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ABSTRACT 

It is proved in this note that the Grundy number, T(G), and the ochro- 
matic number, x’(G), are the same for any graph G. 

An n-coloring of a graph G = (V, E) is a function f from I/ onto 
N ={1,2,..., n} such that, whenever vertices u and u are adjacent. then 
f(u) f f(u). An n-coloring is complete if for every pair i,j of integers, 
1 5 i 5 j 5 n, there exist a pair U, u of adjacent vertices such that f(u) = i 
and f(v) = j. The chromatic number, x(G), and the achromutic number, I/J(G), 

are the smallest and largest values n, respectively, for which G has a complete 
n-coloring. A complete n-coloring g : V ---, N is a Grundy n-coloring if. for ev- 
ery vertex u E V, g(v) is the smallest integer that is not assigned to any vertex 
adjacent to II. The Grundy number, T(G), is the largest n for which G has a 
Grundy n-coloring. 

Finally we define a parsimonious proper coloring (ppc). Let 4: u,, v?, . , u,, 
be an arbitrary ordering of the vertices V of graph G = (V, E). Consider color- 
ing the vertices of G in the following manner: the vertices are colored in the 
given order $; when a vertex Ye is to be colored. it must be assigned one of the 
colors that has been used to color the vertices u, , . , v,-, provided a valid col- 
oring will result; only if u, is adjacent to a vertex of every currently used color 
can a new color be assigned; if V, can be assigned more than one color, one 
must choose a color that results in the least number of colors being used to 
color G. The minimum number of colors used to color G in this way, for the 
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given ordering 4. is called the pursimonious proper $-coloring number, and is 
denoted xJG). The achromatic number, x0(G)” is the largest value of xJG), 
taken over all orderings #J of V. 

These four coloring numbers, chromatic, achromatic, Grundy, and ochro- 
matic, are closely related, as we shall see. In particular, we shall show that for 
any graph G, T(G) = x’(G). 

The chromatic number is, of course, a very well studied parameter whose 
history dates back to the famous four color problem and the work on this prob- 
lem by Kempe in 1879 [12] and Heawood in 1890 [lo]. 

The achromatic number was first studied as a parameter by Harary, Hedet- 
niemi, and Prins in 1967 [7] and later was so named and studied by Harary and 
Hedetniemi in 1970 [8]. 

Grundy functions on directed graphs date back to the work of Grundy in 
1939 161 and were popularized by Berge in 1962 [2] and later in [ 11, The 
Grundy number was first named and studied by C. C. Christen and S. M. 
Selkow in 1979 [4]. It was also studied as a parameter by Cockayne and 
Thomason in 1981 [5] and indirectly by McDiarmid in 1979 [ 131 and S. M. 
Hedetniemi, S. T. Hedetniemi, and T. Beyer in 1982 [ 111. 

The achromatic number is due to Simmons, who first presented it in 1982 
[ 141 and more recently in [ 151 and [ 161. The achromatic number was also stud- 
ied by Hare, Hedetniemi, Laskar, and Pfaff in [9]. 

All of these coloring parameters, x(G), T(G). x’(G), and e(G), are closely 
related. In fact, Simmons [16] has shown the following. 

Theorem l(Simmons). For any graph G, x(G) = min x6(G). 

By definition x’(G) = max x6(G). Moreover since x(G) and I/J(G) are the 
smallest and largest complete coloring numbers, respectively. the following re- 
sults hold. 

Theorem 2 (Simmons). For any graph G, x(G) I x’(G) 5 $(G). 

Theorem 3 (Hedetniemi, Hedetniemi, and Beyer). For any graph G 

x(G) TS I-(G) 5 Jl(G). 

In fact, we now prove the following equality. 

Theorem 4. For any graph G, T(G) = x’(G). 

Proof. We first show that T(G) C= x’(G). Let V,, V,, . . , V,,,, be a 
Grundy coloring decomposition with r(G) colors such that V, is the set of ver- 
tices colored i, 1 5 i 5 T(G). An ordering 4 of the vertices of G can be in- 
duced in the following manner. Any linear order can be assigned within each V, 
and, if u is in V, and v is in V, with i < j, then u precedes v. Now a parsimo- 
nious proper &coloring on V can be induced, and this will coincide with the 
given T(G)-coloring. Hence, T(G) = x+(G). But, since x’(G) is the largest of 
all such x6(G), we have T(G) I x”(G). 
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But also, x0(G) 5 T(G). To establish this inequality, let $I be an ordering of 
V for which x*(C) = x”(G). A parsimonious proper #+coloring is now as- 
signed to V with the additional rule that, when a choice of color exists to color 
a vertex, the smallest possible color is used. Suppose R colors are used in this 
way; then x~(G) I R. Moreover, the additional rule ensures that we have a 
Grundy R-coloring, Thus, R I T(G), yielding x0(G) = x+(G) I R 5 T(G), 
as claimed. I 

[Since the original writing of this note, the authors have been kindly informed 
by G. J. Simmons that E. Brickell (private communication) has obtained the 
same theorem as Theorem 4.1 
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