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On the Number of False Witnesses 
for a Composite Number 

By Paul Erdiis and Carl Pomerance” 

Abstract. If u is not a multiple of n and a”-’ l 1 mod n 1 then n must be composite and u is 

called a “witness” for n. Let F(n) denote the number of “false witnesses” for n, that is, the 
number of u mod n with CI”~ ’ = 1 mod n, Considered here is the normal and average size of 
F(n) for )I composite. Also considered is the situation for the more stringent Euler and strong 
pseudoprime tests. 

1. Introduction. When presented with a large number n which one would like to 
test for primality, one usually begins with a modicum of trial division. If n is not 
revealed as composite, the next step is often to perform the simple and cheap test of 
computing a ” ~ ’ mod n for some prechosen number a > 1 with (a, n) = 1. If this 
residue is not 1, then n is definitely composite (by Fermat’s little theorem) and we 
say a is a witness for n. If the residue is 1, then n is probably prime, but there are 
exceptions. If we are in this exceptional case where 

a”-’ = 1 mod n and n is composite, 

then we say a is a false witness for n, or equally, that n is a pseudoprime to the base 
a. 

The problem of distinguishing between pseudoprimes and primes has been the 
subject of much recent work. For example, see [21]. 

Let 

0.1) F(n) = {a modn: a”-’ = 1 modn}, F(n) = #F(n). 

Thus, if n is composite, then F(n) is the set (in fact, group) of residues mod n that 
are false witnesses for n and F(n) is the number of such residues. If n is prime, then 
F(n) = n - 1 and F(n) is the entire group of reduced residues mod n. For any n, 
Lagrange’s theorem gives F(n) 1 I$( n), where tp is Euler’s function. 

There are composite numbers n for which P(n) = cp(n), such as n = 561. Such 
numbers are called Carmichael numbers and probably there are infinitely many of 
them, but this has never been proved. It is known that Carmichael numbers are 
much rarer than primes. 

At the other extreme, there are infinitely many numbers n for which F(n) = 1. 
For example, any number of the form 2p will do, where p is prime. It is possible to 
show (in fact, we do so below) that while these numbers n with F(n) = 1 have 
asymptotic density 0, they are much more common than primes. 
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So what is the normal and/or average behavior of the function F(n)? It is to these 
questions that this paper is addressed. We show (where C’ denotes a sum over 
composite numbers here and throughout the paper) 

(1.2) f C’ F(n) > x15/23 
n4.Y 

for x large and 

0.3) +x’F(n)<xexp( 
- (1 + o(l)) logx logloglogx 

ngr log log x i 

as x + cc. We conjecture that equality holds in (1.3). 
We can compute the geometric mean value with more precision: there are positive 

constants ci, c2 such that 

( n F(n)y = c,(logx)” + o(1) 

as x + cc. If the geometric mean is taken just for composite numbers, then the 
result is the same except that c2 is replaced by c2/e. 

Concerning the normal value of F(n), we show that log F(n)/loglog n has a 
distribution function D(U). That is, D(U) is the asymptotic density of the integers n 
for which 

F(n) < (logn)“. 

The function D(U) is continuous, strictly increasing, and singular on [0, so). More- 
over, D(0) = 0 and D( + cc) = 1. Thus, for example, the set of n with F(n) = 1 has 
density 0. 

The starting point for our results is the elegant and simple formula of Monier [17] 
and Baillie and Wagstaff [2]: 

(1.5) F(n) = I-HP - 1, n - 11, 
Pin 

where here (and throughout the paper) p denotes a prime. For example, (1.5) 
immediately implies F(2p) = 1. 

We are also able to prove analogous results for certain pseudoprime tests more 
stringent than the Fermat congruence, namely the Euler test and the strong pseudo- 
prime test. It is to be expected that there will be similar results for all Fermat-type 
tests; for example, the Lucas tests. Such an undertaking might gain useful insights 
into the nature of these tests. 

In the last section we address some further questions including the maximal order 
of F(n) for n composite, the nature of the range of F, the normal number of prime 
factors of .F( n), and the universal exponent for the group F( n>. 

2. The Average Order of F(n). In this section we shall establish the results (1.2) 
and (1.3). Recall that C’ denotes a sum over composite numbers. 

THEOREM 2.1. For all large x, 

5 Et F(n) > x15/23. 
n,cx 
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Proof. Let M(x) denote the least common multiple of the integers up to x. For 
any y, let 

P(y,x) = { p < y: p - mf(x)}. 

From Erdos [7] it follows that there is a value of LY > 1 with 

W) #P(x”‘, x) B x”‘/logx for all 0 < (Y’ < a, 

while from Pomerance [20] it follows that there is a value of 01 > 9/4 with (2.1) 
holding, (Note that the notation f(x) >> g(x) for positive functions f, g is equiva- 
lent to g(x) = 0( f (x)).) W e conjecture that (2.1) holds for every (Y > 0. Let 

p = sup{ (Y: #P(x”‘, x) = x~‘+~(~) for all 0 < LY’ < CY}, 

so that if (2.1) holds for LY, then p > u. From recent work of Balog [3] we have 

(2.2) p > 23,‘8. 

Let L denote an upper bound for Linnik’s constant, so that given positive integers 
a, m with (a, m) = 1 and m > 1, then there is a prime p = a mod m with p < m L. 

Let LY be such that 1 < EY < p and let 0 -C E < OL - 1 be arbitrarily small, but fixed. 
Let 

M = M(log x/log log x > ) 

Note that 

P = P(log”x, logx/loglogx)\{ p: p G log”=x}. 

(2.3) M = exp((1 + o(l)) logx/loglogx} = x0(‘), #P = (logx)“+“(? 

Let S denote the set of integers composed of exactly 

k = [ log( x,‘ML)/log(logax)] 

distinct primes in P. Thus, if s E S, then 

(2.4) xl-& -c s < X/ML 

for all large x. 
From (2.3) we have 

If s E S, let q = q(s) denote the least prime such that 

(2.6) sq=1 modM. 

Thus q c ML, so that sq G x by (2.4). Let S’ denote the set of such numbers sq. If 
n E S’, then n has at most O(logx) representations as sq for s E S, so that from 
(2.9, we have 

(2.7) 
#S’ 2 X(a-l)um’+ou). 

If n = sq E S’, where s E S and q is a prime satisfying (2.6), then 

0.8) 
F(n) = I-I(p - 1, 

Pin 
n-l)an(p-l.M)=r$~-l) 

Pb J 

= c+(s) x+ s/loglogs > xl-‘/loglogx, 
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by (1.5), Theorem 328 in [12], and (2.4). Thus by (2.Q 

; -p qn> > ; c jqn) > X-E+m. #S’ 2 X(-l)a-‘-F+dl). 
n<x tlSS 

Since E > 0 is arbitrarily small and OL is arbitrarily close to p, we have 

; C’ jqn) > Xl-B-‘+m. 
nS”x 

Our theorem now follows from (2.2). 
Remark. For any choice of 0 with 4 G 0 < 1, let C(0) be the least number such 

that for any choice of E with 0 < E G 1 - 0, any integer a, and any A > 0, there is 
an x~(E, a, A) such that for all x 2 x0(&, a, A), 

for all but at most x’/(logx)” choices of q E (x8, 2x0]. Let 

C = limsup C(0). 
0*:+ 

In [3], Balog shows that the number p defined in the proof of Theorem 2.1 above 
satisfies j3 > 2e~C+‘1~1. 

The estimate (2.2) is obtained using the result C < 1.73 which was recently 
obtained by Fouvry [lo]. With continued improvements expected for estimates of C, 
we thus would have better estimates in Theorem 2.1. For example, if it can be shown 
that C < 1.463, then we could write 2/3 in place of 15/23 in Theorems 2.1 and 5.1. 

Let 

L (x) = exp(log x log log log x/log log x) 

THEOREM 2.2. As x + 30, 

; C’ F(n) < xL(x)-l+*(l! 
n SI s 

Proof. For each integer k 2 1, let C,(x) denote the set of composite n < x such 
that F(n) = +(n)/k, and let C,(x) = #C,(x). We have 

(2.9) 

X2 
g-+x c 

Lb) k<L(x) 

It will thus be sufficient to obtain the uniform upper bound 

(2.10) C,(x) G xL(x)-~+‘(~) fork G L(x), 

for using (2.10) in (2.9) gives the theorem. 
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We begin by showing 

(2.11) F(n) = $(n)/k implies X(n)lk(n - l), 

where X(n) is Carmichael’s universal exponent function. (Recall that X(n) is the 
smallest positive number such that a ‘cn) = 1 modn for all a with (a, n) = 1.) It is 
not hard to show that there is actually some residue a mod n that belongs to the 
exponent A(n). To see (2.11), suppose F(n) = $(n)/k, let u = A(n)/(h(n), n - 1) 
and let a belong to the exponent X(n) in the group (Z/n)* of all reduced residues 
mod n. Then the order of aF(n) in (Z/n)*/F(n) (where F(n) is given by (1.1)) is 
exactly u. Thus, by Lagrange’s theorem, 

+#+d/F(n) = k, 
so that h(n) 1 u( n - 1) 1 k( n - l), which was to be shown. 

To estimate C,(x) for k G L(x) we consider three cases: 
(9 n < x/L(x), 
(ii) n is divisible by some prime p > kL(x), 

(iii) n 2 x/L(x) and every prime p in n is at most kL(x). 

If n E C,(x) and pjn, then by (2.11), 

p - w+> JJ+ - I), 
so that 

(P - I)/ (k, p - 1)b - 1. 

Since also n > p, the number of n E C,(x) divisible by p is at most 

1 
I 

xk 

IP(P-l);kp-l) ‘PIP-1)’ 

Thus the number of n E C,(x) in case (ii) is at most 

(2.12) c xk 

p>kL(x) p(p - 1) 

If n < x is in case (iii), then n has a divisor d satisfying 

(2.13) 
X 

kL(x)* 
cd< L;x,. 

If n E C,(x) and d/n, then from (2.11), 

@)h(n) lk(n - 1). 
Thus the number of n E C,(x) with din is at most 

1 dX(d),;k, X(d)) + ” 1 
If C* denotes a sum over d satisfying (2.13) we thus have the number of n E C,(x) 
in case (iii) is at most 

(2.14) 
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To estimate the inner sum we use the fact that from (15) in [22], there is an x0 
such that for all integers s and x 2 x0, we have 

# {d < x: A(d) = s} < x/L(x). 

Thus using partial summation, 

provided x/kL(~)~ > x0. Putting this estimate into (2.14), the number of n E C,(X) 
in case (iii) is 

xlogx 
c ‘Cl 

-c L(x/kL(x)2) rnQX m ulk 

x log2x 

Q L(x/kL(x)2) 

$1 + o(l))log k/b&g k 

uniformly for k G L(x). (We have used Theorem 317 in [12].) 
Using this last estimate with (2.12) and the fact that evidently there are at most 

x/L(x) choices of n in case (i), we have (2.10) and thus the theorem. 
Remarks. We conjecture that Theorem 2.2 is sharp, i-e., 

(2.15) $ -pF(n) = xL(x)-l+O(l)* 
*6x 

In [8], [24], and [22] a sequence of heuristic arguments is presented that culminate in 
the conjecture 

c,(x) = XL(X)-l+? 

(The upper bound in this assertion is proved in these papers and also follows from 
Theorem 2.2.) This conjecture together with Theorem 2.2 immediately gives the 
conjecture (2.15). 

Let P,(x) denote the number of II G x such that n is a pseudoprime to the base 
a. Thus P,(x) is the number of composite n < x with a mod PI E F(n). For a fixed 
value of (I, the sharpest results known on P,(x) are that 

(2.16) exp{ (logx)5”4} < P,(x) < ~L(x)-l’~ 

for all x > x,(a); see [22], [23]. (Using (2.2) we may replace the “5/l,” in the 
lower bound with 15/38.) We trivially have 

c c(x) 2 C’FW 
UQX n<x 

On the other hand, 



THE NUMBER OF FALSE WITNESSES 265 

Thus, by using partial summation and Theorems 2.1 and 2.2 we can obtain a result 
that is, on aueruge, much better than (2.16): 

x15’23 < f c P,(x) < xL(x)-l+o(l) 
a<r 

for x large. 

3. The Geometric Mean Value. 

THEOREM 3.1. There are positive constants cl. cl such that 

( ~yyx = c*(logx) L1 + O((logx) <I-l) 

for x > 2. 

Proof. Letting A(n) denote von Mangoldt’s function, we have 

C logF(n)= C logn(p- l,n- 1) = C C c A(4 

say. From the prime number theorem with error term, we have 

(3.2) s, = c log( p - 1) = x -t- O( x/e*). 
p <x 

To estimate S,, we write S, = S,., + S2,2, where in S,., we have d < log2 x and in 
S,,, we have log*x < d G x. It is shown in Norton [18] and Pomerance [19], that 
uniformly for any d & 2 and x >, 3, we have 

(3.3) 

Thus, 

(3 *4) 

S2%2 G c A(d) p.-x ; 

log*.x<d<x 

dip-1 

For any integer d > 2, let 

C(d) = lim - l”glogx 
X’ cx i cp(d) + c $ p < .Y 

dip-1 
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From the Siegel-Walfisz theorem it is known that C(d) exists and that 

(3.5) c $ = logy + C(d) + o&-4=) 

dp? 

uniformly for d G logA x for any A > 0. Moreover, from (3.3) it follows that for all 
da2 

(3.6) 

Therefore from (3.5) and (3.69, 

= c “‘d’,~,d~ + 0 c A(d) c 1 
d< log2 x i d$log* x wx/d i 

G-1 Q-1 

(3.7) 
= c “cd) 

d 
l”glodx/d) + C(d) + +-fi) 

dgl0gZX e(d) 

= c xW%&dx/d) + c xA(d)C(d) + o 

d<log2x d+(d) d$log* x 
d 

A(d) = xloglogx~ - + xc Nd)C(d) + o 

d d&O d d 

Let 

(3.8) cl = jj*, c2 = exp(1 + C a(d)dC’d’). 
d 

Combining (3.1), (3.2), (3.4), and (3.7), we have 

( ;xF(nf’x = exp{ c,loglogx + loge, + O(l/logx)} 

= c,(logx)“’ + O((logx)“-‘). 

Remarks. The exponent c1 given by (3.8) can be numerically evaluated. Using the 
identity 

c, + $2) + $3) -t f(4) + 2?(5) 

p6 + 3p; + 2p4 
- 

2p3 2p2 
- - 

p 
- =c 5 ( P3 NP” NpS 0 

1% P 
- - - P 
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and values for these logarithmic derivatives of j-(s) kindly supplied to us by Andrew 
M. Odlyzko, we have found that 

(3.9) c, = 0.898464899 . . . . 

Since c1 < 1, it follows that the error term O((logx)‘l-‘) in the theorem is o(l). 

If we restrict the geometric mean to just composite integers, the result does not 

change very much. ln fact, 

c logF(p) = c lo& - 1) = x + o(x/e”op-), 
p<x p Q .Y 

so that 

i 
rI 0) 

l/(x-n(x)) 
Fn 

n < x 
II composite 

= exp ciloglogx + loge, - 1 + 1 Cl log log x 1 
logx 

4-o ~ 
( 11 log x 

= ?(logx)” + T(logx) “I-‘loglogx + O((logx)“-‘) 

= ?(logx)” + o(1). 

4. The Normal Order of F(n). The spirit of this section is to ignore sets of 

asymptotic density 0 and thus examine the behavior of F(n) for typical values of n. 
Theorem 2.1 says that the arithmetic mean order of F(n) for n composite is at least 

n’ where c > 0. On the other hand, Theorem 3.1 says that the geometric mean order 
of F(n) is c2(logn)‘l, where ci, c2 are given by (3.8). Of these two results, it is clear 

that the geometric mean order is more relevant for normal numbers. Indeed, an 
immediate corollary of Theorem 3.1 is that if h(n) + rx, arbitrarily slowly, then the 

asymptotic density of the n for which F(n) < (logn)h(“) is 1. 
Consider the additive function 

(4.1) G(n) = CA@)/+(d), 

where A is von Mangoldt’s function. This function has essentially already appeared 

in the previous section, since the constant ci in (3.8) is the mean value of G(n). Thus 
Theorem 3.1 says that the geometric mean order of F(n) is about log n raised to the 

mean value of the function G(n). In this section, we shall show that the normal 

order of F(n) is about (log n)c(“-‘). 

THEOREM 4.1. There is a set S of natural numbers of asymptotic densiry 1 such thaf 

n E !tF+ co . i 

1% F(n) 

log log n 
- G(n - 1) = 0, 

i 
where G is given by (4.1). 

Proof. For x 2 3, let y = y(x) denote log log x. We have 

logF(n) = c log(p - 1,n - 1) = c c A(4 
Pin pIi7 dl(p-l.n-1) 

= c R(d) c 1 = c w(n,d)A(d), 
din-1 Plfl dl”?l 

dip-1 
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where we write w(n, d) = Cp,n,d,ppll. Thus 

logF(n)= C w(n,djn(d) + C ti(n,d)A(d) 

(4.2) 
din-1 din-1 
d<fi drfi 

= S,(n) + 2$(n), say. 

It is easy to show that S,(n) for n < x is usually negligible. Indeed, 

Cf &(n) = C C C’ A(d) < C C y 
II < x d>,,‘T dip-1 n<x 

din-1 
d>J;; P<x 

dip-1 
PI” 

= + o( x*$yy)) = 0(x&), 

where we have used (3.3). It therefore follows that the number of n < x with 

WO > Y 3/4 is at most O(x/y’14). Thus these values of n are negligible and we 
need only consider those n < x with 

(4.31 S,(n) Q y3/4. 

To estimate &(n) we shall use Theorem (1.13) in Norton [18] which implies that 
we can essentially take each o( n, d) = y/$(d). Specifically, this result implies that 
the number of n c x for which 

P-4) 
4/5 

w(n,d) - - 
d!d, ’ 

- 
iid) 

fails for some d < fi is 0(x/e”” ). Thus we need only consider those values of 
n < x, for which (4.4) holds for every d < fi. 

Thus, but for O(X/~‘/~) choices of n < x, we have 

logF(n) = s,(n) + O(y3j4) 

(4.5) = II$$ + o(y4:$))) +Ow4) 
. 

=yGfi(n - 1) + o(y4’510gy), 

where 

G,(m):= c N&‘#@). dim 
d<T 

We now show that Gfi(m) is usually a good approximation to G(m). From 
Norton [18, Theorem (1.5)], the number of n < x with more than 210gy prime 
power factors below logx is O(X/~‘/~) while the number of n < x with more than 
2y prime power factors is 0( x/(log .x)l13 ), Thus we need only consider these values 
of n < x where n - 1 has at most 2 logy prime power factors in the interval 
(fi, log x) and at most 2y prime power factors in the interval [log x, x]. Thus, but 
for O(X/~‘/~) values of n Q x, 

G(n - 1) = Gfi(n - 1) + O(log2y/fi) + O(ylogy/logx). 
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Combined with (4.9, we have 

(4.6) logF(n) =yG(n - 1) + O(y4’510gI;) 

but for O(X/~‘/~) choices of n < x, 
Now note that 

loglogn = y + O(l/logx) 

for fi < n < X. Also note that 

G(n - 1) -=z loglogn. 

Thus from (4.6), we have 

logF(n) = G(n - 1) loglogn + O((loglogfl)5’6) 

for all but O( x/y”j4) choices of n d x. Dividing by log log n, we have the theorem. 

COROLLARY. For each u 2 0, let DF(u) denote the asymptotic density of the set {n: 
F(n) < (logn)“}. Then IIF exists, is continuous, is strictly increasing, satisfies 
DF(O) = 0, DF( + w) = 1, and is singular. 

Proof. By the Erdiis-Wintner theorem (see [6, Chapter 5]), the distribution 
function for G(n) satisfies all of these properties. By Theorem 4.1, DF( u) is equal to 
the distribution function for G. 

5. Euler Pseudoprimes and Strong Pseudoprimes. From the Euler criterion, we 
know that if n is an odd prime and (a, n) = 1, then 

(5.1) a(n-1)/2 = (a/n) modn, 

where (a/n) is the Jacobi symbol. If an odd, composite number n satisfies (5.1). we 
say that n is an Euler pseudoprime to the base a, or equivalently, that a is a false 
Euler witness for n. For each odd n, let 

E(n) = ( amodn: a(n-1)/2 = (a/n) modn and (a, n> = l} 

and let E(n) = #E(n). Thus E(n) is a subgroup of F(n). It has been independently 
shown by Selfridge (unpublished), Lehmer [16], and Solovay and Strassen [26], that 
if n is odd and composite, then E(n) is always a proper subgroup of (Z/n) * and so 
that E(n) < +(n)/2. 

If n is an odd prime, 2kljn - 1, and (a, n) = 1, then either 

(5.2) a(fl-1)/2’ G 1 mod n or a(“-l)/2’ E - 1 mod n forsomer = 1,2 ,..., k. 

If n is odd, composite, and (5.2) holds, then n is said to be a strongpseudoprrme to 
the base a, or equally, a is a false strong witness for n. Let S(n) denote the set of 
a mod n for which (5.2) holds and let s(n) = #S(n). Note that S(n) need not be a 
subgroup of (Z/n>*. For example, 

S(65) = (1, 8,18,47, 57,64} 

and 8 . 18 = 14 mod 65. It has been shown independently by Pomerance. Selfridge 
and Wagstaff [24], Monier [17], and Atkin and Larson [l] that S(n) c EI(n) for all 
odd n, It is also known (Monier [17], Rabin [25]) that S(n) < +(n)/4 for every odd 
composite n. 
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From the above comments, we have 

(5.3) S(n) =s E(n) < F(n) 

for every odd n. 
In this section we shall prove the following results. They are analogous to 

Theorems 2.1, 3.1, and the Corollary to Theorem 4.1. 

THEOREM 5.1. For all large x, 

+ C’ S(n) > x15’23. 

n<x 
nodd 

THEOREM 5.2. For cl, c2 given by (3.8) and c3 defined in (5.11) below, we have 
J-/x 

= ec,(logx)” + O((logx)“-“2), 

( lz<, sqx = c3(logx)“-‘2’o~2)~3 + o(l). 

n 022 

THEOREM 5.3. Let D f,cwen(U)~ DEqu), DS(“>~ respectively, denote the asymptotic 
densities of the sets 

{ neuen: F(n) G (logn)“}, {n odd: E(n) Q (logn)“}, 

{n odd: S(n) < (logn)“}. 

Then D, = 40, and D, = DF,euen. In particular, D, and D, are continuous strictly 
increasing, and singular on [0, m). They are 0 at 0 and l/2 at + co. 

To show these theorems it is first necessary to find formulas for E(n) and S(n) 
that are analogous to (1.5). This in fact has been done by Monier in [17]. To state 
Monier’s formulas, we need some notation. Let v,(n) denote the exponent on p m 
the prime factorization of n. For n odd, n > 1, let 

n’ = largest odd divisor of n - 1, 44 = +vAp - 1)11 

a(n) = Cl, 
Pin 

e(n) = FI( q5P - I), s(n) = ~Cfi’,p’), 

i 

2, if y(n) = v2(n - l), 

s(n) = l/2, if 3pln with u2( p - 1) K v,(n - 1) and u,(n) odd, 

1, otherwise. 

Then we have 

(5 4 E(n) = a{n>e(n>, S(n)= l+ 
i 

fJ”(“,“(“, - 1 
24n) - 1 i 

SW. 

Proof of Theorem 5.1. We follow the proof of Theorem 2.1, but make a few 
alterations. Let M,(x) denote the least common multiple of the odd integers up to 
x. For any y, let 

P&Y,x) = {P Qy: p - WM3(4}. 
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Let 

p* = sup{ 01: #PO(xO’, x) = x~‘+‘(~) for all 0 < (Y’ c a}. 

Then from simple modifications of the Balog [3] result, we have 

(5.5) PO > 23/g 

in analogy to (2.2). 
Let LY, E be arbitrary with 1 < (Y < &, 0 -C E < CY - 1. Let 

MO = M,(log x/log log x) , 

PO = P,(log”x, logx/loglogx)\{ p: p < logYx}, 

and define S, in analogy with S, but using M,, P0 for M, P. For large x, the 
numbers in S, are all odd since they are free of prime factors p G log”-‘x. For 
s E S,, instead of (2.6) we choose q0 = Qs) the least prime such that 

sq, = 1 mod&,, sq, = 3 mod4. 

If YI is such a number sq,, then 

s(n) > s(n) = l-I(p’,n’) > n( q, F) 
PI" PIS 

= 2-“‘“‘n(p - 1, n - 1) >, 2-q3(p - 1.2&Q 
Pb Pb 

= 2-~(~)t$(s) > 2- 4~)xl-E/loglogx = xl-E+om, 

where we use (2.8) and the fact that w(s) G (1 + o(1)) logs/loglogs. 
Therefore, as in the final calculations in the proof of Theorem 2.1, we have 

; p qn> > xl-Po’+dl). 
n Q x 
n odd 

The estimate (5.5) thus completes the proof. 
Remarks. In view of (5.3), we have the same result as Theorem 5.1 with E(n) 

replacing S(n). Also, (5.3) implies we have Theorem 2.2 with either E(n) or S(n) 
replacing F(n) (and n restricted to odd numbers). 

Proof of Theorem 5.2. We begin by computing the geometric mean of e(n) for n 
odd, n 6 x. As in (3.1), we have 

Z&p-l 
d<x/p-1 

= & dp(d)( [ ?g] + 1) + Q($J 
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since if d(p - 1 and 2d t p - 1, then h(d) > 0 only when d is a power of 2. Using 
(3.2) and the arguments in (3.4) and (3.7) we thus have 

(5.6) 

C loge(n) = xloglogxC A(d) 

n<x d 2ddd) 
n odd 

1+ 1 *(dldC(d) 
d 

We now compute the geometric mean of F(n) for n d x, N odd. If n = 3 mod4, 
then v(n) = ~(n - 1) = 1, so that 6(n) = 2. If n = lmod4 then of course 
vz(n - 1) 2 2. But, the number of n G x not divisible by any prime p = 3 mod4 to 
an odd exponent is 0(x/ fi) (see, for example, Halberstam and Richert [ll, 
Theorem 2.31). Thus, but for 0(x/ fi) choices of n < x with n = 1 mod4, we 
have 6(n) = l/2. Therefore, 

C 1ogW = O(*j. 
n=sx 

n odd 

Thus, with (5.6) and (3.8), we have 

z c logE(n) = ciloglogx + 1 + loge, + O( *I, 
n<x 

n odd 

from which part of our theorem follows. 
Again following (3.1), we have 

G logs(n) = c A(d) c c 1 
r,<s 

n odd 
d<x 

d odd 
ngx p,i.y 

Q-1 n odd 
din-l.pln 

Thus from the calculations in (3.2), (3.4), and (3.7), we have 

(5 -7) 

C log4n) = xloglogxdIId 2tj:jj 
n<r 
II odd 

*yd)) + 0(&j. 

It thus remains to compute the geometric mean of the numbers 

1 +(2 v(n)o(fi) - 1)/(2”(“) - 1) for 1 < n < x, n odd. 

The main contribution comes from those n with v(n) = 1. We have (for notational 
convenience, define v(n) = 0 for n = 1, n even) 
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For v 2 2, we have uniformly 

GV C C l+V C C 1=Sl(v)+S2(v), say. 
PGfi m<x/p In<& p<x/m 

2’lp-1 v(m)>2 v(m)>2 Z’lp-1 

From (3,3) we have 

(5.10) 

To estimate S*(V), we distinguish two cases: 

2 G v G log x/log log x and v > log x/log log x. 

In the first case, the Brun-Titchmarsh inequality implies S,(V) is at most 

vx 
<< 2"log mCfi m c L -+< 2”& * 

v(m)>2 

In the second case, a trivial estimate implies S,(V) is at most 

Therefore, with these two estimates and (5.9) (5.10) we have 

c 
n=sx 

log(l + “:5:“,‘) < c (S,(V) + s,(v)) -=x $!2$* 
v>2 

v(n)>2 

Combining this with (5,7), (5.8), and (3.8) we have 

- 2 r<&logS(n) = (Ci - F) loglogx + loge, + 1 + log2 

n odd 

W) -log2 c ~ + () loglogx 

221 2’ i i fi’ 

We have thus proved the theorem with 

(5.11) c3 = 2ecJpw~‘~ 

Remarks. It might seem paradoxical at first, when comparing Theorems 3.1 and 
5.2,that the geometric mean order of E(n) is larger than that of F(n). However, it is 
more appropriate to compare Theorem 5.2 with the geometric mean order of F(n) 
for odd numbers n. By the above methods, this is easily computed. We have 

v* 
(5.12) = eC22~~~2~~/2~~10g x) cl + (2b2v3 
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We also note that if we compute the geometric mean orders of E(n), S(n), F(n) for 
odd, composite values of n, the expressions in Theorem 5.2 and (5.12) are divided by 
e2 and in (5.12) there is an extra factor of loglogx in the error term. 

Proof of Theorem 5.3. For all odd n except for a set of density 0, 

1+ 

y(“M”) - 1 

2 w(n) _ 1 
= 2 = O(1). 

Thus we may replace E(n), S(n) in the statement of the theorem with e(n), s(n), 
respectively. From the proof of Theorem 4.1, we have 

log+) _ G n - 1 --) * 
( 1 

logs(n) 
log log n 2 ) log log n 

- G(n’) --* 0 

on sets of odd numbers of asymptotic density l/2. Thus, by the Corollary to 
Theorem 4.1, 

Also, noting that the mapping n + n’ gives a one-to-one correspondence from the 
odd numbers in (x + 1,2x + l] to the odd numbers in (0, x], we have 

x<n<2x:nodd logs(n) 
’ loglogn Q U 

= ,limm i - #{x -C n < 2x: n odd, G(n’) 6 u) 

= lim 1 . #{m < x: m odd, G(m) =S u} 
x-+co x 

log@) < u 
log log k ’ = %.evenb). 

Therefore, Ds = DP.even, which completes the proof of Theorem 5.3. 

6. Further Problems. In this section we discuss some additional conjectures and 
results. Some of the proofs are omitted. 

Maximal Order of F(n) for n Composite. By definition, if n is a Carmichael 
number, then F(n) = +(n). We conjecture that not only are there infinitely many 
Carmichael numbers, but that 

limsup F(n)/n = 1. 
n composite 

From (2.8), we have F(n)/n’-’ unbounded on the composites for any E > 0. 
However, we can do better. 

THEOREM 6.1. lim sup, composire F(n) log’rt/n > 0. 

Proof. From Lemma 8 in Bateman, Pomerance and Vaughan [4], there is a 
positive constant c such that for infinitely many integers k, there are primes 
p = q = 1 mod k with p < q i ck log k. When such p, q exist for k, let nk = pg. 
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Then 

F(Q) ’ k*, nk < c’k210g2k, 

so that F(n,) log2n,/n, > l/c’. 
Small Values of F(n). 

THEOREM 6.2. The number of n G x with F(n) = 1 is 

(6.1) (1 + omx 
e~logloglogx ’ 

where y denotes Euler’s constant. 

This follows from almost the same argument as in Erdiis [9] that the number of 
n G x with (n,+(n)) = 1 is given by (6.1). 

In studying the equation F(n) = k for a fixed k, there is a dramatic contrast 
between k = 1 and k > 1. Let p(k) denote the least prime factor of k. 

THEOREM 6.3. For each k > 1, the number of n $ x with F(n) = k is at most 
x/(logX)(P(~‘-l)-‘+o,fl) 

To see this, note that if F(n) = k, then n = 1 mod p, where p = p(k). So, using 
the notation from Section 4, 

p“‘(“‘r)]F(n) = k. 

But the number of n < x with w (n, p) bounded is x/(log x)(P-‘)-’ ‘O(l). 
Using a result of Hal&z (Theorem 21.5 in Elliott [6]), it is not so hard to prove the 

following theorem, which is uniform in k. 

THEOREM 6.4. Utiformly for x 2 20 and k & 2, 

#(n <x: F(n) = k} = 0 
x (logloglogx)2’3 

i (loglogx)“3 . 

Combining this theorem with Theorem 6.2. we see that for large x, 1 is the most 
popular value of F(n) for n < x. Probably, this is true for all x > 1. 

THEOREM 6.5. For 0 < E < 1, the number of n Q x with F(n) < exp{(loglogx)‘-‘} 
is 0(X/(& log log log x)). 

From (4.4), we may assume that w( n, 4) > 2(log log x)’ -’ for every prime q < 
(loglog~)“~. We also may assume that n - 1 is divisible by some such prime qo. 
Then 

F(n) 2 q$n*qo) > exp{ (loglogx)‘-F}, 

which proves the theorem. 
The Range of F( n). 

THEOREM 6.6. If k is odd or 4)k, then there are infinitely many n with F(n) = k. If 
k = 2 mod 4, then F(n) = k has infinitely many solutions n or no solutions n depending 
on whether k = p - 1 for some prime p. In particular, the density oj the range of F is 
3/4. 
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Proof. Assume k z 0 is odd, Let p be any odd prime with 

-k+l 
p’ 

2 
mod k(k + l> 

2 - 

Once p is chosen, let q be any prime that simultaneously satisfies 

q= lmodq, q = k + 1 mod(2p - 1). 

Then 

CP - 1,2pq - 1) = 1, (q-l&q-l)=k, 

so that F(2pqj = k. 
Suppose k = 4 mod 8. Let p denote any prime with 

p=(i-2)($-l)-lmod(($-2)(:-l)k) 

and let q denote any prime with 

q= r--lmod(p-1). 

Then 

(4 - 1, pq2 - 1) = 2, 

so that F( pq2) = k. 

(P - 1, pq* - 1) = k/2, 

Assume 81 k. Let p be any prime with 

p= -g - lmod(k(% + 1)) 

and let q be any prime with 

q = -1 modkp(p - 1). 

Now choose r as any prime with 

qr = 2p - 3 mod(p - l), pr = 2q - 3 mod(q - l), 

r= f + lmod(pq-1) 

all holding. We have 

CP - Lpqr- 1)=2, (q-l,pqr--1)=2, (r-l,pqr-l)=k/4, 

so that F( pqr) = k. 
Suppose finally that k = 2 mod 4 and F(n) = k has a solution n. Then n is odd, 

so that 2“(“) IF(n), where w( n> denotes the number of distinct prime factors of n. 
But 4 t F(n), so that n is a prime power p”. Note that F( p”) = p - 1 for every 
exponent CI 2 1. Thus k = p - 1 for some prime p and F(n) = k has infinitely 
many solutions. 

The Normal Number of Prime Factors of F(n). Let w(n) denote the number of 
distinct prime factors of n and let Q(n) denote the number of prime factors of rr 
counted with multiplicity. 

THEOREM 6.7. The normal uafue of w (F( n)) is log log log log n. 
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THEOREM 6.8. Let h(n) denote the additive function C,,+l/+(p”). Then the 
distribution function for h (n j is identical to the distribution function of 

Q(F(n))/loglogn. 

COROLLARY. There is a set of integers S with asymptotic density 1 such that { F{ n): 
n E S} has asymptotic density 0. 

The Universal Exponent for the Group F( n j. Let L(n) denote the universal 
exponent for the group F(n). It is not so hard to see that 

L(n) = lcm{(p - l,rz - 1): p(n) 

and that L(n) = h(n) (where A(n) is the universal exponent for the group of 
reduced residues mod n) if and only if F(n) = $(n). The normal value of L(n) is 
considered in the following two results. 

THEOREM 6.9. But for a set of n of density 0, L(n) is the largest divisor of n - 1 
composed solely of primes below log log n . 

COROLLARY. For every real u z 0, the asymptotic density of the n for which 
L(n) < (log log n)U is 

ewy 
/ ’ p(t) dt, 
0 

where y is Euler’s constant and p is the Dickman-deBruijn function. 

The function p is discussed in deBruijn [5]. We remark that it is known that 
10” p(t)dt = ey. Tht ‘s result is (9.1) in Knuth and Trabb Pardo [15]. 

Equal Values of F(n) for Neighboring Values of n. It is easy to see that F(n) = 
F( n + 1) has only the single solution n = 1. This is because for n > 1, F(n) = n - 
1 mod2. It is only slightly harder to show that F(n) = F(n + 2) has infinitely many 
solutions. Indeed, by the method of Theorem 6.2, the number of n G x with 
F(n) = F(n + 2) = 1 is s x/(log log log x)~. These values of n of course must be 
even. Probably there are infinitely many odd values of n with F(n) = F(n + 2), but 
this seems much harder. 

We can prove that infinitely often there are five consecutive even numbers with 
F-value 1. To see this, consider numbers n with n = 16 mod 30 such that n is not 
divisible by any prime p = 1 mod 3 or p = 1 mod 5 and such that n - 5, n - 3, 
(n - 1)/15, n + 1, and n + 3 are divisible by no prime less than logn. The number 
of such n G x is YP x/(logx) V8 (log log x)~, and the number of such n G x for 
which 

F’(n - 4) = F(n - 2) = F(n) = F(n + 2) = F(n + 4) = 1 

fails is O(x/logx). This method runs into difficulties when six or more consecutive 
even numbers are considered, but perhaps the methods of C. Hooley [13] and K.-H. 
Indlekofer 114) would be of use. Thanks are due to Helmut Maier for the suggestion. 

In any event, there do not exist 21 consecutive even numbers with F-value 1. 
Indeed, one of these numbers n is 7 mod 21, so 3 1 F(n)* We conjecture that infinitely 
often there are 20 consecutive even numbers with F-value 1 and that for every k 
there are infinitely many n with F(n) = F(n + 2) = . . . = F(n + 2k). 
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Added in proof. E. Fouvry informs us that he and B. Rousselet have recently 
shown that the constant C discussed in the remark following the proof of Theorem 
2.1 is less than 1.46. In addition, they have improved the theorem of Balog [3] which 
relates C to the constant p. In particular, they improve (2.2) to j3 > 25/8. Thus the 
exponent “15/23” appearing in the statements of Theorem 2.1 and Theorem 5.1 can 
now be replaced with “17/25”. Als; the exponents may be improved in the final 
remark of Section 2 and in the main results of the papers [20] and [23]. 
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