911) Professor Sh :, mir suprised me with a

very preyy and perhaps difficult problem : Let n = r m, ISI = n .

Consider the random r-uniform hypergraph of n vertices and tn
edges . How large must t o be so that with probability tending to

1 our hypergraph should have an r-matching í .e . m vertex disjoint

edges? For r = 2 Rdnyi and I completely solved this problem .

For reasons which are hard to explain (maybe not so hard, the two

greatest evils old age and stupidity are adequate explapatíons)

I neglected to ask this beautiful and natural question .

	

Many

questions on random bypergraphs can be settled easily if one

settled r = 2 . Shamir's question seems to be different and we

have no idea what to expect . It is not at all clear i£ to - [nI+E J

suffices for such a matching - note even for r = 3 .

Joel Spencer and I recently proved the following conjecture

of Burtin : Denote by G (n) the graph determined by the edges of

the n-dimensional cube .

	

G(n) has 2n vertices and n 2n-1

edges. Choose each edge of G (n) with probability 2. Then the

resulting graph G (n) is connected with probability tending to
1
e , (which is the probability that

	

G n has an isolated vertex) .

Our paper with Spencer will soon appear .

Füredi recently studied the random subgraphs of the lattice

graph of the plane (i .e . two lattice points are joined if they

are neighbours), he obtained several interesting results which no

doubt can be extended to higher dimensions .

Neither he nor Spencer and I could so far decide whether if

one chooses edges in our graphs with increasing probability (i .e .

one studies the "evolution of random subgraphs") then does the

"giant corponent" -'addenly appear. R6nyí and I proved that this

happens for the random subgraphs of K(n) if the number of edges
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Is 2(l+c) . This unexpected phenomenon was perhaps the most

interesting result of Rényi and myself . One more problem on

evolution of random graphs which Rényi and I found very

interesting but due to the untimely death of Rényi I never

investigated : In our paper "On the evolution of random graphs" we

studied the size and distribution function of the size of the

largest component . Similarly one should study the second largest

component . Of particular interest seems to be the maximum

expected size of the second largest co •.lponent of the evolving

random graph .

P . Erdős and A. Rényi, On the evolution of random graphs,

Publ. Math. Inst . Hung . Acad. Sci . 5 (1960), 17-61 and On the

existence of a factor of degree one of a connected random graph,

Acta Math. Acad. Sci . Hungar. 17 (1966), 359-368 .

L. Pósa, Hamíltonian cycles in random graphs, Discrete Math .

14 (1976), 359-364 .

3 .

	

Denote by f(n; G(k,k)) be the smallest integer for which

every G(n;f(n ;G.(k,Z))) contains G has a subgraph . These

types of problems were started by P . Turán who determined

f(n ;h(r)) for every r . W. Brown, V .T . Sós, A. Rényi and I

proved that

(1)

	

f(n ;c4) _ (2 + o(1))n3/2 •

We conjectured that if p is a prime or a power of a prime,

then

(2)

	

f(p2+p+l ;c4) = 2(p 3+,1 + p2 + 1 .

(2) was recently proved for infinitely many values of p by

Füredi .

Reimann and E . Klein (Mrs . Szekeres) proved that there is a

bipartite

	

G(n) which has no C 4 and has (1+o(1))n 3/2/2F

the



I
edges . Reimann further observed that

	

is best possible . The
2~

following problem has been unsettled for more than 10 years : Let

G(n) be a graph of n vertices which contains no G and no C .

Is it true that G(n) can not have more than (1+o(1))n3/2 /2f 4

edges? This problem is still open but Simonovits and I proved this,

if we assume that G(n) contains no C4 and no C5 . Our proof

will appear soon .

f(n ;C4 ) =-1 n3/2 + 4 + 0(n112)

is conjectured in 10 .

An old and nearly forgotten conjecture of mine states that if

G is a bipartite graph of [n2/3 ] white and n black vertices

and more than -en edges then it contains a C6 . It is easy to

see that it contains a C8 . Clearly many generalizations and

extensions are possible .

Simonovits and I published since 1958 resp . 1966 many papers

on extremal problems on graphs, here I only stated a few very

recent results . Nevertheless I want to call attention again to the

old problem of Turn which dates back to 1940 . Denote by

f(n;K (r) (t)) the smallest integer for which every uniform r-graph

on n vertices and f(n ;K (r) (t)) hyperedges contains a K (r) (t) .

It is easy to see that

lim f(n ;K(r)(t))/(n) = c(3)

	

r

	

r,tn-

>-exists. c2 t = 1 - t l1 follows from Turán's theorem, but the

value of c r,t is not known for a single t > r > 2 . Túran

conjectured that f(3n ;K (3) (4)) = n3 + 2n (2) + 1 and

f(2n ;K(3)(4)) = n2 (n-1) + 1 . 1 offer 1,000 dollars for a proof

of these conjectures and the determination of

t -> r > 2 .

The second problem is one of

be a sequence of r-graphs having

The edge density of the sequence

there is a sequence xi -; m as i +

my

cr t for all

G
(r)

(ni)

n i vertices n l < n2 e . . . '
is the largest a for which

so that

	

G

	

(n .) has

old problems : Let
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P . Erdős, On some extremal problems on r-graphs, Discrete
Math . 1 (1971), 1-6 .

W.G . Brown, P . Erdős and M . Simonovits, On multigraph

extremal problems, Coll . Internat . C .N .R .S . 260, Problíames

Combinatoire et Théorie des Graphes, 1972, 63-66, Extremal

problems for directed graphs, J . Comb . Theory, 15 (1_973), 77-93 .

Last year the comprehensive book of B . Bollobds appeared

which contains an immense material and very extensive literature

on extremal problems in graph theory : Extremal Graph Theory,

London Math . Soc . Monographs No . 11, Acad . Press 1978 .

4 .

	

Let ISI = n, and consider families F(n ;k) of subsets

{Aof S, IA,I = k. A family is called m-intersecting if

every m of them have a non-empty intersection . Let f(n ;k,m)

be the cardinal number of the largest family F(n ;k) such that

every m-intersecting subfamily of it is necessarily (m+l)-

interesting . Ko, Rado and I proved that for n ? 2k f(n;k,l) _
n-1
(k-1)' I conjectured in 8 that

(1)

	

f(n ;k,2) _ (k_i) for k ? 3,n Z2.

Chvatal proved (1) for k = 3, more generally he proved

f(n ;k,k-1) _ (k-i) for k '?3,n ? k+2

and conjectured

f (n ;k,m) _ ( k_i) for 1 5 m á k, n z mml k .

2
f(n ;2,2) _ [4] is the well known theorem of Turán (every

2

	

2
G(n ;(4]+1) contains a triangle and [4] + 1 is best possible .

A.Frankl just informs me that he proved (1) for n > n 0(k) and

proved that Chvatal's conjecture is asymptotically correct .

In 8 I state :-hat Hajnal and I proved n -+ (c l log n, [31) 3
4 3

but n + [c2 log n,[ 3 ]) . I am afraid I was too optimistic, we
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only proved n i (c logn/loglogn,[3 ]) , the non arrow relation we

really proved . Thus a gap of size cloglog n remains .

V. Chvatal, An extremal set intersection theorem, J . London

Math. Soc. (2) 9 (1974), 355-359 .

P . Erdős and A . Hajnal, On Ramsey-like theorems, problems

and results, Proc . Conference oxford 1972, Combinatorics, Inst .

of Math . and Its Applications, 123-140 .

5 .

	

üajnal and I conjectured that for every k there is a graph

Gk which has no K(4) but if one colours its edges by k colours

there always is a monochromatic triangle . This was proved for

k = 2 by J . Folkman and for every k by Nesetril and Rődl . For

infinite k our problem is open . Our simplest unsolved problem

states : Let c

	

1 . Is there a graph G

	

of power ' 2 which

has no K(4), but if one colours the edges of G by

	

0 colours,

there always is a monochromatic triangle .

The graphs of Folknan, Nesetril and Rödl are enormous . This

made me offer 100 dollars for the proof or disproof of the

following problem : Is there a graph of at most 1010 vertices

which has no K(4), but for every colouring of its edges by two

colours there always is a monochromatic triangle? I expect that

such a graph exists .

I conjectured that for every k and r (r > 3) there is a

graph Gk,r which not only ' does not contain a K(r+l) but

every two K(r)'s of which have at most two vertices in common and

is such that for every colouring of the edges by k colours there

always is a monochromatic K(r) . Nesetril and Rődl proved this

conjecture too and also all the extensions for hypergraphs I

could think of . In 5 I stated the following question of H . Dowker

and myself : Is it true that every graph of girth greater than k

can be directed in such a way that it contains no directed circuit

and if one reverses the direction of any of its edges the

resulting new digraph should also not contain a directed circuit?



Nesetril and Rbdl answered this question affirmatively .
Hajnal and I conjectured that for every k and r there is

an f(k,r) so that if

	

x(G) > f(k,r) then G

	

has a subgraph

of girth greater than r and chromatic number greater than r .

Rődl proved this for r _ 3 and every finite k in a surpris-

ingly simple way, but his estimation for f(k,3) is probably

far from being best possible .

In 1 I stated the following problem of M . Rosenfeld : Is it

true that every finite graph G which has no triangle is a

subgraph of the graph G r3- whose vertices are the points of the

unit sphere of Hilbert space and two points are joined if their

distance is > T' Alspach and Rosenfeld proved this if G is

bipartite . Larman disproved the general case . In fact he showed

that for every a > 2( 2 1/2ry

	

3)

	

there is a triangle free G which

can not be imbedded in Ga. He conjectures that this remains true

for every a > 21/2 .

Very recently J. Spencer proved the following very attractive

probler : A graph is said to have property R, if for every

colouring of its edges so that two edges having a common vertex

always have different colours, our graph has a rainbow circuit

i.e . a circuit

	

all whose edges have different colour .

Spencer's problem now states : Are there graphs of arbitrarily

large girth having property R?

One would expect that this problem will yield to the

probability method, but so far we had no success .

P . Erdős and A . Hajnal, On the chromatic number of graphs and

set systems, Acts Math . Acad . Sci . Hungar . 16 (1966), 61-99 .

J. Nesetril and V. Rődl, Partitions of finite relational

and set systems, J . Comb . Theory (A) 22 (1977), 289-312 . This

deep paper has a very extensive list of references .

D .G . Larman, A triangle free graph which cannot be T

imbedded in any Euclidean unit sphere, J . Comb. Theory Ser . A

24 (1978), 162--169 .



(1)

	

1 <_ IAif151I < C e ?
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A forthcoming book of R .L . Graham, B . Rothschild and J . Spencer

on Ramsey theory will. discuss the results of Nesetril and Rődll and

of course many other topics not mentioned in this survey .

6 .

	

Now I state some new problems . First a few questions on block

designs and finite geometries . I am not an expert in this field

and I apologize in advance if some of "my" problems turn out to be

well known .

I . Is it true that there is an absolute constant C so that

every finite geometry contains a blocking set which meets every

line in at most C points? More generally : Is it true that to

every c > 0 there is an absolute constant Ct so that if

ISI = n and A c S, 1 <_ i <_ m(t,n) is a system of subsets

e n112 < IAz.I < n for which every pair of elements is contained

in exactly one Ai , then there is a set S 1 c S for which every

i, 1 <_ i 5 m(t,n)

By the way a well known theorem of de Bruijn and myself

implies that m(e,n) 2!n .

J . Freeman informs me that he and Bruen proved that there

are infinitely many finite geometríes for which there are

blocking sets which satisfy (1) .

II . Let A,, . . . .At , IA inAj 1 !51, l s i< j :5t bean

arbitrary family of sets . Is it then true that there is a

finite geometry whose lines contain the 1A
i.)

as subsets? In
other words there is a set S, ISI = n2 + n + 1 and B 1 c S,

IB,I =n+1, 1 5 i <n2 +n+1, IBi0 1= 1, 1 5 i< j 5n2+n+1
J

and Ai c Bi for 1 5 i 5 t . I have no idea how to attack this

problem .

H .G. de Bruijn and P . Erdős, On a combinatorial problem,

Nederl . Akad . Wetensch. Proc . 51 (1948), 1277-1279, see also

Indigationes Math .



In 1 I Conjectured : Let
integers for which all the sums

a

1
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always is a

1Ai1 = T is

Let xI

which there are sets Ai, 1Ai1 = x

pair is in exactly one

sequences is greater than

c l so that for some T

greater than c1n1/2

x2 z . . . z xn

	

2 be

I a a l < . . . . < ak be a sequence.
ai + aj are distinct. Then

perfect difference set mod (p +13+1)
expect that this conjecture will be

there is a prime p and

which contaúis the a's .

more difficult .

Both conjectures can be slightly strengthened . First of all

both conjectures could hold for all sufficiently large n for

which a finite geometry exists, and in the second conjecture the

perfect difference set 1 5 bl < . . • < by+1 5 p 2 d p could

satisfy a i = bí , i = 1,2, . . .,k . (I remind the reader that a

perfect difference set satisfies b i - b,
J

represent all the non

zero residues mod(p 2+p+l) exactly once . For references on

these questions consult 1, p . 189) . I was just informed that "my"

problem on finite geometries is not new but was stated more than

10 years ago by T . Evans .

111 . Jean Larson and I proved that for n >

	

and
JS1

= n

there is a family of sets A í c S, 1Ai i = (1+o(1))n1/2

1 5 i 5 n(l+o(1)) and so that every pair of elements of S is

contained exactly one A i . The proof follows without

difficulty from the probability method and from F k+l
(the p's are the sequence of primes) .

Here are a few further older problems of mine on block

designs . Is it true that there is an absolute constant c so

that for every n there is a system A i
, c S, 151 = n so that

every pair is contained in exactly one A i and for every T the

number of indices +A í 1 = T is less than c nl/2 ? It is not hard

to prove that if this is true then it is best possible i .e . there

i'
Ai . I conjectured that the number of such

c nl./2

n 3

	

. If correct it is easily

to be best possible apart from the value of c 3 .

the number of indices

a sequence of integers for

Ai c S, 1S1 = n and every

of

much
1-c

pk < pk

seen



On the other hand I conjectured that if the elements of S are

points in the plane and the Ai are the lines joining the points

then the number of the sequences x l ? x2 2 . . . is less than

exp ~ n1/2 . It is again easy to see that if true this is best

possible apart from the value of c 4 . I expect that this problem

is much harder than the previous one .

7 .

	

1 state now a few miscellaneous recent problems .

I . At the problem session of our meeting J . Dinitz stated

the following problem of his which I find very interesting and

challenging : Let Ai'j , IA,,jl =n, 1 <_ i 5 n, 1 :5j <_ n bean

arbitrary family of n 2 sets of size n. Prove that there
always is an x, e A,

	

which form an incomplete latin square-1

	

3-13
(i .e . each element occurs at most once in every row and every

colum-i) .

Observe that if the A . . are all the same set the answer
1.J

is trivially affirmative . Further if ,A1.,j l z n is replaced by

J Ai ,j l ? 2n - 1 the answer is also trivially affirmative . Also

Gupta has some related perhaps more general problems .

II . Hanani and I proved that if n = ( 2) + j < ( tZI ) and

G

	

is a graph of n edges then it contains the largest number
n

of subgraphs K(r) (r s t) if

	

n has t -f I vertices

x1' . . .'xt+, where

	

G(xl, . . .,xt) is complete and xt+1 is

joined to j of the x's . The proof is not difficult . During my

last visit in the spring of 1979 Mr . Allon asked me if our

theorem remains true for hypergraphs . I could not settle this

interesting question which as far as I know is still open, but I

asked : Let

	

G(r) be any graph of r vertices . Let

	

Gn

	

be

the graph of n edges which contains the largest number of sub-

graphs isomorphic to our

	

G(r) . Can one characterize

	

Gn

	

and

in particular when is Gn

	

our graph with Hanani . Alton has

several interesting results on this problem which I hope he wí11

publish soon . Th(. simplest case which remained unsettled was if

G(r) is an odd cycle (r > 3) .
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P . Erdbs, On the number of complete subgraphs contained in
certain graphs, Publ . Math . Inst . Acad . Sci . Hungar . 7 (1962), 461 .

111 . Let

	

G(n) be a graph of n vertices m < n(1-e) .

Assume that every set of m vertices of our

edge - in other words the largest independent set in our

	

(n)

is less than m, f(n ;m) is the largest integer so that there

always exist a subgraph of m vertices of our G(n) which has a

subgraph of m vertices of our

	

G(n) which has at least f(n;m)

edges i.e. f(n ;m) is the largest integer so that if every induced

subgraph of m vertices contains an edge then there is a subgraph

of m vertices and f(n ;m) edges . We have

(1)

	

elm < f.(n;m) < c2
m log n .

The lower bound in (1) is almost immediate, the upper bound is

given by the probability method . Is the upper bound best possible?

If m _ c log n the answer is "easily" seen to be affirmative

(easily but not trivially) . As far as I see the most interesting

open question is whether the upper bound in (1) is best possible

for m = (n1/2 ]?

There are several possible modifications of this problem

which might be of some interest . Let G(n) be a graph where we

either assume that

	

G(n) does not contain a K(m) and the

largest independent set is less than m, or we assume that G(n)

has 2(Z) edges . Denote by emax(G m(n)) resp . emin (G m(n))
the largest respectively the smallest integer for which there is

an induced subgraph of m vertices of G(n) containing

emax(G m (n)) respectively a min (C m (n)) edges . Put

A(n ;m) = min (emax (G M(n)) - emin(G m(n))G(n)

where the minimum is taken over all admissible graphs . Determine

or estimate A(n ;m) as accurately as possible and compare it to

f (n ;m) .

Many further generalizations and extensions seem promising

e .g. for hypergraphs but here I do not pursue this subject any

further .

G(n) contains, an



[ 2 J

IV . In I (p . 189) I stated the following conjecture . Let

G(n) be a graph of n vertices, assume that every subgraph of
2

vertices contains more than [ nSOJ edges than G(n)

contains a triangle . Unfortunately I got nowhere with this

interesting conjecture . Further I asked : Denote by f(a,n)

smallest integer so that if every induced subgraph of [an]

vertices contains f(a,n) edges then G(n) contains a triangle .

Determine or estimate f(a,n) as well as possible . Perhaps the

determination of

lim f(a,n)/n 2 = g(a)
n-~

the

is not hopeless . So far I had no success . By Turán's theorem
2

f (l,n) _ [4] + 1 .

Perhaps the following new question may be of interest . Lei.
2

G(n) be a graph of [n4] edges which has no triangle . $y

Turin's theorem G(n) ( G is the complementary graph of G )

must then contain a K([ n21 ]) . Assume now that G(n) has no

triangle and the largest clique of

	

G(n) is h(n) . Determine

or estimate max e( G(n)) = Fh(n) (n) . The problem makes sense
G

only if h(n) is large enough for such a graph to exist .

I proved nearly 20 years ago that if h(n) > c nl/2 log n then

such a graph exists . V .T . Sás and I proved that if h(n)

	

[k-2 1
then (k fix n * W)

2
(1)

	

F (n) > 1.c n

[k]

	

k log k

2
On the other hand trivially Fn(n)

< 2k[

	

(since every vertex]

k
has valency < k) . It would seem likely that

2
Fn (n) = ofk ),
k

and perhaps in fact (1) is best possible .

Another problem which is perhaps more closely related to my

original problem states as follows : Let f(n ;T) be the largest

integer for which there Is a G(n ;f(n ;T)) which contains no

e(G) denotes the number of edges of G .
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triangle and for which every induced subgraph of 2 vertices

contains at least T edges . My conjecture stated in 1, if true,

implies that the problem makes sense only for T S 50 . For
2

	

2
T 50 I think f(n;T) _ [5) . Further generalizations are

possible if instead of looking at induced subgraphs of In2
vertices we insist that every induced subgraph of [an] vertices

has at least T edges, but we do not pursue this question at

present .

The final remark . Consider the graphs G(n ;[c n2))

o < c < ~, n }

	

It easily follows from the probability method

that there is a G(n ;[c n2)) so

induced subgraph of R n vertices has

in particular there is a G(n ;[cr. 2 ))

graph of (2) vertices has (4 + o(1))n2 edges . On the other

hand 1 proved that if n > n 0 (r) then every such graph must

contain a K(r) . I hope to return to this question in the near

future (assuming that there is a future for me) .

P . Erdős, Graph theory and probability II, Canad . J . Math .

13 (1961), 346-352 . See also, P . Erdős and J . Spence=,

Probabilistic methods in combinatorícs, Acad . Press, New York,

1974 .

V . Denote by A(n ;k) the least common multiple of the

integers n+l, . . .,n+k. In my lecture at our meeting I stated

the following conjecture : Let nk be the smallest integer for

which

A(nk;k) > A(nk+k ;k)n

that if £ /log n + - everyn
(c+o(1))kn edges . Thus

so that every induced sub-

Then lim nk/k ~. During the meeting I found a simple proof of
k+-

this conjecture which I now present (In fact the proof is so

simple that only the remark made in 2 explains that I did not

ind it right away) .

Let rk 5 nk

	

(r+l)k, r fixed k large . Denote by

P(u,V) the product of the primes in the interval (u,v) . Clearly



(1)
r nk %+k

	

nk+k
A(nk ,k) = P(1,k) E P( í ,

	

i ) P(k, r ~_1 )Ql
i=1

where the factor QI comes from the primes which divide
Ak (nk ,k) by an exponent greater than one . Similarly

r+l n +k n +2k

	

n +2k
(2)

	

A(nk4k,k) = P(l,k)

	

II P{
í

, ki )P(k,	
r+2

	 )Q2 .
i=1

The prime factors of Q1 and Q2 are all less than (n k+2k) 1 -,

The contribution of each of them is less than exp(c(n k+2k) l/2 ) .
Thus

(3)

	

max(Q1,Q2 ) < exp(nk+2k) 1/2
(log nk+2k) .

By the prime number theorem for fixed í and large k
nk n+k

	

k
(4)

	

P(i,
k
3.

) = exp((l+o(1) i) .

From (1), (2), (3) and (4) we easily obtain for fixed

large k that

A(n +k,k)
(5)

	

A(nk ,k)

	

¢ > exp((1-c) r+1) exp(-(rk) 1/2+e )

(5) clearly gives A(nk+k,k) > A(nk ,k) for every fixed r and
large k, which proves our assertion lim nk/k =

	

In fact using
k-

sharper forms of the prime number theorem this proof gives without

difficulty that there í§ a c > 0 so that n x, > kl+c

	

On the
other hand I conjecture that

(6)

	

lim nk/k2 = 0 .

(7)

	

A(n,k) ¢ A(m,k) . .

r and

The proof of (6) probably will not be very difficult, but I
have not done it as yet .

The following old conjecture of mine seems very much more
difficult : Let n + k < m then



At the moment I do not see how to attack (7) . I asked for
solutions of

(8)

	

A(n ;k) > A(m ;£), £ > k, m z n + k .

The referee of one of my papers found two solutions .

Selfridge showed that (8) has no solution for k < 7 but that

there are 18 solutions for k = 7 and probably the number of

solutions tends to infinity as k tends to infinity, but as far

as I know it is not yet known that (8) has infinitely many

solutions . Selfridge further observed that if (8) holds then

n < A(l ;k-1) . It would be interesting to estimate the largest

solution of (8) .

Two final questions : Put h(n) = max(£-k) where the

maximum is extended over all solutions of (8), n fixed k,£,m

are variable. Estimate h(n) from above and below as

accurately as possible . The exact determination of h(n) is of

course hopeless . Probably h(n) *

	

as n }

	

but perhaps for

every e > 0 h(n)/n F i 0 .

Are there infinitely many values of n so that for every

k, 1 <- k -< n - 1

(9)

	

A(n-k,k) < A(n,k)?

e . g . n = 10 and n = 12 satisfy (9), but I expect that for

large n the solutions of (9) wí11 be rare and I do not see a

proof that (9) has infinitely many solutions .

P . Erdős, Some unconventional problems in number theory,

Math. líagazine 52 (1979), G7-70 .
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