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Abstract

Ve consider a sequence of parameters 8, 8, vt o, o8 associat-
ed with a graph G. For example, m can be the maxiwmum nusber of
independent vertices in G and each ay is then the number of inde-
pendent sets of order 1. Sorting this liat into nondecreasing order
determines a permutation ¥ on the indices aso that
a'(l‘s 2,(2) £ eee £ aim) We call a sequence constrained if certain
permutations ¥ cannot be realized by any graph. It is well known
that the edge independ 1is constrained to be unimodal. The

vertex ind d q was conjectured to be likewise, but we

show that, quite the contrary, it is totally unconstrained. That is,
every permutation is realized by some graph.

1. Constrained Seguences.
We wish to study sequences of parameters associated with a spec-—

ific graph. For example, in the vertex independence seguence
apy a9yttt Ay, each ay denotes the number of independent sets of
order i of vertices in G and m is the maximum order of anv inde-
pendent set. Similarly, in the edge independence sequence,
bl’ b2’ ECE b‘, each bi counts the number of ways to select 1
independent edges. Again m denotes the maximum order, but it is
probably a different numerical value than m in the vertex inde-
pendence sequence. The approach we shall develop to study the vertex
independence sequence might well be applied to other graphical se-
quences, for example, to c3, Chr tt s S where ci counts the
number of i-cycles in G.

The edge independence sequence was shown [1] to be unimodal, that

is bl ¢ bz { s br z br+1 > bﬂ_2 > see D b‘.

H. Wilf asked whether the vertex independence sequence was likewise
unimodal. He seemed to be somewhat sceptical of this conjectured uni-
modality. We shall not only show that the unimodal conjecture is
false, but that, unlike the edge sequence, the numbers in the vertex
independence sequence are totally unconstrained in the following sense:
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Sort the sequence into nondecreasing order. This defines a
permutation % on the indices such that

31(1) < 31(2) s 31(3) g - £ a‘(n).

We call the family of sequences being investigated constrained if
certain permutations % are never realized by any graph. The fawmily
is unconstrained if, for each m, every permutation on m indices can
be realized by some graph.

We know the edpge sequence must be unimodal. Which permutations =
correspond to unimodal sequences?! To characterize them, let Sl be
the set {1, 2, *++ , m} and let Si+1 gy - {x(i)}. Each 541

the set of indices remaining after the i smallest terms have been

is

removed. It is not hard to see that the sequence is unimodal if and

only if #(i) = min S, or max Si

i
for each i. After all, where can the smallest term in a unimodal
sequence be located? It must be either first or last, for otherwise,
j-1 4 < 8j+1 and the
sequence cannot be unimodal. Having selected one end term to be small-

if j gpives the smallest term, we have a > a
est, we observe that the second smallest must be at either end of the
remaining terms. In this way we find that exactly 2mh} of the m!
permutations can be assoclated with unimodal sequences. As already
noted, the edge independence sequence is known to be unimodal. Thus,
% is constrained to be among the 2"'-1 permutations that give uni-
™1 nimodal 's
can actually be realized. Quite possibly the edge independence

modal sequences. We do not, however, know if all 2

sequence 12 even more constrained than the unimodal property regquires.
We leave this question for future research. We may now state the main

theorem of this article.

Theorem. The vertex independence sequence for graphs is totally un-
constrained. That is for each = and for each permutation ¥ on
{1, 2, -+ , m}, there exists a graph G with vertex independence
number equal to m and a(1) < 8,(2) Ca3) ¢ enr 8 (m)"

Proof. For each permutation % we shall realize ¥ by a graph of

the form

Gw=IlK +2 #+#3K + «*+ +mk_ .
L | L) ! "
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That is, G is the join of = subgraphs, and the jth subgraph is j
copies of a complete graph 'Kn . We must assign the parameters

Nyy My, o, M carefully to assure that G realizes . How can
we select k independent vertices in G? If we try to use vertices
from more than one of the m subgraphs, the jcin operation prevents
them from being independent. Thuas, all k wmust come from a single

an . Moreover, if j ( k, there do not exist k independent

i
vertices. But for i 2 k we select k of the j components, and
then choose on vertex from each component to find (;)ni independent
k-sets in an . Summing over j 2 k we have

3

z (k)n1 (1
=k

We ran now exnlain our strategy to realize #. Let T be a large
parameter (to be specified soon). Choose
n = ((n(k) - DT . (2)
0f course, n, wust be rounded to the nearest integer, but we have

neglected this in our notation because the formulas are already quite

involved. When T 1is large, this round off effect is negligible. We
must make one other adjustment. If =%(m) = 1, equation (2) gives

n = 0 and we would have g 0. Since we promised to construct a
graph with vertex independence number equal to m, in this one case

redefine

0, - 1 whenever #(m) = 1, (3)

Each n, has been defined so that the first term im (1) for a, gives
(w(k) - 1)T. That is, each a has a leading term in (1) giving a
distinct integral multiple of T. Moreover, these terms fall in the
proper order to realize =%, provided that the remaining terms do not
scramble the order. This will be true if we can show that for each

k < m,

o : k
0s ¥ (;:)n1 < T. (4)
j=k+1 :
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In other words, the first term (j = k) throws a, onto the number
line at (x(k) - 1)T and the remaining terms (] > k) do not total
enough to reach the next integral multiple of T. In this way we
guarantee % has been realized by the graph G defined by (2) and
(3).

If we set T very large, {4) is easy to verify, but the order of
G may be extravagently large. As we reduce T, more work is required
to verify (4). Although we know it is not the smallest T that works,
we have found that T = -2' is roughly the smallest T that leaves
the task of verifying (4) manageable. For this value of T, notice
that if =(k) > 1 equation (2) gives n, 2 mz.

We shall verify (4) first for k = m and then work backwards down
the list. For k = m, the sum is empty and hence equals 0. For k =

m -1, we have a single term.

=, w1 m i
(-_l)n‘ =n n.fu- - !L!L!%--lll
»

Now either %(m) = 1 and the term is O, or 2 S x(m) € m and so
2

n_ 2 a and we have

n ( =1 < l!l;l) T <T.

L] Y
=1""m
Do not despair. We are not going to continue to verify one a
st a time. For all k S m - 2 we may estimate quite crudely:

n m
i, k i j~k
()n] = () (x(i) - DI/ .
j-§+1 L _1-E+1 k 1
Replace w{j) - 1 S =m and ni 2 nz, 80

m %
(-‘)n';s 3G rtitel

jokel ¥ Juk1

Now the binomial coefficient 1s at most (i) = (12k) < (k + et k-1
since there are j - k factors in the uu-erator; the smallest equals
k + 1, and each of the rest is at most m. We have generously sup-

pressed (j - k)! in the denominator. This gives

n »n
S hafs1 § (ks natl izl
gekel 1T gaial
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Finally, letting the upper summation limit of m be replaced by
infinity allows us to make the inequality strict, and we evaluate the

geometric series to get
¢ T(k + 1)/(m-1).

Since this case required k S m - 2, we have obtained T as the re-
quired bound. We have demonstrated that the graph comstructed by (2)
and (3) does in fact realize the permutation 7.

Examples. Table 1 illustrates our construction for each permutation of
length 3, and Table 3 shows the construction for length 4. Noticing
that a is just the number of vertices in G, we see that our con-
struction uses as many as 1515 for m =3 and 197456 for m = 4.

In general, to obtain the sequence with a; > a, b a, Y e ) a, wve

use order
. xi 17§
a= 3 i n,= 3 ila-DIPY 4w
_1-1 . 1-1
where the last term of m results from condition (3). For T = .Zn
2m+1

this is on the order of 3, s m .

log a

This is eguivalent to saying m ~ O( }. But this is

certainly a much larger value of a; than necessary. By examining the
permutations one by one, we can produce the parameters in Table 2
requiring no more than 65 vertices. In fact, the use of an in

the construction is a convenience, not a necessity. If we allow the
union of j complete graphs of varying sizes we can get even smaller
examples. Thus sz + 2K3 1) Ka realizes # = 213 with 34 vertices
and K27 + 2K3 u K& realizes 231 with 37 wvertices. Similar
careful choices for m = 4 are shown in Table 4 where every permuta-
tion is achieved using at most 302 vertices. However it is quite
possible that even smaller graphs might succeed if we liberalize the
construction to allow graphs other than joins of unions of complete
graphs. Determining the smallest order that is large enough to realize
every permutation of order m 1is likely to remain exceedingly
difficult.
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It appears that permutations starting with m - 1 followed by m
require the most vertices. Each independent m-set contains =
independent m - 1 subsets. Thus a1 tends to exceed a unless
a. is quite large and there is lots of overlap. For nKm we have
a ;=a = . We suspect a__, 4 a requires a1 > ", If 8o,
then any permutation of the form # =m -1 m +-+ 1 must have at
least =" + m. This suggests lower bounds of 30 for m =3 and 260

for m = 4, Perhaps our best examples are not so far from the truth.

2. Related Problems

IF is natural to wonder if the sequence €15 8y tot e giving
the number of maximal independent sets of vertices of each order be-
haves similar to the ordinmary independence sequence. An independent
i-set that is always counted in a, is also counted in e only if it
happens to be maximal, that is, no vertex can be added to it to form an
independent (i + 1)-set. In some contexts, maximal independent sets
are harder to analyze because an additional property is involved. How-
ever, in the present context it happens that the maximal independence
sequence is easier to control. Not only is the maximal independence
sequence totally unconstrained, but we can even select
&5 By g B to be anv nonnegative sequence and construct a
graph having this specified maximal independence sequence. Specifical-
ly, we let G = Hl + H2 + 20+ ﬂ- where each subgraph H
(i = 1)K

i =

1 U Ke . As constructed, each H, contains precisely e

i
independent iisets, each of which is maximal, and no other H1 con-
tains a maximal independent i-set. This last feature of the graph
allows each Hi to be selected to produce e, without affecting
any other terms in the sequence.
Manvy open problems remain in this area. The first two we list

have already been mentioned above:

Problem 1. Determine the smallest order large enough to realize every
permutation of order m as the sorted indices of the vertex inde-

pendence sequence of some graph.

Problem 2. Characterize the permutations realized by the edge inde—

zm—l

pendence sequence. In particular, can all unimodal permuta-

tions be realized?
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It 1s possible that the nature of the vertex independence sequence
is totally different for trees or forests.

Problem 3. For trees (or perhaps forests), is the vertex independence

seguence unimodal?

At one point we suspected that unimodality of G and H would
imply G U H is unimodal. If so, the unimodal conjecture for trees
would imply the one for forests. This is tempting because it is easy
to verify that setting ag = 1 by convention gives

k
a(GUH = F alGa,_(H .
k = S o

But such a convolution of unimodal sequences need not be unimodal. For
example, G = K95 + 3K? has the unimodal sequence ag = I A a = 116,

= 343, whereas G U G has the nonunimodal sequence

a, = 147, ag
ag = 1, iy % 232, a, = 13750, a; = 34790, a, = 101185,
ag = 100842, a = 117649, Thus, it would seem that the tree and

forest conjectures need to be attacked separately.
In closing, we suggest that permutation constraint offers a new

perspective for investigating other sequences associated with graphs.
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u noomong o & &
123 0 22 87 1002 133
132 0o 3 9 103 187 729
213 29 0 762 363 1331
231 458 0 9 1485 243 729
312 729 38 1 808 1447 1
321 1458 27 1 1515 732 1

Table!l. For m=3 and T=35=-729,
the maximum order = 1515 = 12T +2J/T +31
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123

132
213
231
312

321

ny

37

53

0

0

1

49

65

9

4

L
48
2
48
48
2

3

64

64

1

Table 2. For m=3, more carefully chosen parameters give maximum
order = 65.

m

1234
1243
1324
1342
1423
1432
2134
2143
2314
2341
2413
2434
3124
3142
3214
3241
3412
3421
4123
4132
4213
4231
4312
4321

gggéoooooo 2

888800000088 888888

131072
196608
65536
65536
131072
196608
131072
196608
65536
65536
131072
196608
131072
196608

40
40

saNBNsToNsNdsINBN £

—— et s —a O

746
762
928
1082
962
1100
65770
65786
131276
196804
131310
196822
66344
66498
131668
197196
132022
197396
66438
66576
131762
197274
132082
197456

Table 3. For m=4and T=4%- 65536,
maximum order = 137456

&

75682
77794
138490
203215
142672
205285
10146
12258
7446
6966
11628
9036
133690
198415
68182
67702
197785
132580
4n4z
203755
75634

201055
135850

a8

162044
222548
101044
91436
21496
141384
162044
222548
101044
91436
211496
141384
37044
27436
37044
27436
16384
16384

195116

125004

195116

64004
64004

84

194481
130321
194481
130321
65536
65536
194481
130321
194481
130321
65536
65536
194481
130321
194481
130321
65536
65536
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m

1234
1243
1324
1342
1423
1432
2134
2143
2314
2341
2413
2431
3124
3142
3214
3241
3412
3a2
4123
4132
4213
4231
4312
4321

Graph

3Ky K
4K
Ky + KgKqu2Kg
2Kpo + 4Kg
4Kz
2Kz + 4Kg
Kot + KzuKyu2Ks
Kz + 4Kz
Karg + KsuKyu2Ks
Koge + K3uKqU2Ks
Kz + 4Kz
Kgz + 4K3
Kaso + KoUKy + K3uKqUZKg
Kasi + 2Ky + KauKeu2Ks
Kasp + KguKay + KzUK4U2Ks
Kase + KguKz) + KzuKeu2Ks
Kasg + 2K + K3uKeUZKs
Kigs + KaKgr ¢+ KguKqu2Ks
3K4 + 4K|
Ku3K,
Kiz + 4Kz
Kos + 4Kz
Ky + 4Ky
K; + 4K‘

25
33
5
7

Ly

ZER238838ww8B38 o

54
303

24
34
07
54
07
107
54
54
297
303
296
296
303
301
54
8
24
24
6

6

295

and9.288

320

81
300
625

18
300

300
300
81
81

300
300
300
300
300
1

2

16
16

1
1

Table 4. More careful choices for m=4 give maximum order = 302.
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