On the Equality of the Grundy and Ochromatic Numbers of a Graph

P. Erdös

HUNGARIAN ACADEMY OF SCIENCES BUDAPEST, HUNGARY

W.R. Hare

S. T. Hedetniemi

R. Laskar

CLEMSON UNIVERSITY CLEMSON, SOUTH CAROLINA

ABSTRACT

It is proved in this note that the Grundy number, $\Gamma(G)$, and the ochromatic number, $\chi^{\circ}(G)$, are the same for any graph G.

An *n*-coloring of a graph G = (V, E) is a function f from V onto $N = \{1, 2, ..., n\}$ such that, whenever vertices u and v are adjacent, then $f(u) \neq f(v)$. An *n*-coloring is *complete* if for every pair i, j of integers, $1 \leq i \leq j \leq n$, there exist a pair u, v of adjacent vertices such that f(u) = i and f(v) = j. The chromatic number, $\chi(G)$, and the achromatic number, $\psi(G)$, are the smallest and largest values n, respectively, for which G has a complete *n*-coloring. A complete *n*-coloring $g: V \to N$ is a Grundy *n*-coloring if, for every vertex $v \in V$, g(v) is the smallest integer that is not assigned to any vertex adjacent to v. The Grundy number, $\Gamma(G)$, is the largest n for which G has a Grundy *n*-coloring.

Finally we define a *parsimonious proper coloring* (ppc). Let $\phi: v_1, v_2, \ldots, v_n$ be an arbitrary ordering of the vertices V of graph G = (V, E). Consider coloring the vertices of G in the following manner: the vertices are colored in the given order ϕ ; when a vertex v_i is to be colored, it must be assigned one of the colors that has been used to color the vertices v_1, \ldots, v_{i-1} provided a valid coloring will result; only if v_i is adjacent to a vertex of every currently used color can a new color be assigned; if v_i can be assigned more than one color, one must choose a color that results in the least number of colors being used to color G. The minimum number of colors used to color G in this way, for the

Journal of Graph Theory, Vol. 11, No. 2, 157–159 (1987) © 1987 by John Wiley & Sons, Inc. CCC 0364-9024/87/020157-03\$04.00 given ordering ϕ , is called the *parsimonious proper* ϕ -coloring number, and is denoted $\chi_{\phi}(G)$. The *ochromatic number*, $\chi^{0}(G)$, is the largest value of $\chi_{\phi}(G)$, taken over all orderings ϕ of V.

These four coloring numbers, chromatic, achromatic, Grundy, and ochromatic, are closely related, as we shall see. In particular, we shall show that for any graph G, $\Gamma(G) = \chi^0(G)$.

The chromatic number is, of course, a very well studied parameter whose history dates back to the famous four color problem and the work on this problem by Kempe in 1879 [12] and Heawood in 1890 [10].

The achromatic number was first studied as a parameter by Harary, Hedetniemi, and Prins in 1967 [7] and later was so named and studied by Harary and Hedetniemi in 1970 [8].

Grundy functions on directed graphs date back to the work of Grundy in 1939 [6] and were popularized by Berge in 1962 [2] and later in [1]. The Grundy number was first named and studied by C. C. Christen and S. M. Selkow in 1979 [4]. It was also studied as a parameter by Cockayne and Thomason in 1981 [5] and indirectly by McDiarmid in 1979 [13] and S. M. Hedetniemi, S. T. Hedetniemi, and T. Beyer in 1982 [11].

The ochromatic number is due to Simmons, who first presented it in 1982 [14] and more recently in [15] and [16]. The ochromatic number was also studied by Hare, Hedetniemi, Laskar, and Pfaff in [9].

All of these coloring parameters, $\chi(G)$, $\Gamma(G)$, $\chi^0(G)$, and $\psi(G)$, are closely related. In fact, Simmons [16] has shown the following.

Theorem 1(Simmons). For any graph G, $\chi(G) = \min \chi_{\phi}(G)$.

By definition $\chi^0(G) = \max \chi_{\phi}(G)$. Moreover since $\chi(G)$ and $\psi(G)$ are the smallest and largest complete coloring numbers, respectively, the following results hold.

Theorem 2 (Simmons). For any graph G, $\chi(G) \leq \chi^0(G) \leq \psi(G)$.

Theorem 3 (Hedetniemi, Hedetniemi, and Beyer). For any graph G

$$\chi(G) \leq \Gamma(G) \leq \psi(G) \, .$$

In fact, we now prove the following equality.

Theorem 4. For any graph G, $\Gamma(G) = \chi^0(G)$.

Proof. We first show that $\Gamma(G) \leq \chi^0(G)$. Let $V_1, V_2, \ldots, V_{\Gamma(G)}$ be a Grundy coloring decomposition with $\Gamma(G)$ colors such that V_i is the set of vertices colored $i, 1 \leq i \leq \Gamma(G)$. An ordering ϕ of the vertices of G can be induced in the following manner. Any linear order can be assigned within each V_i and, if u is in V_i and v is in V_j with i < j, then u precedes v. Now a parsimonious proper ϕ -coloring on V can be induced, and this will coincide with the given $\Gamma(G)$ -coloring. Hence, $\Gamma(G) = \chi_{\phi}(G)$. But, since $\chi^0(G)$ is the largest of all such $\chi_{\phi}(G)$, we have $\Gamma(G) \leq \chi^0(G)$.

But also, $\chi^0(G) \leq \Gamma(G)$. To establish this inequality, let ϕ be an ordering of V for which $\chi_{\phi}(G) = \chi^0(G)$. A parsimonious proper ϕ -coloring is now assigned to V with the additional rule that, when a choice of color exists to color a vertex, the smallest possible color is used. Suppose R colors are used in this way; then $\chi_{\phi}(G) \leq R$. Moreover, the additional rule ensures that we have a Grundy R-coloring. Thus, $R \leq \Gamma(G)$, yielding $\chi^0(G) = \chi_{\phi}(G) \leq R \leq \Gamma(G)$, as claimed.

[Since the original writing of this note, the authors have been kindly informed by G. J. Simmons that E. Brickell (private communication) has obtained the same theorem as Theorem 4.]

References

- [1] C. Berge, Graphs and Hypergraphs. North Holland, Amsterdam (1973).
- [2] C. Berge, *Theory of Graphs and its Applications*, Methuen, London (1962).
- [3] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications. American Elsevier, New York (1976).
- [4] C. C. Christen and S. M. Selkow, Some perfect coloring properties of graphs. J. Comb. Th. Series B 27 (1979) 49-57.
- [5] E. J. Cockayne and A. G. Thomason, Ordered colorings of graphs. J. Comb. Th. Series B 32 (1982) 286-292.
- [6] P. M. Grundy, Mathematics and Games. Eureka 2 (1939) 6-8.
- [7] F. Harary, S. Hedetniemi, and G. Prins, An interpolation theorem for graphical homomorphisms. Port. Math. 26 (1967) 453-462.
- [8] F. Harary and S. Hedetniemi, The achromatic number of a graph. J. Comb. Theory 8 (1970) 154-161.
- [9] W. R. Hare, S. T. Hedetniemi, R. Laskar, and J. Pfaff, Complete coloring parameters of graphs, unpublished manuscript.
- [10] P.J. Heawood, Map color theorems. Quart. J. Math. 24 (1890) 3 2-338.
- [11] S. M. Hedetniemi, S. Hedetniemi, and T. Beyer, A linear algorithm for the Grundy (coloring) number of a tree. *Congressus Numerantium* 36 (1982) 351-363.
- [12] A. B. Kempe, On the geographical problem of four colors. Amer. J. Math. 2 (1879) 193-204.
- [13] C. J. McDiarmid, Coloring random graphs badly. In *Graph Theory and Combinatorics*. R. J. Wilson, Ed. Pitman Advanced Publishing Program, San Francisco (1979).
- [14] G. J. Simmons, The ordered chromatic number of planar maps. Congressus Numerantium 36 (1982) 59-67.
- [15] G. J. Simmons, The ochromatic number of graphs. Proceedings of the First Colorado Symposium on Graph Theory. F. Harary, Ed. Wiley, New York (1983).
- [16] G. J. Simmons, On the ochromatic number of a graph. Congressus Numerantium 40 (1983) 339-366.