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On the Covering of the Vertices

of a Graph by Cliques
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(Magyar Tudományos Akadémia, Budapest)

In conversation I was told by Professor R . Brigham the following canjecture

[1] . Let G(n) be a graph of n vertices . Denote by .f(G(n)) =t the smallest integer

for which the vertices of G(n) can be covered by t cliques . Denote further by

h(G(n)) = l the largest integer for which there are l edges of our G(n) no two of

which are in the same clique . Clearly h(G(n)) can be much larger than AG(n))

e.g. if n=2m and G(n) is the complete bipartite graph of m white and m black

vertices . Then t(G(n))=m and l(G(n))=m2, It was conjectured that if G(n.),
has no isolated vertices then

(1)

	

f(G(n))<h(G(n) )

holds for all graphs . R . Brigham showed me that (1) is true and easy if h(G(n))

<2 ;
A simple application of the probability method shows that (1) fails for

almost all graphs . In fact we prove
Theorem 1 . There are positive absolute constants c, and c ., for which for

n>m,(c„c s )

(2)

	

cl (log n)3 <max	h(G(n)) <C2 (1ogn) 3

In fact we will show that the lower bound in (2), holds for almost all

graphs G(n), i .e, it holds for all but a(2) ( ' ) ) labelled graphs of n vertices . We

do not give the details of the proof of the upper bound .
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observe that f(G(n)) is the chromatic number of G(n), the complement

G(n) .
I proved that for almost all graphs G(n) the chromatic number of G(n)

between c,n/log n and c,,n/log n . Thus for almost all G(n) [2]

(3)

9 4

	

*

	

bl _1U i* it

	

1 9 8 2

ci -logn <f(G(n))<C2-loge- .

It seems certain that for almost all G(n)

(4)

	

f(G(n))-(c+o(i))	nlog n

for a certain absolute constant c, but I have never been able to prove (4) .
Next we prove that for almost all graphs G(n)

(5)

	

C, (log n)2<h(G(n))<c,(log n) 2 •

Let G(n) be a random graph of n vertices and let e,, . .,,e„ be the largest

family of pairwise independent edges of G(n) (i,e, no two e's are in a clique) .
First observe that we can assume that for every vertex x of G(n) the number

of e,s incident to x is less than c 3 log n, This remark follows immediately from
the fact that the other endpoints of the e's incident to x must form an inde-

pendent set in G(n) (for if not then two els incident to x are contained in a
triangle which is impossible) . Now it is well known and easy to see that the
largest independent set in the random graph G(n) is less than c log n [3] .

Next observe that if e l ., .,e, is a set of edges without a common vertex no

two of which are contained in a clique (which here is of size 4), then for almost

all G(n)

(6)

	

t<c, log n,

To prove (6) observe that the probability that two edges e, and e2 (not

having a common vertex) are not contained in a clique is i -- 6	 (since all four

edges joining the endpoints of el and e, must be in G(n) if e, and e2 are con-

tained in a clique), The (2) events e ; and e, (l<i<j<t) are not contained Ln
a clique are clearly independent and thus the probability that no two of the edges

e;,e,(l<i<j-t) are in a clique is (1-116 ) (2 ) . For there are C(
)1<nz'

choices . Thus the probability that our G(n) has
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independent edges is less than n"(1-	6	 ) ( 2 ) which tends to o if t>c ólog n,

which proves (6) . Now (6) and the fact that for almost all G(n) each vertex is
incident to fewer than clog n of the e's gives that for almost all G(n) h(G(n))

<2c3cblogn, which proves the upper bound of (5) . The upper bound of (5) and
the lower bound of (3) give the lower bound of (2) .

Now we prove the lower bound of (5) (we will not need it for the proof of
Theorem 1) . Observe that almost all graphs G(n) contain a set of independent

vertices of size t>c log n i.e, there are vertices x,, . .,,x, no two of which are
joined by an edge . It is well known and easy to see [3] that for almost all G(n)
all the vertices have valency (or degree) (1+0(1)) 2 . A simple computation
now shows that there is a constant c' so that fot every vertex x there are c'logn
vertices which are all joined to x and which are independent in G(n) . Thus we
obtain cc'(log n)- edges no two of which are on the same clique . This completes
the proof of (5) . It would be easy to insist that these independent edges should
be vertex disj3int except for x,, . .,,x, .

My proof of the upper bound of (2) is surprisingly complicated . By repeated
application of known inequalities for Ramsay numbers [4] I can prove that
f(G(n))/h(G(n)) can be of the order of magnitude (legn)3 only if f(G(n)) is
of the order n/(log n) and h(G(n)) of the order (log n)' . I suppress the details
because perhaps a much simpler proof can be found . If nobody finds a simpler
proof I will publish my complicated proof .

It would be of interest to prove that there is a c for which

(7)

	

lim 1 max f(G(n)) =C .
n-.- n c ( .)h(G(n))

I expect that the proof of (7) will be difficult .

It would be interesting to know the largest t for which h(G(n))<t implies

f (G(iz)) <h(G(n)) .
I can prove that there is a t, so that for every t>t, there is a G(n) satisfying

(8)

	

h(G(n))>t and f(G(n))>nc. .

It would be interesting to determine t o and the best possible value of c, . I
do not expect this to be easy . Finally it is not hard to prove that



in ether words the example mentioned in the introduction is optimal .
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