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On the Covering of the Vertices
of a Graph by Cliques’

Paul Erdés

(Magyar Tudomanyos Akadémia, Budapest)

In conversation I was told by Professor R, Brigham the following conjecture
[1]. Let G(n) be a graph of n vertices, Denote by f(G(n)) =t the smallest integer
for which the vertices of G(n) can be covered by t cliques, Denote further by
hR(G(n)) =1 the largest integer for which there are [ edges of our G(n) no two of
which are in the same clique, Clearly h(G(n)) can be much larger than f(G(n))
e.g. if n=2m and G(n) is the complete bipartite graph of m white and m black
vertices, Then I(G(n))=m and I(G(#n))=m*, It was conjectured that if G(n)

has no isolated vertices then
(1) HG () <h(G(n))
holds for all graphs, R, Brigham showed me that (1) is true and easy if A(G(n))

<2;
A simple application of the probability method shows that (1) fails for
almost all graphs, In fact we prove

Theorem 1, There are positive absolute constants ¢, and ¢, for which for

B>, (C,,Cy)

n < max f(G(n)) " n

(2) “Cllogm)® ey W(G(n)) Ot (logn)?

In fact we will show that the lower bound in (2), holds for almost all
graphs G(n), i.e. it holds for all but 0(2)(2)) labelled graphs of n vertices, We

do not give the details of the proof of the upper bound,

# Received June 1, 1981.
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Observe that f(G(n)) is the chromatic number of G(n), the complement of
G(n).
I proved that for almost all graphs G(n) the chromatic number of G(nr) is

between c,n/log n and c,n/log n, Thus for almost all G(n) [2]

B G Ly —r

e “ logn fogn

1t seems certain that for almost all G(n)

n
&Y (G = (e +0(1)) e

for a certain absolute constant ¢, but I have never been able to prove (4),

Next we prove that for almost all graphs G(»n)

ci(log n)t<h(G(n))<<c,(log n)?,

~~
w
~—

Let G(n) be a random graph of n vertices and let e,...,e, be the largest
family of pairwise independent edges of G(n) (i.e. no two e’s are in a clique),
First observe that we can assume that for every vertex x of G(n) the number
of e’s incident to x is less than ¢, logn, This remark follows immediately from
the fact that the other endpoints of the e’s incident to x must form an inde-
pendent set in G(n) (for if not then two e’s incident to x are contained in a
triangle which is impossible). Now it is well known and easy to see that the
largest independent set in the random graph G(n) is less than ¢ logn [3].

Next observe that if e,...,e, is a set of edges without a common vertex no

two of which are contained in a clique (which here is of size 4), then for almost

all G(n)
(6) t<c,logn,

To prove (6) observe that the probability that two edges e, and e, (not
having a common vertex) are not contained in a clique is 1—%(since all feur
edges joining the endpoints of e and e, must be in G(n) if e, and e, are con-
tained in a clique), The (}) events e; and e; (1<<i<j<t) are not contained in
a clique are clearly independent and thus the probability that no two of the edges
e;,e(1<i<j<t) are in a clique is (1—-1%-)(”. For e,,...,e, there are ((g))-(n”

choices. Thus the probability that our G(n) has t
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independent edges is less than n“(l—_lls—)(;) which tends to ¢ if t>c/Jlogn,
which proves (6). Now (6) and the fact that for almost all G(n) each vertex is
incident to fewer than clog n of the e’s gives that for almost all G(n) h(G(n))
<2c,clogn, which proves the upper bound of (5). The upper bound of (5) and
the lower bound of (3) give the lower bound of (2),

Now we prove the lower bound of (5) (we will not need it for the proof of
Theorem 1). Observe that almost all graphs G(n) contain a set of independent
vertices of size t>c log n i,e, there are vertices x,,...,x, no two of which are
joined by an edge, It is well known and easy to see [3] that for almost all G(n)
all the vertices have valency (or degree) (1 +o(1))%. A simple computation
now shows that there is a constant ¢’ so that fot every vertex x there are c’logn
vertices which are all joined to x and which are independent in G(n). Thus we
obtain cc’(logn)* edges no two of which are on the same clique, This completes
the proof of (5). It would be easy to insist that these independent edges should
be vertex disjaint except for x,,...,x,.

My proof of the upper bound of (2) is surprisingly complicated, By repeated
application of known inequalities for Ramsay numbers [4] I can prove that
"5 only if f(G(r)) is

(legn)
of the order n/(logn) and h(G(n)) of the order (logn)?. I suppress the details

f(G(n))/h(G(n)) can be of the order of magnitude

because perhaps a much simpler proof can be found, If nobody finds a simpler
proof I will publish my complicated proof,

It would be of interest to prove that there is a ¢ for which

” 1 F(GmY) _
7 e s C

I expect that the proof of (7) will be difficult,
It would be interesting to know the largest t for which h(G(n))<t implies

HGm)<h(G(n)),
I can prove that there is a ¢, so that for every t>¢, there isa G(n) satisfying

(8 h(G(n))=t and f(G(n))>nc:,

It would be interesting to determine ¢, and the best possible value of c,, I

do not expect this to be easy. Finally it is not haid to prove that
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in ather words the example mentioned in the introduction is optimal,
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