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Lower bounds on the Ramsey number r(G, H), as a function of the size of the graphs G and 
H, are determined. In particular, if H is a graph with n lines, lower bounds for r(H) = r(H, H) 
and r(K,, H) are calculated in terms of n in the first case and m and n in the second case. For 
m = 3 an upper bound is also determined. These results partially answer a question raised by 
Harary about the relationship between Ramsey numbers and the size of graphs. 

1. Introduction 

Let G and H be finite graphs without loops or multiple edges. If for any 
2-coloring of the lines of a complete graph K,, there is a copy of G in the first 
color, red, or a copy of H in the second color, blue, we will say K, + (G, H). The 
Ramsey number r(G, H) is the smallest positive integer n such that K,+ (G, H). 

The Ramsey number r(G, H) has been calculated for many pairs of graphs. 
However, in most cases the Ramsey number is expressed in terms of the order 
(number of points) of the graph. Harary posed the following natural question in 
1980 at a meeting at Kent State University: What is the relationship between 
r(G, H) and the size (number of lines) of the graphs G and H? 

A partial answer to this general question is contained in the following results. 
In the statements which follow and throughout the remainder of the paper, p(G) 
will denote the order and q(G) the size of the graph G. Notation not specifically 
mentioned will follow [4]. 

2. Theorems 

This section develops our results and the next section supplies their proofs. 
The first result gives bounds on the minimum value of the diagonal Ramsey 

number for all graphs of a fixed size rz. The result is sharp except for the value of 
the constant. 
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Theorem 1. For any integer n > 1, there is an E < 1 such that 

(8 + E)n 
dmi~ar(G)<- 
21og n *log n ’ 

The next result, a non-diagonal Ramsey number, involves a complete graph. In 
this case the bounds are not sharp, even when the complete graph is a triangle. 

Theorem 2. Let m > 3 be fixed. There exist constants C, and C, such that for all 
suficiently large n 

C, - nm’@+*) < min(r(Km, G): q(G) = n} < C, . n(m-l)‘m. 

The immediate special case when the complete graph in Theorem 2 is a triangle 
is of special interest, and leads to one of the specific problems posed. 

Corollary 3. There exist constanb C, and G such that for all suficiently large n, 

C, . na < min{r(K,, G): q(G) = n} < C,. n:. 

Another specific question, which is a special case of the general question posed 
earlier, involves an upper bound for the Ramsey number r(K3, G), where G is 
any graph of size n. The pl’evious corollary gives a lower bound for this Ramsey 
number. Harary made the following conjecture about the upper bound. 

Conjecture. For any graph G of size n and without isolates, 

r(K3, G) s 2n + 1. 

This bound is the best possible, since r(K3, T,,,) = 2n + 1 for any tree with ;II 
lines (see [2]). Also, it is trivial to show that r(K3, nK,) = 2n + 1, and it is well 
known that r(K,, K,) i 2(z) + 1 (see [5]). Therefore the conjecture is confirmed 
in the extreme cases of the most sparse and dense connected graphs, and the most 
disconnected graph. We were unable to verify the conjecture, but the following 
result is proved. 

Theorem 4. For any graph G of size n without isolated points, 

r(K,, G) S [&I. 

A fixed graph G is said to be size linear if for all n there is a constant C such 
that r(G, H) s Cn for all graphs H of size n. Thus, Theorem 4 implies that Ii3 is 
size linear. Not all graphs are size linear. For example, K4 is not, since there is a 
constant D > 0 such that r(K,, K,) > D(n/ln n); for all n sufficiently large (see 
[5]). The following result implies that graphs which are to dense cannot be size 
linear. 
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Theorem 5. Let G be a fzxed graph with p(G) = m 2 3 and q(G) = q. There exists 
a positive constant C such that for II sufficiently large 

r(G, K,) > C(n/log n)(4-1)‘(m-2). 

Corollary 6. If p (G) 2 3 and q(G) 5 2p(G) - 2, then G is not size linear. 

Additional results about size linear graphs can be found in [3]. In particular, 
there is an example of a size linear graph G with p(G) = p and q(G) = 2p - 3 for 
any integer p 2 2. Thus the result stated in Corollary 6 is the best possible. Note 
that this does not imply that any connected graph of order p and size at most 
2p - 3 must be size linear. In fact a K4 with a long suspended path attached to 
one of its points is not size linear, but this graph has approximately the same 
number of points and lines. 

3. Proofs 

We now indicate the proofs of the theorems. 

Proof of Theorem 1. The proof of the lower bound uses a very simple counting 
argument. Let N = n/(*log n) and let G be an arbitrary graph with p(G) = p and 
q(G) = n. We claim that Z&-f, (G, G). If p > N there is nothing to prove. The 
number of 2-colorings of KN which contain a monochromatic G is not more than 

2 
N 

0 P 
p! 2(Y)-n. 

It follows that if 2NP < 2”, there is a ‘t-coloring of the lines which avoids G in 
each color. Since 

1+p210gN~1+N210gN~l+- 2lol n (210g n - log 210g n) < n 

for all n > 2, the result follows. 
The upper bound uses a simple example. Let x be the unique positive root of 

the equation x2 .4” = n. Note that x = :(*log n)(l - o(1)). Set m = ]x] + 1 and let 
s be the smallest integer such that s(T) 2 n. Let G,, . . . , G, each be graphs of 
order m such that q(G,) + * * * + q(G,) = n. Let G be the point disjoint union of 
these graphs. Clearly r(G) < r(sK,) 5 (2.r - 2)m + r(K,). By our choice of s, 
(2s - 2)m < 4n/(m - 1) = 8(1+ o(l))n/(*log n). Thus, r(G) is bounded above as 
stated, which completes the proof. 0 

The example used to verify the upper bound in Theorem 1 is disconnected. 
However, a connected example can be constructed by replacing the complete 
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graphs with complete bipartite graphs and connecting a new point to each of the 
points of the bipartite graphs. 

Theorem 2 is closely related to a result appearing in [l]. Before starting the 
proof of Theorem 2, we will state the related result from [l] along with the 
appropriate definition. All of the graphs considered during this discussion will be 
connected. 

For fixed positive integers m and FZ, 

g(m, n) = max{q(G):p(G) = n and r(K,, G) = (m - l)(n - 1) + l}. 

Theorem A ([l]), For m 2 3, there exist a positive E < 1 and positive constants C 
and D such that for n sufficiently large 

Cnm’@-‘) < g(m, n) < Dn(m+2)‘m(log n)? 

Proof of Theorem 2. The upper bound in Theorem 2 is a direct consequence of 
the lower bound of Theorem A. From the proposition there is a graph G with 
p(G) = n, q(G) > Cnm’(m-l) and such that r(K,, G) = (m - l)(n - 1) + 1. Thus 
for appropriate constants C’ and C&, q(G) = q, p(G)< C’q(m-l)‘m and 
r(K,, G) = (m - l)(n - 1) + 1< Gq(m-l)‘m. It follows immediately that 

min r(K,, G) < C&(m-l)‘m, 
q(G)=q 

The lower bond of Theorem 2 does not follow directly from the upper bound of 
Theorem A. However, the same proof technique used in the proof of Theorem A 
can be used to verify the lower bound of Theorem 2. This same proof technique, 
which utilizes the lemma of Lov&sz (Lemma B, which is stated later), is applied 
later to prove Theorem 5. Therefore we omit the details of the proof of the lower 
bound. 0 

Upper bounds for Ramsey numbers as a function of the size of graphs appear 
to be difficult to obtain. A possible reason for this is that upper bounds may 
involve Ramsey numbers for complete graphs. The following proof considers the 
case when one of the graphs is a triangle. 

Proof of Theorem 4. The proof will be induction on n, The result is trivial for 
n = 1. We can assume G is connected since r(K3, G, U G2) c r(K,, G,) + r(KS, G2j 
for point disjoint graphs Gr and G2, Let N = [$zl and assume that KN is 
‘t-colored with no red K3 or blue G. By the induction assumption any graph with 
at most n - 1 lines is contained in the blue subgraph of KN. Note that no point of 
KN can have red degree as large as p(G), because a red line in the neighborhood 
of this point would imply a red K3 and no red line would imply a blue copy of G. 

Let v be a point of minimal degree S in G and let M be the neighborhood of v 
in G. The graph G’ = G - TV can be assumed to be a blue subgraph of KN. Let X 
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be the points of KN not in G’. Three cases depending on the minimal degree of a 
vertex will be considered. 

Cm? 1. 623. 
Since 6 *p(G) c 2n, p(G) < 2n/6. Each point in X must be adjacent in red to 

at least one point in M. Thus some point in M has red degree at least 
($z - $)/a > 2n/S >p(G), a contradiction. 

Case2. 6=1 
If u is the point in M, then u is adjacent in red to each point of X. Since X has 

at least $2 - n 2 $n 2 p(G) points, this give a contradiction. 

Case3. S=2 
First consider the case when G has a suspended path (interior point on the path 

have degree two in G) with five points. Decrease the length of this path by one to 
obtain a graph G”. Let zq, u2, u3, u4 be the consecutive points of the shortened 
suspended path P in G”. 

The graph G”, which has at most n points, can be assumed to be in the blue 
subgraph of KN. Let Y be the points of KN not in G’. Since Y has at least ?n 
points, there are y1 and y2 in Y which have a red line between them. Each yj 
cannot be adjacent in blue to two consecutive points of P and no vertex of P is 
adjacent in red to both y, and y2. Therefore, with no loss of generality, we can 
assume that ylul, y1u3, y2u2, ~2~4 are precisely the blue lines between {yl, y2} 
and P. If u1u3 is blue, there is a blue copy of G, and if u1u3 is red there is a red 

KS. 
We can now assume that G has no suspended path with more than four points. 

Let H be the graph (possibly a multigraph) obtained from G by shrinking each of 
the suspended paths to a line. Thus for some s 2 0, H has p(G) - s points and 
IZ - s lines. Since each point of H has degree at least three, 3@(G) - s) < 2(n - s) 
and 

p(G) s f(2n + s). (1) 

Since there is no suspended path with five points, 

p(G) < (p(G) -s) -I- 2(n -s), and s < $n. (2) 

From (1) and (2) it follows that p(G) s $n. 
As before, each point of X has at least one red adjacency in M. Thus, some 

point of M is adjacent in red to at least one half of the vertices of X. Hence there 
is a point of red degree at least 

This gives a contradiction which completes the proof of this case and of Theorem 
4. 0 
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In the proof of Theorem 5, [Nlk will denote the set of all k-element subsets of 
{1,2, . . . , N}. Any 2-coloring of the lines [NJ2 of the complete graph with points 
[N] will be denoted by (R, B). Thus R is the red subgraph and B is the blue 
subgraph. If S c [N], then the red subgraph (blue subgraph) induced by R(B) will 
be denoted by (S), ((S).). 

Proof of Theorem 5. The proof uses the Lovasz-Spencer method (see [5]). For an 
appropriately large N, we will demonstrate the existence of a 2-coloring (R, B) of 
[N12 such that R $I G and B $ K,,. Randomly two-color [N]*, each edge being red 
with independent probability p. For each S c [N]” let As denote the event: 
(S), ZI G. Similarly for each T c [N]” let BT denote the event: ( T)B ZZI K,. The 
fundamental result to be used here is 

Lemma B (Lovasz [5]). Let C,, C& . . . , C,, be events with probabilities P(Ci), 
i = 1,2, . . . , n. Suppose there exist corresponding positive numbers x1, x2, . . . , x, 
such that Xi * P(CJ < 1 and 

1OgXi b- z XjP(q), i = 1, 2, . . . , n, 

where the sum is taken over all j Z i such that Ci and Cj are dependent. Then 

qn I$::> > 0. 

To implement Loviisz’ Lemma in the setting previously described, we make the 
following simplification. For each Ci = As, let Xi = a, and for each Cl = BT, let 
xi = b. For a fixed As, let NAA denote the number of S’ #S such that As and As# 
are dependent. Similarly, define N AB to be the number of T such that As and B, 

are dependent. In exactly the same way, define NBA and NBB. Letting A and B 
denote typical As and BT respectively, note that the desired conclusion follows if 
there exist positive numbers a and b such that aP(A) -=I 1, bP(B) < 1, 

log a > N,,aP(A) + NBBbP(B), (3) 
and 

log b > NBAaP(A) + NBBbP(B). (4) 

Note that As and BT are dependent only if IS tl TI 2 2. A similar observation 
holds for the pairs (As, Asp) and (BT, BT,). 

For the purpose of this calculation, it suffices to use the following bounds: 
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P(A) 2 m! p4 and P(B) = (1 -p)(;). 

Let s = (m - 2)/(q - 1) and set 

p = Cl . N-“, n=c.N”.logN, 

a = C, > 1 and b = exp(C4 e N” . (log N)*), 

where C,-C, are positive constants. Then log a > 0, 

NtA. a . P(A) = O(Nm-2N-S4) = o(l), 
and 

NAB - b - P(B) < exp((C, + C,- CIC:/2)N”(log N)*) = o(l), 

if &Cf > C, + C,. Similarly, both sides of (4) are of order 

cN”(log N)*, 

for an appropriate constant c. The constants C-C, may be chosen so that (4) 
holds. Thus there is a 2-coloring of [N12 with no red G and no blue K,, where 

n = C&” log N. Solving for N in terms of IZ, we get the stated result. This 
completes the proof of Theorem 5. 0 

There are numerous interesting problems that remain unsolved. Verification of 
the conjecture about the upper bound on the Ramey number r(K3, G) for any 
graph G of a fixed size n would be of interest. The determination of all graphs 
which are size linear is probably very difficult. However, even partial solutions to 
this problem are worth some effort. 
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