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Letf(n) denote the number of factorizations of the natural number n into factors 
larger than 1 where the order of the factors does not count. We say n is “highly 
factorable” if f (m) <f(n) for all m < n. We prove that f (n) = n L(n)-“““’ for n 
highly factorable, where L(n) = exp(log n logloglog n/loglog n). This result corrects 
the 1926 paper of Oppenheim where it is asserted thatf(n) = n ‘L(n)-‘+““‘. Some 
results on the multiplicative structure of highly factorable numbers are proved and 
a table of them up to lo9 is provided. Of independent interest, a new lower bound is 
established for the function Y(x, y), the number of n <x free of prime factors 
exceeding y. 

1. INTRODUCTION 

Let f(n) denote the number of factorizations of the natural number n into 
factors larger than 1, where the order of the factors does not count. Also let 
f( 1) = 1. Thus, for example, f(l2) = 4 since 12 has the factorizations 

12, 2.6, 3-4, 2.2-3. 
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In this paper we establish a rather accurate estimate for the maximal order of 
f(n). Roughly, we show that this maximal order is n . L(~z-‘+~“‘, where 

L(n) = exp(log n . log, n/log, n) 

and log,n denotes the k-fold iteration of the natural logarithm. For a more 
explicit determination of the “o(l),” see our theorems in Sections 2, 4, and 5. 

In [ 131, Oppenheim also considered the problem of the maximal order of 
f(n), but he erroneously claimed that it was II . L(n)-2t0(‘). His error arose 
when he assumed uniformity in k for his estimation of the maximal order of 
the Piltz divisor function d,(n), the number of factorizations of n into exactly 
k positive factors with order counting. 

We present two different proofs that there is an infinite set of n with 
f(n) > y1 * L(n)- I+‘(‘) In the first proof (Theorem 2.1), we show that the . 
average value of f(n) for n <x with n divisible by only very small prime 
factors is x. L(x)- ‘+‘(l). Our proof requires an accurate lower bound for 
the function V(z, y) when y is about e*. Here 

!qz,y) = #(n: 1 <n <z, P(n) <.Y), 

where P(n) denotes the largest prime factor of n when n > 1, P(1) = 1, and 
where #A denotes the cardinality of the set A. Although there is a large 
literature on Y(z, y), little is known about lower bounds when 

,$WE <y < e(logrP8~ 

In Section 3 we establish a lower bound for Y(z, y) that agrees closely with 
the known upper bound if y > (log z)’ ’ “. 

In Section 4 we present a second proof that the maximal order off(n) is 
at least n . L(n)- ‘+‘(‘). We accomplish this by explicitly exhibiting integers 
with many factorizations. These integers have a somewhat prohibitive 
structure. More “natural” candidates, like the product of the primes up to k, 
or k!, or the least common multiple of the integers up to k, do not work. (We 
can show S(n) = n s L(n)- 2+0(1) for the first and last sequences. For II = k!, 
we have f(n) = n . L(n)(-lto(l))‘ogJn .) To get lower estimates for f(n), we 
use the relationship, also exploited by Oppenheim, betweenI and d,Jl~). 
While Theorem 4.1 has the advantage of being constructive, Theorem 2.1 
has its own advantage in that the result holds for the smaller functionJo 
which counts only factorizations of n into distinct factors* 

In Section 5 we show that f(n) < n e L(n)-‘+“(‘) for all n. Our proof 
employs a common trick that Rankin [ 151 and de Bruijn [2, Part II] also 
used to study Y&y). The proof also uses the formula 

2 f(n)nP= n (l-n-y, 
Ph)<Y P(n) <Y 

n>l 

(1.1) 
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which is a generalization of a formula of McMahon [ 111 who had no 
restriction on P(n) on either side of the equation. Our formula is certainly 
valid for all s in the half plane Re s > 0, but we shall only use it for s real 
and{<s< 1. 

We say that a natural number n is high&fucrorabZe iff(m) <f(n) for all 
m, 1 < m < n. There is an obvious analogy with the highly composite 
numbers n of Ramanujan [ 141 which satisfies d(m) < d(n) for all m, 
1 < m < n. It is obvious that if n > 1 is highly factorable, then there is some 
t > 1 with 

n =pypy . ..py. a, haz> *** >a,~ 1, 

where pi denotes the ith prime. In Section 6 we show that pl > (log n)’ -’ for 
any S s 0 and all sufficiently large highly factorable R. It follows, of course, 
from the prime number theorem that pr < (1 + o( 1)) log ~1. We also show that 
pfjn, if n is sufficiently large. 

It is not particularly easy to compute J(n). For example, to find that 
f(1800) = 137 takes some work. In Section 7 we present an algorithm for 
the computation of f(n). We have used this algorithm (on a computer) to 
find all of the highly factorable numbers below 10’. These numbers are listed 
in Table I. 

We are able to show that the number of values off(n) that do not exceed 
x is x0(‘), but we do not include the details here. 

We now mention some related results. Oppenheim [ 131 also considered 
the average value off(n), showing 

L v f(n)- 
e2dG 

X- n4x 2&(logx)r’“’ 

This result was independently obtained by Szekeres and Turan [ 171. 
There is a second function connected with the name “Factorisatio 

Numerorum,” namely F(n), the number of factorizations of n into factors 
larger than 1, where now different permutations of the same factorization are 
counted as different factorizations. Thus F(12) = 8 since 12 has the fac- 
torizations 

12, 2.6, 3.4, 4.3, 6.2, 2.2.3, 2.3.2, 3.2.2. 

Kalmhr (91 showed that 

x F(n)-- 
n<x P5'W 

where t;(s) is the Riemann zeta functions and p > 1 is such that <@) = 2. 
Other papers on F(n) are by Erdiis 131, Evans [4], Hille [7], Ikehara [S], 
and Kalmir [9]. 
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TABLE I: HIGHLY FACTORABLE INTEGERS BELOW 10' 

” 

number of exponents in 
fattonzations the prime decomposition 

of n Of n 

1 1 none 

4 2 2 

8 3 3 

12 4 2 1 

16 5 4 

24 7 3 1 

36 9 22 

48 12 4 1 

72 16 32 

96 19 51 

120 21 311 

144 29 42 

192 30 61 

216 31 33 

240 38 411 

288 47 5 2 

360 52 321 

432 57 43 

480 64 511 

576 77 62 

720 98 42 1 

960 105 611 

1060 109 3 3 1 

1152 118 72 

1440 171 521 

2160 212 431 

2880 289 6 2 1 

4320 382 531 

5040 392 4211 

5760 467 721 

7200 484 522 

8640 662 6 3 1 

10080 719 5211 

11520 737 ‘821 

12960 783 541 

14400 843 622 

15120 907 4311 

17280 1097 7 3 1 

20160 1261 6211 

25920 1386 64 1 

28800 1397 722 

30240 1713 5311 

34560 1768 8 3 1 



TABLE 

" 

I: HIGHLY FACTORABLE INTEGERS BELOW 10’ 

40320 

50400 

5 1840 

60480 

80640 

90720 

100800 

120960 

151200 

161280 

172800 

181440 

201600 

241920 

302400 

362880 

453600 

483840 

604800 

725760 

907200 

1088640 

1209600 

1451520 

1814400 

2177280 

2419200 

2903040 

3326400 

3628800 

4838400 

5322240 

5443200 

6652800 

7257600 

9676800 

9979200 

10886400 

13305600 

14515200 

18144000 

19958400 

21772800 
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number of exponents in 
factonzations the prime decomposition 

of n of n 

2116 7211 

2179 5 2 2 1 

2343 741 

3079 6311 

3444 8211 

3681 5411 

3930 6221 

5288 7311 

5413 5321 

5447 92 11 

5653 832 

6756 6411 

6767 7221 

8785 8311 

10001 6321 

11830 7411 

12042 5421 

14166 9311 

17617 7321 

20003 8411 

22711 6421 

24270 t511 

29945 832 1 

32789 9411 

40774 7421 

41702 8511 

49320 9321 

52412 10 4 1 1 

54613 63211 

70520 8421 

79177 10 3 2 1 

79459 93111 

86222 7521 

99235 73211 

118041 9421 

124207 113 2 1 

129296 64211 

151500 8521 

173377 83211 

192371 10 4 2 1 

199668 a431 

239312 74211 

257381 9521 

25401600 259906 8422 
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TABLE 1, HIGHLY FACTORABLE INTEGERS BELOW 10' 

n 

number of exponents in 
factorizatlons the prime decomposition 

bf " of " 

26611200 292951 9321: 

29030400 306091 11 fi 2 1 

31933440 313907 104 111 

36288000 340413 9431 

39916800 425240 84211 

43545600 425254 10 5 2 1 

50803200 443995 9422 

53222400 481392 10 3 2 1 1 

59875200 525030 7 52 l! 

72576000 564234 10 4 3 1 

76204800 574761 8522 

79833600 729916 942 11 

101606400 737393 10 4 2 2 

106444800 771932 l! 3 2 1 1 

119750400 947375 85211 

152409600 996347 9522 

159667200 1217160 104 2 11 

199584000 1262260 84311 

217728000 1279554 10 5 3 1 

239500800 1649624 95211 

279417600 1653287 84221 

304819200 1677259 10 5 2 2 

319334400 1978932 11 42 11 

399168000 2205059 94311 

479001600 2787810 105 2 11 

558835200 2894D57 94221 

638668800 3148035 1242 11 

718502400 3470553 96211 

798336000 3737489 104 3 11 

838252800 3786089 85221 

958003200 4590111 11 52 11 

The functions is related to the concept of partitions of a multiset (or 
multipartite partitions). For example,f(2”) =p (n), the number of numerical 
partitions of n, and f(p,p,...p,) = B,, the nth Bell number, that is, the 
number of partitions of an n-element set. In general f(pTlpy . ..p>) is the 
number of partitions of the multiset which has cli copies of pi for each i (or 
equivalently, the number of partitions of the vector (a, ,..., a,) into lattice 
point summands (b, ,..., b,) with each bi > 0). There is a large literature on 
the subject of partitions of a multiset. The interested reader is referred to 
Section P64 of W. J. Leveque’s “Reviews in Number Theory.” Our 
algorithm in Section 7 for the computation of f(n) appears to be the first 
practical algorithm for computing the number of partitions of a multiset. 
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Throughout the paper the letters p and q always denote primes. Also we 
shall let log’,x denote (log,xy’, where log, represents the k-fold iteration of 
the natural logarithm. We shall continue to let P(n) denote the largest prime 
factorofnifn>l andP(l)=l. 

2. A LOWER BOUND FOR THE MAXIMAL ORDER OF~&Z) 

Recall that f,(n) denotes the number of factorizations of n into distinct 
factors greater than 1, order of factors not counting. 

THEOREM 2.1. There is a cotistant C such that for infinitely many n, 

Proof. Let x be large and let A denote the set of integers a, 
1 < a < exp(log:x) with P(a) < log x/log,x. Then from the Corollary to 
Theorem 3.1 we have 

#A = !P(exp(log:x), log x/log,x) - 1 

= exp I logix - log,x i log,x + lo&x - 1 + 
log,x - 1 

log,x +G$M. 

Let k = [log x/log:x] and let 3 denote the set of k-element subsets of A. 
Then 

>J- 
#A 

log x/log; x 

#A log x/log; x 

Consider the mapping 17: B + Z, where if S E B, then n(S) is the product 
of the members of S. Note that 

O<IqS)<x and P(ll(S)) < log x/log,x. 
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Moreover S corresponds to a factorization of n(S) into exactly k distinct 
factors. Thus 

We conclude that there is an n <x with 

fidn> 2 #B/W, log x/low). 

But Theorem 1 in de Bruijn [2, Part II] contains the assertion that 

Y(x, logx/log, x) = exp{ (1 + o( 1)) log x . log,x/log~x}. 

Thus there is an n <x with 

fo(n)>xI exp 1 -s (lOg,X + lOg4X + ‘“Fi,“, ’ + O (E)) j * 
3 1 

(2.1) 

which proves the theorem. 

3. INTEGERS FREE OF LARGE PRIME FACTORS 

If u > 1 is fixed, it is well known that 

lim L- Y(x, xllU) = p(u) > 0, (3.1) x-m x 

where p(u) is the Dickmande Bruijn function. The best result in this 
direction is that if x2 + u2 + co subject to the constraint 1 < u < (log x)~'~-', 
then Y(x, xllU) N xp(u) (de Bruijn [2, Part I] plus the best known results on 
the error term in the prime number theorem). From de Bruijn [l] we have 
for u > 3 

P@> = ew I ( -24 logU+log,U-1+ 
log,u - 1 

logu +o g-g)) 1. P-2) 
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For each u 2 1, let 

D(u) = in; ; Y(x, xl’y. 

Thus from (3.1) it follows that 0 < D(U) <p(u). We shall show in this 
section that the right side of (3.2) is also a valid estimation for D(U). 

There are at least two other papers where a lower bound for Y(x, x”‘) is 
established. In [5], Fainleib shows that 

+ Y(x, xl/‘) > exp 
I ( 
-u log*u logu+log,U-1 +c- 

log u I! 

for some absolute constant c and for 3 < u < log x/log,x. His method is to 
use an asymptotic result (stated without proof) for certain differential delay 
equations that are similar to equations studied by Levin. In [6], Halberstam 
uses the Buchstab identity and an induction argument to show that for 
3 < u < u,(x) 

$ qx, xl’“) > 2e-‘O - exp{-u(log u + log,u t V(u))}, 

where v(u) is an explicit function that is asymptotic to log,u/log U. The 
function u,(x) is not explicitly given, but tracing it through the proof, we find 
that the Halberstam inequality is claimed only for a region where the 
asymptotic relation (3.1) is already known. However, it is possible to tighten 
the estimates in Halberstam’s proof and establish his inequality for the larger 
region 3 < u < c log x/(log,x)5’3+E. 

Our method of proof is to produce a succession of increasingly sharp 
estimates for D(U) using the inequality 

Y(x, xl/U) > x Y(X/rni, w), 

where the mi run over certain integers composed solely of primes in the 
interval (w, ~“~1 and where w z x(‘-&)“. We begin with a crude estimate 
that is essentially implicit in de Bruijn [2, Part II]. 

LEMMA. There is a constant cl such that if u 2 c, and x > 1, then 

Y(x, x”U) > x/u35 

Proof. Since Y(x, xllU) 2 1, the result is trivial if u3’ > x. So assume 
x > l13U. From what we have said above, we also may assume 
u > (log X)3/*-e (if u is sufficiently large). 
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Thus, we suppose c1 < U, (log x)3/8-& < U, u3” <x. Then A?” 2 c:, so that 

7r(x1’u) > UX”“/(2 log x), 

if c, is large enough. Let n’(y) denote z(y) if y > 2 and n’(y) = 1 otherwise. 
Let u = m + 8, where m = [u]. We evidently have 

!I+, xl/“) > P-L(x~/~)~ 7c’(xB/“)/(m t I)! 

> ($$g (&g/u” 
= x/(2 log X)m* 1 

> x . exp{-(u $ l)(log,x + log 2)} 

> x . exp{-3u log u} = x/u3’, 

where the last inequality is valid for u > (log x)~‘*-’ and u suffkiently large. 

THEOREM 3.1. If x > 1 and u > 3, we have 

Y(x, x1’“) > x - exp I i --u logU+log,u-l-t- log,24 - 1 
+C 

1og:u 
log u logzu’ )I 

where C is an absolute constant. 

Proof: It suffkes to show the theorem for all u > c2, where c2 is an 
arbitrary absolute constant. Since !P(x, x1”) > 1, we may assume 

x > u”. (3.3) 

Consider the intervals 

Ij = (X (l/u)(l-(k+ I-j)/lcdu), X(l/~)(l-(k-j)/log3u) 1 
for j = l,..., k, where k = [log*u log,u]. Let 

exp( l/log2 24) - 1 
‘j = exp(k/log* u) - 1 exp((j - 1)/W u> 

for j = l,..., k. Note that 

exp(k/log* u) = exp(log,u + O(l/log*zr)) 

= log U t O( l/log U). 
(3.4) 

Let mj ,  1 , mj.2 ,.-, denote the integers composed of exactly [aju] primes (not 
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necessarily distinct) from lj. Let m,, m2 ,,.., denote the integers of the form 
ml,ilmz,i2... mk,ik. Then we evidently have 

Note that for each m,, 

[a,ul log mi > + - I- k;g:y+;a,(l- “:olJ +0(i). 
logx ‘Jyl 24 ( 

(3.6) 

Now 

(3.7) &Xj=1 
j 

and from (3.4), 

1 clj(k + 1 -j) = a1 x (k + 1 -j) exp((j - l)/log2 U) 
.i i 

=a1 lew (&5-J- (exp (&)-1) 

-k(exp(~)-l)!/jexp(~)-l/? 

exp( l/log2 u) k 

= exp(l/log2u) - 1 - exp(k/log2 u) - 1 

=1og*u. (1+0 (&--))- 1og2u’og2u 
log u - 1 + O(l/log U) 

= log% - log U log,u + O(log,u). (3.8) 

Thus from (3.6b(3.8) we have 

lWmi> 1 _ 1 b% u - -+0 log, u 

logx ’ log u + log2 u i ) log3. 

Since x/m, > 1, we may define oi so that w = (x/m,)““‘, that is, 

l”g(x/mi) 

ui= logw 
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Thus if we let u = max(u,}, we have 

+-(1+0(S)). (3.9) 

Since w > (x/wI,)“~‘, we have from (3.5) that 

Y(x, x”U) > s Y(X/rni, (x/m,)‘~~‘) 2 xD(L‘) 2: l/m,. (3.10) 
i i 

It remains to estimate D(v) and c l/m,. For the latter, note that 

$=Ji$m ~(~~,$)‘““/l~,;~I!). 
I 1.1 j .I 

Now from (3.3) 

(3.11) 

\’ I = loglog X(l/u)(l-(k-j)ilos’u) - loglog X (lJu)(r-(ktl ~)~lo~'ul 

P';;, P 

+O i(&JOl 
=loi3 (l-&+l”P(l- “l+g~;~)+O(&) 

= log 
!i 

l-k+l-j+ 1 
log3 u log’ IN 

l-k+l-j 
log3 u )I 

1 
+o ~ 

i i logI u 

1 
=log3u ( 

l+“;g:;q+o(~,. 
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Then using (3.7) and (3.8) we have 

From (3.7) and Stirling’s formula, we have 

log (I [aju]!) = 1 [aju](log(clJuI - 1) + O(k log u) 
j I 

= 2 a,u(log(ap) - 1) + O(k log u) 

=zi logu- 1 +\‘aJoga,j +O(klogu). (3.13) 
I 

To estimate this last sum, we use (3,4), (3.7), (3.8) to get 

~ aj log aj = t] aj 
j-l 

log LI, + z 
j j log 24 

=loga, - L r aj(k + 1 -j) + & $ aj 
log2 u 7 J 

= log a, - 1 f - 

log, 7.4 -1+p 
log u 

+log,u+O 

1 
=-2log,u-log,U+---- log2 u 

log 24 1+ - + log, U + 0 
log u 

= -2 log, U - 1 + log, u + 1 + o log,u 
log u ( 1 G&i- 
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With this result and (3.13), we have 

log (11 [a,u]!) = u (log u - 2 log, u - 2 + lo:;,“: 1 + 0 (%I). 

(3.14) 

Thus following from (3.10)-(3.12) and (3.14) we have 

Y(x, x”‘) > xD(v) - exp 
1 ( 
--u 1% u log u t log,24 - 2 + - lw:~ ) 

log u 
+o - 

( 11 log224 1’ 
(3.15) 

From the lemma and (3.9) we have for large u 

log D(v) > -3v log u > -3u, 

so that (3.15) becomes 

Y(x, x”~) > x . exp{--u (log u + log, u + 0( 1))). 

Using this result with (3.9) we have 

log D(v) > -u(log u + log, V + O( 1)) 

a-f-& (l+O (~))(logu+OW) 

=--u (1 to ($-)), 

so that from (3.15) we now obtain 

Y(x, ~9) > x s exp 
i ( 
-24 log, u log 24 + log, u - 1 + - 

1 
log u 

+o- . 
( ))I log u 

We iterate our procedure one more time using this last result with (3.9) to 
get 

logD(v)>--v 
( 

log, t’ 
logu+log,V-110 - 

( 1) log t, 

>-$-(l.O(~),(lO,~-1+0(S)) 

z-u l- 
( 

&+o s 
( 1) 

, 
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so that (3.15) at last gives 

Y(x, xl/U) > x * exp 
I ( 
-24 logU+log,U- 1+ 

log,u - 1 
logu +0($),!3 

which was to be shown. 

COROLLARY. If E > 0 is arbitrary and 3 < u < (1 - E) log x/log,x, then 

Y(x, x1/‘) = x - exp 
I ( 

log,u - 1 
-u logU$log,U- 1+ log u +-wG u> 

)I 
Y 

where 

where c, is a constant that depends only on the choice of em 

ProoJ Theorem 3.1 is half of the corollary. The other half follows from 
Theorem 2 in de Bruijn [2, Part II]. 

4. J~AN EXPLICIT EXAMPLE 

In this section we explicitly describe an infinite set of integers, each of 
which has many factorizations. 

THEOREM 4.1. Let x be large and let 

1 &=- 
( 

low 
low 

log,x+log,x+- , 
low 1 

t = (1 + E 1og:x) l’<, k = log x/log; x, 

Then there is an absolute constant C such that 

Proof. We first show that log n cannot be too much bigger then log x. In 
fact, we show 

log n < log x -t O(log x/log: x). (4-I) 
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To see this, note that 

log n < c kp=-’ logp. 
P<t 

Now if we let r(s) = Ii(s) + d(s), then 

(4.2) 

rp 
P<f 

E-’ logp = it SE-’ logs dz(s) 
2- 

I 
t 

= s ‘--l ds + 
2 I 

t 
sE-’ log s dd(s). 

2- 

(4.3) 

We shall show that the last integral in (4.3) is O(1). First note that 

lo+ logE+2log,x+Q 
( f 

1 

\ b&x 1%,X )I 

lw,x 
= log,x + log& + log,x/log,x 

x ( log,x + log,x + 1%4X 
&$-$$+ Q (gg)) (4.4) 

lo& + * 1%4X =log,x l-7 
( 2 log,x ( 1) log:x’ 

With this estimate and the fact that tE - log,x logjx, we have for 2 < s < t 
and t large, 

SE = (log s) &logs/loglogs < (log pg tmgiogt = (log s)l+ou)~ 

Also using Id(s)) < s/log4s, we have 

I 

t 
s ‘--l logs dd(s) = t”-’ log td(t) - 2”-’ log 2d(2) 

2- 

E-2((~ - 1) log s + l)d(s) ds 

(4.5) 
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Using (4.5) in (4.3) we have 

c p”-’ logp = Jt F-1 ds + U(1) 
P<I 2 

=+‘-~2c+o(l) 

=f(f- l)+ O(1) 

=1og;x+ O(1). 

(4.6) 

Thus (4.1) follows from (4.2) and (4.6). 
Recall that the Piltz divisor function d,(n) counts the number of 

factorizations of n into exactly 1 positive factors, where 1 is allowed as a 
factor and different permutations of a single factorization count separately. It 
is easily shown that d,(n) is multiplicative and that 

d,W’)= (‘;a;’ )- 
Moreover, we evidently have for any choice of 1 that 

.I-@> 2 d,(n)P. 

Thus 

kf(n) 3 log d,,,(n) - lw[kl! 

= 2 log [kl + [kP”-‘l - 1 
[kpE-‘1 - 1 

_ log[k], . . 
P<l 

(4.7) 

Now if a, b 2 2, then 

log [al + PI - 1 
Lb1 - 1 

= (a + b) log(a + b) - a log a - b log b + O(log(a t b)) 

so that 

log [kl + IW’I - 1 
[kpE-‘1 - 1 

=k(l+p”-‘)(logktlog(l tp”-‘))-kkogk 

- kp”-‘(log k t (E - 1) logp) + O(log k) 

= k(l +pE-‘) log(1 +pE-‘) + k(1 -E) p”-’ logp t O(log k). (4.8) 
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Now 

pTf (1 +pE-l) log(l +pE-l) = c p&-l + O(1) 
P<f 

I 

f 
= s &--l dz(s)+ O(1) 

2- 

‘s E-l t 

= I -ds+ se-’ 
2 log s i 

dd(.s) + O(1). (4.9) 
2- 

The last integral is 

tE-9(f) - 2’-‘d(2) -I: (E - 1) sep2d(s) ds 

= O(1) + 0 (c:&ds) = o(1) 

by (4.5). Also 

-I s E-1 

J 
.t& du 

-ds = 
2 log s J 

- - li(fE) t 0 (Jy-) 
2E 1% u 

IE (1+O(E*I~g21))+O(llog&l). & log t - 1 

Thus using (4.4), we have 

s (1 $-PC-l) log(1 t&f-‘) 
P<I 

= log2x(log,x t log‘+ t log,x/log,x)(l + Wlog:x)) 
log,x t log,x + log,x/log,x - 1 + q1og: x/log: x) 

= log,x 
( 
1 + L+o(i$-g))(l+o(&)) log, x 

( 

1 
=log,x 1+- to 1%X 

1%X ( i) log:x‘ 

Thus from (4.1), (4.6)-(4.8), and (4.10), we have 

(4.10) 

logx 
hf(n) > - 

( 

1 + 1 
---to hw 

log,x low ( )i log:x 

log x 
tlogx-- 

1%2X ( 
log,x t log,x + ~)+o(~) 
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- $ (10&x + wxw)) 
2 

log x =logx-- 
( 
log+ + log,x + 

log,x - 1 
+o hx 

lw2x lw,x ( i) log:x 

log n 
>logn-- 

i 
log,n + log,n + 

log, n - 1 

h&n 
+o log, n 

loi3 n i 1) log:’ 

which proves the theorem. 

5. AN UPPER BOUND FORK' 

In this section, to get an upper bound for f(n), we employ a formula of 
MacMahon and a method that Rankin and de Bruijn used to get upper 
bounds for Y(x, y). 

THEOREM 5.1. There is a constant C such that for all large n 

Proof. Since f(n) depends only on the array of exponents in the prime 
factorization of n and not on the choice of. the primes themselves, to prove 
the theorem it is sufficient to consider only integers n that are divisible by all 
the primes up to some point. Let I(n) = log n + log n/log~On. Since 

T 
PZ”) 

logp > log n 

for all large It, we may assume P(n) < Z(n). From (1, l} we have for any 
choice of c > 0. 

f(n) < nc r f (m)/mc = nc II,(“) (1 -m+)-‘* (5.1) 
P(m)<z(n) 

m>l 

We shall choose 

1 
c=l-- 

( 
log, n + log4fl + 

log,n - 1 log: n 

log2 n 
log 

3 
n 

-log:n* 1 
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Thus to prove the theorem it is sufficient to show that 

(5.2) 

Now 

A= ‘i’ 
P(rnZl(n) 

mP + O(1) = n (1 -p-c)-’ + O(l), 
P<l(n) 

and 

BEflog 11 (l--p-‘)-‘= x p-‘+0(l). 
P<!(n) PSl(ft) 

By an argument similar to (4.9) and the subsequent calculations we have 

z(n)‘-’ 
* = (1 - c) log Z(M) - 1 

{ 1 + O((1 -c>-’ log-* Z(n))} + O(Ilog(1 - c)l) 

= exp{log,n + log,n + ((log,n - l)/log3n) - Wd~ll%~~)J 
log,n + log,Pr - 1 + ((log,n - l)/log,n) - (log:n/log:n) 

++oi&,! 

= log,n exp 
L I 

log,n - I login log,n - 1 
log, n -log:n ii 

1+ 
log,n 

+0 

=log,n l- 
I ~+~(~)~ 

-c log, n - log:‘* n, 

for all large n. Thus 

A=eB+0(1)~(logn)e-‘0@2”+0(1)=~ 
log n log: n 
log,n login 

which establishes (5.2) and thus the theorem. 

6. THE LARGEST PRIME FACTOR OF A HIGHLY FACTORABLE 
NUMBER AND OTHER PROBLEMS 

If n is highly factorable (that is,f(m) <f(n) for all m, 1 < m < n) and n is 
large, then we saw in the proof of Theorem 5.1 that P(n) < log n + 
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log n/log:‘n. In this section’we use Theorem 2.1 and the method of Theorem 
5.1 to show that for each 6 $ 0 we have P(n) > (log PZ)~-’ for all sufficiently 
large highly factorable numbers n. 

THEOREM 6.1. For all large highly factorable numbers n we have 

P(n) > (log n)l-(‘og3n)-* (6.1) 

Proof. Our strategy is to get an upper bound result forf(n) for those n 
which do not satisfy (6.1). This upper bound will be smaller than our lower 
bound result for highly factorable numbers (Theorem 2.1). We then conclude 
that these n are nut highly factorable. 

Let l(H) = (log n)1-(‘og3n)-‘. If P(n) < l(n), then the argument of (5.1) 
shows that 

f(n) ,< nc fl (1 - rn-‘)-’ 
P(m) <lo!) 

m>l 

for any c > 0. We shall choose 

1 c=l-- 
( 

1% * 1 

low 
log,n+log,n+--- * 

h% n 2 log, n 1 

It thus follows from the proof of Theorem 2.1 (by applying (2.1) with x 
replaced by n) that n will not be highly factorable if . 

A Ef log n (1 -m-c)-l=o l”gn 
( ) log,n log,n ’ (4.2) 

PwJ)<l(n) In>1 

As in Section 5 we may argue that 

l(n)'- 
log A = (I - c) log I(n) - 1 

(1 t 0((1 -c))* log-* Z(n))) + O(Ilog(1 -c)I). 

(6.3) 

Now 

(l-c)logZ(n)= (I-&)(log,n+log,n+$-I-)’ 
2 log,n 

so that 

Z(n)lSc = 
log,nlog,n(l + log,n/log,n $ 1/2log,n + O(login/log:n)) 

(1 + l/log, n + O(log,n/log:n)) 
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Thus from (6.3) we have 

log A = log, n(log,n + log,n - i + wdnllog,n)) 
log, n + log, n + O(l0g.q n/log, n) (1+0(&J) 

1 
=log,n l-~ 

( 
+o 

log, n 
2 log,n i 1) log:n’ 

which gives (6.2). 
The following lemma will help us prove that P(n)/ln if n is a large highly 

factorable number. 

LEMMA. Suppose p, q are primes and n is an integer with p2 Jn, p2 f n, 

q 1 n. Then f(qn/p) > V(n). 

ProoJ Let K(n) denote the set of factorizations of n. Thus an element 
v, E K(n) is a multiset of integers exceeding 1 whose product is n. If 
cp E K(n), let (~1 IP denote the number of unequal factors in (p which are 
multiples of p. For example, if p = 2 and p = (4, 4, 6, 1 1 } is a factorization 
of 1056, then 1~1~ = 2. 

Given v, E &T(n) we can transform 9 into a factorization of qn/p by 
changing one p to a q. Thus 9 corresponds to lu, IP different factorization of 
qn/p. Moreover, every factorization of qn/p arises in exactly one way in this 
fashion. Thus 

Let f,(n) = #{v E K(n): Iv, IP = 1). Thus 

f(sn/pl =f,W + C Ipeg IClp>Z Irplp>l 

=~?f(d -S,(n). (6.4) 

Hence to prove the lemma it suffices to showf,(n) < $“(n). 
Say pklln. If p E g(n) and Iv,I,= 1, then for some j/k and some d,y, 

contains k/j copies of the factor p’d. Let A, B, C, D respectively denote the 
number of ~JJ E &F(n) with IpIP = 1 and 

for A: o contains k/j copies of $d, where j > 1 and pkd #p2, 

for B: p contains k copies of pd, where pkd #p2, 

for C: v, contains p2, 

for D: 9 contains two copies ofp. 
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Then A + B + C + D =fP(n>. Note that C = D = 0 unless k = 2. We now 
show that each of B, C, D is at most A. 

If 9 E g(n) is counted by B, we can let 9’ E K(n) be the same 
factorization except that the p&s are consolidated into one factor pkdk. Then 
9’ is counted by A and the mapping 9 --t 9’ is one to one, so B <A. 

Suppose now k = 2 so that C, D > 0. Each type C factorization can have 
the p2 consolidated with one of the other factors in 9 (using n #p*) to form 
a type A factorization. Thus C <A. Obviously C = D, so D <A as well. 

We now show that A Q(n) -f,(n). Indeed, if 9 E. K(n) is counted by A, 
we let 9’ E K(n) be the same factorization except that one of the factors $d 
is split into p, $-Id. It is evident that the mapping 9 + 9’ is one to one. 
Moreover, (9’ lP > 2. For ifp =$-Id, then $d =p* occurs at least twice in 9 
(if not, then 9 would be a type C factorization), so that p* occurs at least 
once in 9’. 

Thus 

f,(n) = A + B $ C t D <4A G 4f(n) - 4&(n), 

so that&(,(n) < $f(n) and f(qn/p) > zf(n) from (6.4). 

THEOREM 6.2. There is an E > 0 such that if n is a large high@ 
factorable number and (1 - E) P(n) <p <P(n), then pjj n. 

ProojI Say n is a large highly factorable number with the prime fac- 
torization 

Say for some ps, (I - E)P~ <ps <pl, we have a, >, 2. Let k= 16 logznl and 
let 

Yk = 
Pt+IPt+2 “‘Ptfk 

Psps-l ‘-Ps-k+l’ 

We now estimate yk.- From Theorem 6.1, we have pt > (log n)‘-‘, where 
6 > 0 is small. Thus from the prime number theorem with error term, we 
have 

Thus 

Pt+k <Pt(l + 1/1og,n)? Ps-k > t1 -& - 1/10g2n)p,* 

log yk < k(log(l + l/log,n) - log(1 -E - l/log,n)) 

= k(-log( 1 - E) + 0( l/log, n)) 

< -6 log(1 - E) log,n + O(1). 
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We now choose E = f. Thus for large n we have 

y/( < (log rr)i3’14 ((1 --E)Pt(Ps* 

Thus the integer n’ = ny,Jp, is smaller than n. 
We now showf(n’) >f(n), thus contradicting the choice of n as a highly 

factorable number. Indeed, using the lemma k times we have 

f(wJ,) 2 WfW 

Also, if 1 p 1 denotes the number of unequal factors in the’ factorization p, we 
have, using the notation of the lemma, 

fW!f) G ,Eg” ) (IPI+ 1) 

<f(d) 1 max(lol + 1: v, E R(n’)} 

0 0.“) - (S+ 1). 

Thus 

This contradiction proves the theorem. 

Remark. Our proof has us taking E = 4. Being a little more careful, we 
could actually choose any E < d. Proving a better lemma will allow even 
larger choices for E. Indeed, with more effort it is possible to replace the 2 of 
the lemma with 2 - 6, where 6 > 0 is arbitrarily small, provided we assume 
m has many prime factors. With such an improved lemma, we could then 
prove Theorem 6.2 for any E < f. We conjecture that this result is best 
possible, that is, that asymptotically 50% of the primes in a highly factorable 
number appear with exponent one. 

We next might ask how many primes, if any, appear with exponent 2, 3, 
etc. We can prove that if p* (m, q 11 m, then f(qm) > (i - S) j(pm) provided 
m has many prime factors. If our conjecture that asymptotically i of the 
exponents are 1 is correct, then we can argue similarly as in Theorem 6.2 to 
show that there are asymptotically at least (and we conjecture at most) d of 
the exponents equal to 2. Continuing with such a chain of conjectures, we 
conjecture that for each fixed k there are asymptotically exactly l/k(k + 1) 
of the exponents equal to k. Note that numbers of the form n! also have this 
property. Also note that in Table I there are many numbers of the form n! 
which are highly factorable, namely for n = 1, 4, 5, 6, 7, 8, 9, 10, 11, 12. 
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However, this is only a temporary phenomenon; that is, if n is sufficiently 
large, then n! is not highly factorable. We know this, since we can show, 
using inequality (1.52) in Oppenheim [9], that 

logf(n!) = n log n - (1 + o( 1)) n log;& 

while if n! were highly factorable, then we would have 

log f(n!) = II log y1- (1 + o( 1)) n log, n. 

It is somewhat a mystery to us why n! has so few factorizations. Indeed if m 
is the product of the primes up to n log n - 2n, then m < n!, m is of course 
square-free, and yet m has far more factorizations than n! (if n is large). 
Probably the “fault” with n! is that the exponents on the small primes are 
wastefully large. Another possibility is that our conjecture above that a large 
highly factorable number has asymptotically I/k@ + 1) of the exponents 
equal to k is wrong. 

We now mention a few additional problems. 

(1) From Table I we see that if it is highly factorable and 4 < II < 109, 
then there is a prime p with n/p highly factorable. Does this remain true for 
all highly factorable numbers IZ > 4? For infinitely many? See Robin [ 161 
for examples of highly composite numbers yt such that n/p is not highly 
composite for all primes p. 

(2) Let N(x) denote the number of highly factorable numbers n < x, It 
is easy to see that N(x) b log x since if n > 1 is highly factorable and if n’ is 
the next highly factorable number, then n’ < 2n. Does log N(x)/loglog x tend 
to a limit larger than l? Can it at least be shown that there are quantities a, 
/3with l<a</?<~suchthat 

a < log N(x)/loglog x < /I 

for all large x? 
(3) If n, 12’ are consecutive highly factorable numbers, does n’/n + l? 

Does f(n’)/f(,) -+ l? 
(4) Find asymptotic formulas for the exponents on the small primes of 

a highly factorable number. 
(5) A highly factorable number is a “champion” for the functionS(n). 

What do the champions for f,(n) or F(n) look like? What is the maximal 
order of F(n)? Some work has been done on this: see Erdijs [3], Evans [4], 
Hille [7], and Kalmir [9]. 



26 CANFIELD,ERD&,AND POMERANCE 

7. CALCULATION OF TABLE I. 

In this section, we describe the algorithm used to determine the values 
displayed in Table I. If n =Ilpql (with p, = 2, pz = 3, etc.) is highly 
factorable, then we must have a, > uz 2 . . . . We calculated (by computer) 
f(n) for each of the 1274 values of n < 10’ whose prime exponents are 
monotone nonincreasing. Table I shows the 118 numbers found to be highly 
factorable. We have suppressed the values off(n) for n not highly factorable. 
We shall gladly send these values to any interested reader. (KnowingJ(n) 
for n satisfying a, > a, > ,.. and n < 10’ allows one to readily determinef(n) 
for any rr < 10’ and for infinitely many other n.) 

The computational problem then is how to determine the number of 
partitions of a multiset A having aj copies of i, for 1 < i < k. Our solution is 
to systematically generate each such partition, and count them in the 
process. To make the generation process systematic, we impose the structure 
of a rooted tree on the collection of all partitions of M. The partitions are 
then enumerated by a standard tree-traversal algorithm of computer science 
called “preorder traversal”; for a description of this algorithm, see, for 
example, [ 10, p. 3341. Thus, our algorithm is specified by describing how the 
tree structure is imposed. 

First, if B, and B, are submultisets of M let us write “B, 2 B2)’ to mean 
that B, is lexicographically larger than B,, where B, and B, themselves are 
written with their elements in decreasing order. We agree to always write a 
partition 7c of A’ with the blocks in order 

7~ = VI, Bz,...,Bj), B,>BB,>.‘.>B,. 

In the case where A contains simply a, copies of 1, a partition is the usual 
notion of “numerical partition of the integer a, ,” and the above convention 
agrees with the traditional way of writing numerical partitions. 

Now let 7t = (B,, B, ,,.., B,) and 7~’ = (B;, B; ,.,., Bf-,) be two partitions of 
A with I and I - 1 blocks, respectively. Let us say that rr’ is an immediate 
offspring of 72 (or that x is the parent of n’) provided these conditions are 
met: for some j < Z, 

(i) Bf= Bj for all i < j, 
(ii) each of Bf and Bi contains exactly one element for all i > j, 

(iii) BJ = Bj U B, for some k > j, and the unique element of B, is the 
smallest element of Bj. 

We check that with this definition every partition has a unique parent with 
one exception, namely the partition whose every block contains one element. 
This latter partition is the root of our tree. Finding a partition’s parent is 
simple: with the blocks written in lexicographically decreasing order, remove 



APROBLEMOF OPPENHEIM 27 

the smallest element from the rightmost nonsingleton block and let it become 
a singleton. Thus, for example, with M= { 3, 3, 3, 3, 2, 2, 2, 1, 1, I} the 
unique path from ?r to the root is given as follows: 

jr= {3,3,1) {3,2, I} {3,2) (2, I} 
{3,3,1) (392, I} {3,2} (2) {I} 

(3,3,1) {3,2,1) {3) 12) 12) (1) 

13,3,11 13,21 13) (21 (21 vj 11) 
(3¶3,1) (31 13) (2) {21 12) 111 111 
{3,3) I31 i3) (2) (2) (21 (11 (11 111 
(31 131 (31 131 (21 (21 121 (11 (11 111. 

In [ 121, MacMahon presents a table of values off(n) for those n which 
divide one of 21° . 38, 21° - 3 * 5, 29 ’ 3l * 5, 28 * 3j * 5, 26 * 3= * 5l, 
25 - 33 - 5’. There are four values of f(n) which disagree with our 
computations. We double-checked our computations for these numbers by a 
different algorithm and have come to the conclusion that MacMahon’s 
figures are in error. Specifically 

f P’O - 3’) = 3804, not 3737, 

f(29 - 38) = 13715, not 13748, 

f (2’O s 38) = 21893, not 21938, 

f(24 . 3 * 5) = 38, not 28. 

The latter two discrepancies could have been typographical errors. 
MacMahon does not state how he prepared his table. He states as his 
“Cardinal Theorem” a formula for the generating function 

(the exponent on 2 is variable, all others fixed). The formula involves a 
summation over all factorizations of 3”* -.. pts, so it is probably not a better 
means of enumeration than what we have done. 
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