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BOUNDS ON THRESHOLD DIMENSION AND
DISJOINT THRESHOLD COVERINGS*

PAUL ERDŐSt, EDWARD T . ORDMANt$ AND YECHEZKEL ZALCSTEINt

Abstract . The threshold dimension (threshold covering number) of a graph G is the least number of
threshold graphs needed to edgecover the graph G . If tc (n) is the greatest threshold dimension of any graph of
n vertices, we show that for some constant A,

n-Alnlogn<tc(n)<n-1n+1 .

We establish the same bounds for edge-disjoint coverings of graphs by threshold graphs (threshold partitions) .
We give an example to show there exist planar graphs on n vertices with a smallest covering of An threshold
graphs and a smallest partition of Bn threshold graphs, with B = 1 .5A . Thus the difference between these two
covering numbers can grow linearly in the number of vertices .
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1. Preliminaries . By a graph G = (V, E) we mean a finite set V of vertices and a
collection E of edges : distinct unordered pairs of distinct vertices . A subgraph of a graph
G is a subset V of V together with a subset E' of E that consists only of edges between
vertices of V' . An induced subgraph of a graph is a subset of the vertices together with
all edges of the original graph that connect those vertices . For further notation see [6] .

If x is a vertex of a graph G, the star of x is the subgraph consisting of x, the edges
containing x, and the other vertices contained in those edges . A stable set of vertices
(also called an independent set) is a set of vertices which induces no edges . A dominating
set of vertices is one such that every vertex in the graph is connected to at least one of
them by an edge . If a single vertex is a dominating set, it is called a dominating vertex.
To build a cone on G means to add a new vertex to V and connect it to all other vertices
by edges .

Threshold graphs were introduced in [2], [3], [8] . A graph is a threshold graph if it
meets one of the following equivalent conditions :

a) It does not have as an induced subgraph a square (C4), two disconnected edges
(2K2) or a path of three consecutive edges (P 4) .

b) The vertices can be labelled with integers l(v), and there is an integer constant
t (the threshold) such that a set {VI, V2, , v k } of vertices is stable if and only if
l(vl)+ • • • + l(vk)<t .

c) The vertices can be labelled with integers l(v), and there is an integer constant t
(these numbers may be different than those in (b)) such that any two vertices x and y
are connected by an edge if and only if l(x) + l(y) > t .

d) Every induced subgraph of G, including G itself, has at most one nontrivial
component (there may be isolated vertices) and this component has a dominating vertex .

Since every edge of G is, taken by itself, a threshold graph, every graph G may be
covered by threshold graphs . The smallest number of threshold subgraphs (not necessarily
induced subgraphs) of G that cover G is called the threshold dimension of G ; we will also
call it the threshold covering number of G and denote it by tc (G) . From an applied
perspective, tc (G) is the smallest number of semaphores needed to synchronize a system
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of parallel processes definable by the graph G using PV-chunk synchronizing primitives
[8]; alternatively, it is the smallest number of 0-1 simultaneous linear inequalities which
can replace such a system of linear inequalities represented by G; see [3], [7], or [6, Chap .
10]. For other prior results on tc (G), see [3] .

Two subgraphs of G are called edge-disjoint (or simply disjoint) if they have no
edges in common. Since the covering of a graph G by its edges is a covering by disjoint
threshold graphs, it follows that for every graph there is defined a unique integer tp (G),
the disjoint threshold dimension or threshold partition number ofG, the smallest number
of edge-disjoint threshold graphs that will cover G .

Since every threshold partition is a threshold covering, tp (G) ? tc (G) . One goal of
this paper is to begin exploring the questions, when is tp (G) = tc (G)? How different can
they be? For example, for some corresponding results for clique coverings and clique
partitions, see [ I] .

It should be noted that while it is easy to determine if G is a threshold graph (that
is, if tc (G) = 1), determining tc (G) is in general NP-complete [3] ; in fact, it is NP-
complete to test if tc (G) = 3 [10] or even if tc (G) = 2 [4] .

LEMMA 1 . If G is a trianglefree graph, tc (G) = tp (G) .
Proof. As observed in [2], if G contains no triangle, every threshold graph con-

tained in G is a star. Suppose G is covered by k stars S,, Sz, • • • , Sk . Define S', = S,,
S'2 = SZ - S1 , and in general S; = S; - (S, U . . . U S; _ ,) for j = 2 to k. Clearly the
various S; are disjoint stars and cover G, so tp (G) < tc (G) as required.

2 . The size of a required threshold covering . In [3], Chvátal and Hammer raise the
issue: how big need tc (G) be? They prove [3, Thm . 3] that if a(G) is the size of the largest
stable set in a graph G with n vertices, then tc (G) - n - a(G) with equality holding if
G is triangle-free (and in some other cases) . They also observe [3, Cor . 3A] that for every
positive e, there is a graph G on n vertices with tc (G) > (1 - e)n . In fact, the proof of
their Corollary 3A shows more than this. We restate it as follows :

THEOREM 1 . There is a constant A such that for large enough n there is a graph G
with n vertices and

tp (G) = tc (G) > n -A V log (n) .

Proof. In [5], Erdös shows that for a sufficiently large fixed constant A, there is an
integer N such that for n > N there is a graph G on n vertices with no triangle and with
no stable set of A V log (n) vertices. Thus tp (G) = tc (G), and

a(G) <A In log (n) and tc (G) > n -A V log (n)
as desired .

This shows that there are graphs with relatively large values of tc (G) . We now turn
to improving the upper bound on tp (G).

THEOREM 2 . Let G be an arbitrary graph on n vertices . Then

tp (G)<n - '~n + 1 .

Proof. Suppose there is a stable set A in G of size V or larger . Then Theorem 3 of
[3] points out that the stars on V - A provide a covering of G by no more than n - V
threshold graphs ; Lemma 1 above shows how to make this a threshold partition .

Now by contrast suppose that no stable set in G has as many as V elements. Pick
a vertex z in G; let x1, • • • , xk be a maximal stable set in the star of z ; hence k < Irn .
For each xi , in turn, we construct a graph T, consisting of all edges starting at x; together
with any triangles including the edge (z, x i ) ; omit from this any edges included in a
previous T; to keep the Ti 's disjoint. (To see that T; is threshold, use definition (c) . Label
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x; with 4; z with 3 ; any vertex which neighbors z and x; but no previous x;, j < i, with
2; other points adjoining x, with 1 . Let t = 5 .)

We have now constructed k edge-disjoint threshold graphs which cover the union
of the stars of the k + 1 vertices z, x1, • • • , xk . Delete the covered edges from G . This
eliminates at least k + 1 vertices. Since it deletes an edge only when deleting at least one
vertex on it, the reduced graph G' cannot have a bigger independent set than G had .

Reduce G by choosing a new z. At each stage, we eliminate k + 1 vertices by
covering them with k threshold graphs ;

k<V so k+I<V-n+ 1

and the total number of graphs needed to cover all n vertices is not greater than

nV <n - Vn+1
V-n + 1

which completes the proof of Theorem 2 .
We now let tc (n) denote the largest tc (G) for any G with n vertices ; tp (G) is defined

similarly . The above results show that

n-A Irn log (n)<tc(n)<n-In+1
and

n-AV_n_ log (n)<tp(n)<n-lfn+1 .

It remains of interest to tighten these bounds, and to know whether the limits for tc (n)
and tp (n) are actually the same . A private communication from János Pach [9] improves
the upper bound in each case to n - Vn log n for triangle-free graphs only .

3. The difference between tc (G) and tp (G) . Since the bounds we have established
for tc (G) and tp (G) are identical, it is reasonable to ask whether tc (G) and tp (G) are
ever very different . Our object in this section is to show that tp (G)-tc (G) can grow
proportionally to the number of vertices n in G, even if G is a planar connected graph
or a very highly-connected graph of low diameter.

We will make heavy use of a threshold graph H constructed as follows : consider six
vertices x1 , • • • , x6 and connect xi and x; if i + j _ 7 . Note that the deletion of the single
edge x2x3 would make it cease to be threshold since then x5x2x4x3 would be an in-
duced path .

Example 1 . Let G10 be the graph made by taking two copies of H and identifying
the two copies of x2 , x3 , and the edge between them. This graph is shown in Fig . 1 ; it is
planar. Clearly tc (G 10) = 2, since it is covered by two copies of H. The reader may verify
that tp (G,o) = 3; two graphs in the partition are a copy of H and a path x4x3x, . The
proof that there is no partition into two threshold graphs hinges on the fact that x2x3
would have to be in the same graph as one "wing" x 1x6 ; the side of G 10 lacking x2x3
cannot then be covered by one threshold graph .

The reader may also wish to verify that G10 is a critical example ; deleting an x 1x6
from G 1 0 results in tc = tp = 2, deleting any other edge yields tc = tp = 3 .

The graph G 10 may be used to build various examples in which the difference between
tc (G) and tp (G) grows linearly in the number of vertices or edges of G. For example, if
G' is the disjoint union of r copies of G 1 0, tp (G') = 3r and tc (G') = 2r. This example
may be made planar and connected by joining successive copies G 10 together at the
"wingtips" (identify an x6 of one G10 with an x6 from another) . To build more highly
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FIG . 1 . The graph G 1o .

connected (but nonplanar) examples, we use the following lemma motivated by a dis-
cussion with V. Chvátal :

LEMMA 2. Let G denote the cone on the (arbitrary) graph G. Then
tc (G) = tc (G) and tp (G) = tp (G) .

Proof. Any threshold covering of G' induces a (no larger) threshold covering of G
since an induced subgraph of a threshold graph is a threshold graph . Given a (disjoint)
threshold cover of G, we obtain a (disjoint) threshold cover of Gby picking any threshold
graph D in the cover of G and enlarging it to include the new vertex of G and its star in
G. That the enlarged D remains a threshold graph is easily seen by definition (d) of
threshold graphs ; the new vertex of G is a dominating vertex in the enlarged version
of D.

Using this lemma, we can create an arbitrarily highly connected graph with
tc = 2r, tp = 3r, by taking G` and erecting a cone on it as many times as desired (that
is, add 5 new points all connected to all original points and each other, to make it
5-connected) .

It is now clear that there is a constant c, such that a graph G on n vertices can have
tp (G) - tc (G) >_ cln . How big can c l be? Example Gl0 shows it can be at least ,'-o . What
upper bound can be put on tp (G) - tc (G)? We know it cannot exceed n - n - 1, but
we believe this can be improved. Finally, can tp (G)/tc (G) ever exceed 39 If so, how big
can it be?
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