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Let A be an infinite sequence of positive integers a, <a,<--- and
PUt £4(%) = Tpenacs (1/a) Dy(x) = MX, pee Yacharm 1 In Part I it was
proved that lim,, . . sup D,(x)/f,(x)=+0co0. In this paper, this theorem
is sharpened by estimating D,(x) in terms of f,(x). It is shown that

lim,, , ., sup D,(x) exp(—c,(logfy(x))’) = +co and that this assertion is not true if
¢, is replaced by a large constant c,.

Throughout this paper, we use the following notation: ¢, ¢;, €500y Xgs X s
denote positive absolute constants. We denote the number of elements of the
finite set S by |S|. We write e* = exp(x). We denote the least prime factor of
n by p(n), while the greatest prime factor of » is denoted by P(n). We write
p® || n if p®|n but p®*'fn. v(n) denotes the number of the distinct prime
factors of n, while the number of all the prime factors of n is denoted by
w(n) so that

v(in)= Y"1 and w@m)= > a

pin paln
We write
vm,y)= 3 1, wmy)= Y a
pin p2ln
p<y p<y
vrmp)=> 1, ot@my)=> a
pln palin
P>y P>y
and

wn,x, )= > 1

pln
xX<pLy

115
0022-314X/82/040115-22802.00/0

Copyright € 1982 by Academic Press, Inc.
All rights of reproduction in any form reserved.



[16 ERDOS AND SARKOZY

(so that v(n, n)=v*(n, 1)=v(n), w(n, n)=w (1, 1)=w(x) and v(n, x,y) =
v(n,y) — v(n, x)). The divisor function is denoted by d(n):

dm)= Y 1.
din

Let 4 be a finite or infinite sequence of positive integers a, < a, < ---
Then we write

Nx)= > 1,
aed
a<x

f)i(x)= S T
aeAd a
agx

dmy= Y 1

acA
aln

(in other words, d,(n) denotes the number of divisors among the a,’s) and

D (x) = I?Hagx dy(x).

In Part I (see |2]). we proved that for an infinite sequence 4, we have

; D ,(x)
,r!-l-?}m Sl.lp—f;—(;)——-— +00. (1)
(In [4]. Hall proved independently that (1) holds in the special case
lim . supf,(x)/log x > 0. Note that we have ) ,_,. d,(n)=x1,(x)+
O(x).) Furthermore, we proved some other related results in [2]. In
particular, we proved that

THEOREM 1. If

Jim f(x) = +o0 (2)
then
lim sup Do) (—BX )" @)
Xx= 4o Sup Ha (iog logx)

(This theorem will be needed in the proof of Theorem 2 below.)
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We conjectured in [2] that (1) could be sharpened in the following way:
lim sup D,(x) exp(—(1 — ¢)(log f,(x))?) = + 0.

Sections 2 and 3 will be devoted to the proof of the following slightly
weaker estimate:

THEOREM 2. Assume that for an infinite sequence A of positive integers
a, <a,<--,(2) holds. Then for all ¢ > 0, we have

lim sup D,(x)exp (— (i— a) (Iong(x))?) =+00. (4)

X+ 16

Furthermore, we show in Section 4 that Theorem 2 is the best possible
except for the constant factor in the exponent (and that our conjecture is
Jfalse in its original form):

THEOREM 3. For all ¢ > 0, there exists an infinite sequence A of positive
integers a, < a, < --+ such that

(i) A has density 1, ie.,
lim N,(x)/x=1: (5)
X =400

(ii) we have

lim sup D,,(x) exp(—(} + €)(logf,(x))") = 0. (6)

Finally, we sketch the proof of three other related results in Section 5. (In
particular, Theorem 5 will show that the factor ¢/16 — ¢ in the exponent in
(4) cannot be replaced by /8 +¢€.)

2

In order to prove Theorem 1, we need some lemmas.

LEMMA 1. Assume that for an infinite sequence A of positive integers,

lim supf, (x) exp(—(log log x)"'*) > 1 (7)
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holds, and let € be a fixed positive number. Then there exist infinitely many
positive integers x such that

£(x) > exp((log log x)"/?) (8)

and
log log x

log log  OB/4(Y) < (1 +e)logfulx)  forally > x. ©)

Proof. By (7), there exist infinitely many integers z such that

J4(z) > exp((log log 2)""%). (10)

Obviously, it is sufficient to show that for such an integer z, there exists an
integer x satisfying x > z, (8) and (9). In order to prove this, assume that if
x>z and (8) holds, then there exists an integer y for which (9) does not
hold.

Now we are going to show that our assumption implies that there exist
positive integers (z =) x, < x, < x, < --- such that (8) holds with x, in place
of x and

log4(x¢) > (1 + ) e 08Xk

fork=0,1,2,.. 11
ogTog . O8Sulx0)  fork=0, (1)

In fact, by (10), x, =z satisfies (8) (with x, in place of x) and also (11)
holds trivially. Assume now that x, < x; < --- < x, have been defined so that

S4(x2) > exp((log log x;)""?) (12)

and (11) hold. Then by (12) (and x, > x,=z), our assumption yields that
there exists an integer y for which y > x; and

log log x,

log log y log f,(¥) > (1 + &) log f,(x).

Let x;,, =y. Then (with respect to (11) and (12)) we have

log log y )
log log x;,

L1Ges ) =L2(9) > exp ((1 1 &) log f(x,)

12 log log y )

> exp ((l + ¢)(log log x,) R tog

log lo 172

> exp((log log y)'/?) = exp((log log x, , ,)""*)
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and

log log
108 £4(xi.1) = 1084(0) > (1 + 2) P log ()

log log y a+ )k log log xk

=(1
> ( +E)log log x,

ogS4(xo)

log log x;, ,

=(l4c¢ k+1
( ) log log x,

log £, (x,)

so that both (11) and (12) hold with k¥ + 1 in place of &, and this proves the
existence of a sequence x, < X, < --- having the desired properties.
But if k is large enough (depending on x,), then (11) yields that

log f,(x,) < 2 log log x,. (13)

On the other hand, obviously we have

e/t =tog (¥ =) <tog (¥ )

a-1 4
@ Xy

< log(log x, +¢,) < 2 log log x,. (14)
Inequalities (13) and (14) yield a contradiction which completes the proof of
Lemma 1.
LEMMA 2. There exists an absolute constant ¢, such that if x, y and t
are positive numbers satisfying
I<yLx (15)
and
1 <t <loglogx, (16)
then

ne X
v¥m,y) <t

1 eloglogx\'
N\ __“<_‘c2 logy (#__) tl;’z'

Progf. If n< x and v*(n, p) = m then n can be written in the form

n=npit e put (17)
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where n, < x, P(n,) <y, y <p;<x, p;#p, for i+#jand q,,.., a, are positive
integers. Furthermore, if n is fixed and n,, ..., Ppys @} 5.r @, Satisfy all these
conditions, then also the permutations of the prime powers p{'...., p&™ satisfy
them; thus n has m! representations of the form (17). Hence, with respect to
(15) and (16),

1 [f] 1 1 + o0 1 m
2 FelE(Z AL
n?x n n:U m! n:g'x n]. y<hp_a§x a-=_1 Pu
otim, y)<t Pinh<y
&g L1 "
B () (5 e
m=0 m! p<y l'_ I/p pex P
L .
< Y —-c,logy - (loglog x + ¢;)"
m=0 m.
4 (loglo m "
<eglogy N (g log x) (1 © )
e m! log log x
l_ﬂ 1 1 Al t
<ec logy N (log log x) ( Cs )
=y Uep log log x
(log log x)"!
< ¢ l()g)-‘f——(—l;]—)!——— (IS)
since
][ -——i-—- < ¢, logy,
pey 1= 1/p
=
N —=loglogx +0O(1)
pex P
and
+ o0 + o
5 elae &7 KF 0
T—;- ‘;2 P n‘:l aTZ n

By using the Stirling formula, we obtain from (18) that

A 1 eloglog x \'1
N —<eylogyt (u—é—g—) ¢
nex n lf]

viin, vyt

eloglog x\" ,
<cglogy (-—-—-—-—gt - ) e

which completes the proof of Lemma 2.
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LEMMA 3. Let E be an arbitrary nonemply set of prime numbers and let

ul l
Ep)= Y —.
pek
pix

Then for all x> 1 and a>1, the number of the integers n satisfying
1< nxand

N 1> aE(x)

e

pln
peE

is <cpxexp((a— 1 —aloga) E(x)).
This lemma is due to K. K. Norton; see (5.16) and (1.11) in [6], also [7].

3

In this section, we complete the proof of Theorem 2.
Let ¢ be a small but fixed positive number such that £ < 1.
Assume first that

lim supf,(x)exp(—(log log x)""*) < 1.
X+ + o0

Then for x > X,,, we have

f4(x) < 2 exp((log log x)'/?).

Hence
exp ( (% —E ) (log f4(x))* )
< exp ( (T:,_ -z ) (log(2 exp((log log x)lrz))Z)

|
< exp (L log log x) < exp (7 (log log x — log log log x))

3
1/2
=( log x ) =o( log x ) (19)
log log x log log x

By (2), we may apply Theorem 1, and we find that (3) holds. Inequalities (3)
and (19) yield (4).
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Assume now that

lim sup ,(x) exp(—(log log )'"*) > L.

Then by Lemma I (with /2 in place of &), there exist infinitely many
integers x such that

f4(x) > exp((log log x)'"?) (20)
and

log log x

€
oy log /4 (») < (1 + 7) log f,(x) for all x < y. (21)

Obviously, in order to prove that (4) holds also in this case, it is sufficient to
show that if x > X,(¢) and x satisfies (20) and (21), then there exists an
integer u satisfying

x < u < exp((log x)*) (22)
and
D4 > oxp (=5 ) to8ru))’). 23)

Assume that x is large (in terms of ¢) and x satisfies both (20) and (21).
Let us write

y = exp{(log/f,(x))’} (24)
and
elog log x \* u
=V ] =—r fi 0).
s = (CEEL), =t @re>0)
Obviously, we have
1 1
L= —< Y —<logx+ey,. (25)
aeAd a asx a
asx

It can be shown easily that the function A(u) is increasing for u > Uj. Thus,
by (20) and (25), we have

h(f,(x)) > h(exp((log log x)'*))

_ exp((log log x)'?)

e (>(log log x)*) (26)
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and

log x + ¢,

h(fA(x)) < h(logx + Cll) = aog(]ogx +c )

¥ <logx (27

for sufficiently large x. Furthermore, for 1 < u < log log x, the function g(u)
is continuous and increasing since

. log | %
g'(u) = (log log log x — log u) (f%g—i) > 0,

and by (26) and (27), we have
g(1)=elog log x < h(/(x))
and
g(log log x) = log x > h(/,(x)).

Thus, there exists a uniquely determined real number ¢ such that

1 <t<loglogx (28)
and
g(t) = h(f,(x)). (29)
We need lower and upper bounds for this number t. By (28), we have
) = h =g = (SEEL) s o
hence
£ <log ‘ﬁ% < log f,(x). (30)
On the other hand, by (29), we have
tloglogx  tloglogx tlog log x
(log h(f,(x)))*  (log g(t))* ~ ¢*(1 + log log log x — log 1)’
1

B : 1—1 { y
— |1l —-lo
log log x ( b log log x)
1

(1 —logp)? (31)
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where (with respect to (28))

4

O<v=—-—x1
log log x

But a simple computation shows that for 0 < ¢ < 1, the function

1

o(&) = m
assumes its minimal value at £ = I/e so that
00 =5 > (+) -+ (32)
By (31) and (32) we have
U (g h(£,@))
v(1 — log v)? log log x
S L (log(f,(x)/(log £,(x))*))* _ ( 1 __e_) e (logf,(x))’ (33)
4 log log x 4/ 4 loglogx
if x is sufficiently large.
Let A* denote the set of the integers a such that a<x, a €4 and
vi(a,y) >t
By (24) and (25), we have
(39 y=exp((log/,(x))")
<exp((log(log x +¢4))")  (<x). (34)

By (28) and (34), both (15) and (16) hold; thus Lemma 2 can be used in
order to estimate f,.(x), and we obtain that

1 = 1 ~ 1
L= N i= 5 S N R D el
AT ) P =i a P a
aeAd* a 2<X.g€A a asxaed asx.a€d
erla.y) =t vrla,y) <t

E F S~ F

agx,0€4 agx
via,v) <t vta, ¥t

( e logrlog x )‘ o

a

2f4(x) —c,logy
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Hence with respect to (24), (29) and (30)

3 fA(x) 172
S4-(x) 2 f4(x) — cy(log f,(x)) m (log f4(x))
c, 1
=1ue) (1~ gz e ) > 3400 (35)
Let us write
k = [log x]

and let S denote the set of the integers » such that
n < x
and n can be represented in the form
a;[a;z"'a&m=n* (36)
where a@; €A%, a;,,€A%,..,a, EA™ (and m is positive integer). For fixed

n € S, let g(n) denote the number of representations of # in the form (36).
Then by (35), we have

v sy hl B |

> 8lor= 2, il !

RES Hes a,—le,»i' ..... a‘-koz.-f
@i '(];k.’"ﬂ

_ ( \ 1)
a,-le,l‘j.a;ke:i‘ n = xk

Qjyc s -a/n

k
~ 5 I_x__]
—
agedt,...,a;€4" Q- Ay

=—x*k(x) > =—x* (—ZI-fA(x))k (37)

since a € A* implies that a < x, and [u] > 4u for all u > 1.
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On the other hand, we have

Sem=% (¥ 1)
nes [ EA” LI

nes = nel8 l\aj€4d-,...,
ajyr e rajfn
<T (S ) (X 1)= ¥ @y
nes a;,€4* a;, 4" nes
ajin ay/n

< Y @)<Y DN =D, 8L (38)

HES nes

Let §, denote the set of the integers n such that n € § and
wt(ny)—vi(ny) > %k: (39)

and write

Then we have § =8, U S, so that

|S1<|S4| + S| (40)

First we estimate |S,|. Let n€S,, n=(p? ---pf)*n, where
y<p,<p,<-+<p,,and p >y implies that p*/n,. Then obviously,

o (ny)=v (ny)<2a, +ay + o + ) (41)
Inequalities (39) and (41) yield that

a a @) y __ aitescta Hw T, ¥)— vt ()2 (e/12¥kt
RS Fa s S S 2Y >y

Thus, writing j = p{' --- pe’, we obtain that for n € §,, there exists a positive
integer j such that j%/n and j > p*“/'PX Hence with respect to (24),

IS Y ¥ 1

L e
Jeylesike pgak
Jtn
k
x 1 s 1
- ¢ Blet x Lo 3 L
G ple/ 120k joytennke J J ple/ 12kt (f=1)

. 11 1 1

_ s ok &
=X ;.mu (j— 1 _.j) =X ERED) <x PETTIR
J=y
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= x* exp (——l—ss-kr logy)
= e (— 7 keoe ()" ) < x* expl—k(log £, (1)) (@2)

for sufficiently large x.
Now we estimate |S,|. If # € S, then n € S; thus we have

w* (ny) = v* (ny) S k. (43)

Furthermore, n € §, implies that n € § and thus n can be represented in the
form (36). Hence with respect to (43), for n € §, we have

v(n, y,x) = w(n, p, x) — (@n, y, x) — v, y, x))

55
; w(nsys x)_ (w+(n’y)_ v*(n,y}] )ﬂ}(ﬂ,y, X) _?kt

&
=a(a;, - a;,m,y,x) ——ki

6
x €
= N w(ay, y,x)+ w(m,y, x) ——6-kt
j=t
. ¢
=} w*(afj,y)+w(m,y,x)—Fkt
i
- € X, €
>N vty ——ki> N t——kt
i=1 6 i=1 6
&
el 23
so that
1S, < 2 1. (44)

n<xk
vn, y,x) > (1 —€/6)kt

Let £ denote the set of the prime numbers such that y < p < x. Then

N 1=v(n,p.x)

pln
pekE
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and we have

T 1 o 1 = 1
EG=Ex)= N —= ¥V —_
PEE pP=Xx b p:’_t' p
1
log log x — log log y + O ) fo 4
og log x — log log ) (logx_ < log log x (45)

(for large enough x) since

e

e

Write a = (1 — ¢/6) kt/E(x). Then for large x, « > 1 holds trivially (by (45)).
Thus, by Lemma 3, we obtain (with respect to (28), (33), (44) and (45)) that
for large x,

- 1
N —=loglogu+c+0 (Iogu)'

18,]< * l
nexk
vl y,x) =) —e/o)kt

= ¥ 1 < c,px*exp((a— 1 —alog a) E(x*))
L ST
= ¢ ox* exp ( _6_) —E(x)— (1-——-)krl -]-;—':g—)—iﬂ)
< ejox* exp (( ) ( (l ;E/g)) = ))
s ¢ exp( (I %) Ilogk)
it exp( E) ( )4%1@10“)
< x*exp ( ( -;—) k(log f,(x))? ) (46)

Inequalities (40), (42) and (46) yield that

IST<[S,[+15,

2 (exp(+k(logf,4(x))m) +exp (— (l - —;—) ;—k[logfa(ﬂ)z))

<t exp (~(1—e) ¢ k(oe/y ()" ). (47)
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By (37, (38) and (47), we have
1 k
T (540) <@, 1s]
. Kk ok € 2
<D 3¥ exp (~(1 = 6) 5 kllop ().
Thus, writing « = x*, we obtain, in view of (21) that
1 1
D) =D,(x")> 5 Lix)exp (1 = &) (1o f,()’
> exp ((l - s]% (Iogj;(x))l)
e 1 ? /log log x 2
((l _S)T (] - .s,/Z) (Iog log ¥ log_ff,(y)) )
((1 -—.9){-:— (’1 £ ) ( log log x

> exp

> exp ) Iogﬂ,(u])z)

> exp ((1 —&} ;— (—;-Iogfd(a))z)

> exp ((1 - 26) 7 (ogfy(w)))

>ep ({55 ) o))
and

x K u=xloesl L ploBx — exp((log x)?)

so that both (22) and (23) hold and this completes the proof of Theorem 2.

4
In order to prove Theorem 3. we need the following lemma:

LEMMA 4. Let F(x)— +oo and & be a fixed positive number. Let A
denote the sequence of positive integers n such that

(i) |v(n,y)—loglogy| < dloglogy Jorall Fin) <y <n  (48)

Then A gas density 1.
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This lemma can be proved by the methods of probabilistic number theory
(see [1, 5])

Using the same notations as in Lemma 4, let A} denote the set of the
integers n such that n € 4 and

(it)
it j> F(n) then j*fn (49)

(in other words, A} denotes the set of the integers » satisfying both (i) and
(ii)). Obviously, (ii) holds for all but o(x) integers n; thus by Lemma 4, also
A} has density 1.

Now we are going to show that choosing F(x)=loglog logx and
d=¢/100 in the definition of this sequence 4, we obtain a sequence
A = A} which satisfies conditions (i) and (ii) in Theorem 3.

In fact, (i) holds since A} has density | (by Lemma 4). In order to show
that also (i) holds. let n denote an arbitrary integer, and assume that d/n
and d €A}, Let k= [4/¢] + 1 and write

R=NyN Ny -+ Ny, d=dyd,d, - d,,

where
P(n,) < F(n), (50)
F(n) < p(n,) < P(n,) < exp((log n)'"*), (51)
exp((log n)"~ V") < p(n;) < P(n;) < exp((log n)"*)
fori=2,3,..,k (52)
and
d;|n; fori=1,2,..,k. (53)

i

By (50) and (53), d, may assume at most

\ - [logn
=% N S (___2 1)
ding)= 3 (e+1)< og 2 +

poliy g N

log no ulng) ; ;
= + 1 < (2log ny )" "™ L (2 log n)™™

(1032 ) < (2log np) < (2logn)

= (2 log n)'°#'o81°8" — exp(2 log log n log log log n)

distinct, values for large n.
Furthermore, by (49) and (51), d,|n, implies that

[1ps

plny

d,
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thus, the prime factors of d, can be chosen from the
v(n,)<logn, <logn
prime factors of n,, and by (48) and (51), their number is at most
v(d,) < v(d, exp((log 1)""*)) < (1 + 6) log log(exp(log n)"/*))

1
=1 +(5)?Iog log n.

Thus, d, may assume at most

5 ("(”1))
0<ic1+8)(1/Mloglogn L F

i i
< 3 (v(n)))' < bl (log n)
O=i<(1+ 801/ loglogn o< i (1+8)(1/kHoglogn

é log log n(log .PI)“ +&)(1/k)log log n
2

£ 1
=exp (log log log n + (1 + W) T (log log n)l)

4l 1 iop toga)?
“""((*99):« R )

distinct values.
Finally, (49), (52) and (53) imply that for i = 2, 3,..., k, we have

d;

[ ] p:

pln;

thus, the prime factors of d, can be selected from the v(n;) prime factors of
n;. By (52), we have

n>n>|1p>T]pwm)> || exp(log n)¢ V%)

pln; plng pln;
= exp(v(n;)(log )"~ "");

hence

v(n;) < (log n)/(log n) "% = (log n)' ~“~ 1",




132 ERDOS AND SARKOZY

Furthermore, by (48), (52) and (53),

v(d,) = v(d, exp((log n)""*)) — v(d, exp((log n)i~/¥))
< (1 + &) log log(exp((log n)""*)) — (1 — &) log log(exp((log )¢~ "*))

= ((1 +5)—£_——(| -&%)Ioglogn

_ (—;(—MZIA )logiogn< ( 25)loglogn.

Thus, d; may assume at most

\’ v(n;)
P .
O<j<il/k+ 28 oglogn J

- ;
< b3 (v(n,))’
O f<(i/k+ 28)loglogn

< log log n((log n)' ~4= 1%y ( + 25) log log n
1 i—1
< exp (log log log n + ((-k— -——),—{-1—*) + 25) (log log n)z)
1 i-1 4 .
< exp (((—k————k—f—) +T9_) (log log n) )
values.

Summarizing our estimates above, we obtain that the product of the d's,
i.e., d can be chosen in at most

2

d(n) < exp(2 log log n log log log n) - exp (( + -g—g—) — (log log n)* )

K I #—1 gt 4
. ,-1__1: exp (((?— o )+—@) (log log n) )
e 1 £ I % &2
S \ﬂ Al S 5 2
<exp((99+k 99k+ (k 2 )+k ) (loglogn])

< exp ((!-——(E-:Elz—}ﬂ—# (9—;+—§19~+-4%) 2) (loglogn)’)

1 1 £* ,
< exp ((-2—+Ek—+(k+2}~4—§—) (log log n) )
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2

= exp ((%+ m-i- ([%] + 3) :—9) (log log n)z)

1 4 ¢
< exp ((?+%+2?8—9) (loglogn}")
S ((%Jr%)(]og 1ogn)2) (54)

ways.
Furthermore, 4 = A4} has density 1; thus, for large x we have

| (R | 1
f,(x)>7 ra T> ?Iogx;

hence
log f,(x) > log log x — 2. (55)

Inequalities (54 and (55) yield (6) and this completes the proof of
Theorem 3.

5

In this section, we formulate three results which can be proved by the
same methods as Theorems 2 and 3, respectively.

THEOREM 4. For all ¢ > 0, there exists a number X, = X (&) such that if
x> X, and A is a sequence of positive integers satisfying

X

N, (x) > exp((log log x)"?),

log x
then there exists an integer u such that
x < u < exp((log x)*) (56)

and

d,(u)> Nax) exp ((%—e) (log M)) (37)

X

(so that for a > 0, x > X |(a, €), N (x) > ax we have

d(u) > exp ((% - s) (log log .x)z) )
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Note that for “small” values of N ,(x), the following trivial inequality can
be used in order to estimate D (exp((log x)*)): if N,(x) > log x, then we
have

Dﬁ[exp((l')g x)z)) 2 dd(alaz e a[logx]') 2 [log x]'

Theorem 4 can be proved in the same way as Theorem 2. However,
Lemma 2 must be replaced by an upper estimate for 3_, ., < 1t

LeEmMMA 5. There exist absolute constants ¢,, and c,, such that if x, y
and t are positive real numbers satisfying

3gy<x°”

and

1<t <loglogx—loglogy

then we have

e log logx)‘ .

%
¥ 1<C”logx108’y( -

nex
vtin,y)<t

This lemma is a consequence of a theorem of Halasz; see [3], see also
16, pp. 687-689].

THEOREM 5. For all € > 0, there exists an infinite sequence A of positive
integers a, < a, < --- such that

(i) lil;n _ infocl (op x/ 2 o, (58)
(i) lim supD,(x)exp (— (5+¢) toesin?) =o. (59)

(Thus the factor ¢/16 — ¢ in the exponent in (4) cannot be replaced by
e/8 +¢.)

Sketch of the Proof. Let Bg denote the sequence consisting of the
positive integers n such that

(i) |v(n,y)— (1/e) loglog y| < & log log y for all log log log n < y < n;
(ii) ifj > log log log n, then j’yn.
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By using the results of Halasz and Norton (see [3, 6]), it can be shown

that if J is sufficiently small in terms of &, then for x > X,(¢); the sequence
A = B; satisfies

N,(x)> é (log x)¥¢=1°  (for x > X,(€)); (60)

and this implies (58).

On the other hand, it can be proved by the method used in the proof of
Theorem 3 that if J is sufficiently small in terms of ¢, then for x > X,(¢), the
sequence A = B satisfies also

d,(x) < exp ((é-FI‘E_D) (loglogx)z). (61)

(60) and (61) yield (59).

THEOREM 6. If € >0 and x > X,(e), then there exists a sequence A of
positive integers a, < a, < --- such that A < {1, 2,..., x},

(i) N, (x)> x(log x)~ '+,

@ dw < ((EH) (logw)z)

X 8 ¥

Jor all u satisfying (56).

(This theorem shows that in (57) in Theorem 4, the factor e/4 — ¢ cannot
be replaced by 3e/8 + ¢.)

In order to prove Theorem 6, put A = B;M [0, x| where B is defined in
the proof of Theorem 5. By (60) and by using the same method as in the
proof of Theorem 3, it can be shown that if § is sufficiently small and x is
sufficiently large in terms of ¢ then both (i) and (ii) hold.
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