
How to Define an Irregular Graph
Gary Chartrand
Paul Erdös
Ortrud R. Oellermann

I have lived in Michigan nearly all my life, having been
brought up in Sault Ste. Marie, educated at Michigan State
University, studying at the University of Michigan, and em-
ployed by Western Michigan University . I've enjoyed graph
theory from the day I heard my eventual thesis advisor E. A .
Nordhaus speak on it. I've had eleven doctoral students, the
most recent being Ortrud Oellermann, and the two of us are
now very pleased to have Erdös number 1 . I enjoy musicals
and many sports.

The misfortune of birth overtook me on March 26, 1913. My
parents were both mathematicians, and I learned a great
deal from them. I got my Ph.D. at the University of Budapest
in 1934. 1 spent the years 1938-1948 in Manchester, En-
gland, and I have been in the United States since 1954. 1
travel constantly around the world: Hungary, Israel, the
U.S.A ., England, etc. My subjects are number theory, combi-
natorics, set theory and probability .

I was born in Vryheid, South Africa, and have been inter-
ested in mathematics since childhood. After receiving my
predoctoral degrees from the University of Natal in Durban, I
came to the United States to study graph theory at Western
Michigan University, where I received my Ph .D. in 1986, and
where I am now on the faculty. I enjoy playing the piano,
violin and recorder. I speak German, Afrikaans and Zulu, in
addition to English .

There are several curious real-life puzzles and problems that can be translated into
the language of graph theory, where they are often found to have interesting
solutions. One such problem is to show that in any group of n >_ 2 people, there are
always at least two people who have the same number of acquaintances in the
group. A graph G with n vertices can be constructed to model this situation by
associating each vertex of G with one person in the group, and joining two vertices
by an edge if and only if the corresponding people are acquainted . In the resulting
graph, the degree of a vertex v is the number of vertices adjacent to v . The original
problem may now be rephrased in terms of graphs as follows : Show that in any
graph G with n >_ 2 vertices, there are at least two vertices having the same degree .
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To solve this problem, notice first that the degree of a vertex in a graph G with n
vertices is one of the numbers 0, 1, 2, . . ., n - 1 . If all the degrees of the vertices of G
were distinct, then each of these n numbers has to occur exactly once as the degree
of a vertex in G . However, if v is the vertex of G that has degree n - 1, then v is
adjacent to every other vertex of G, including the vertex having degree 0, which is
impossible .

If all people in the group had the same number of acquaintances, then the
corresponding graph would be called regular . Later in this article, we will look at
some properties of regular graphs and investigate graphs which are, in some sense,
opposite to regular graphs .

We now introduce a few definitions that will be useful in what follows . A graph
with n vertices is called complete, and is denoted by K,,, if every two vertices are
adjacent . The five smallest complete graphs are shown in Figure 1 .
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Figure 1 . Five complete graphs .

The degree set 9(G) of a graph G is the set of degrees of the vertices of G. For
example, 9(K,,)=(n-1), while 9(G 1)=(1,2,3,4) and 9(G2)=(0,1,2,3} for
the graphs G l and G2 of Figure 2 .

A path between vertices u and v is a sequence of distinct vertices, consecutive
ones of which are adjacent, beginning with u or v and ending with the other,
together with the resulting edges. A graph G is connected if there is a path between
every two vertices of G . The graph G l of Figure 2 is connected, while G2 is not
connected (disconnected) since there is no path in G 2 between v3 and any vertex
v (-= (v t , v2, v4 , v 5 } .
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Figure 2 . Complementary graphs .

The complement G of a graph G is that graph having the same vertices as G, with
vertices u and v being adjacent in G if and only if u and v are not adjacent in G .
Notice that G2 = Gl in Figure 2 .

G 2 :

37



As mentioned previously, a graph G is regular if all of its vertices have the same
degree. (Equivalently, a graph G is regular if 2(G) consists of a single element .) If
this common degree is r, then G is r-regular . For an r-regular graph with n vertices,
wehave 0<r<n-1 .

The sum of the degrees of the vertices of a graph is always even since this sum
counts each edge twice. So, if G is an r-regular graph with n vertices, then rn is
even. On the other hand, if either r or n is an even integer with 0 :5 r :5 n - 1, then
there is an r-regular graph with n vertices. A 4-regular graph with 7 vertices is
shown in Figure 3 . The reader may find it interesting to construct some r-regular
graphs of order n .
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Figure 3 . A 4-regular graph with 7 vertices .

Although it may seem a bit rare for a graph to be regular, these graphs occur with
surprising `regularity .' In 1936, in the first book ever written on graph theory, Denes
König [5] showed that for every graph H, there exists an r-regular graph G, where r
is the largest degree among the vertices of H, such that H is an induced subgraph of
G (i .e ., G is obtained by adding vertices to H in such a way that every edge of G is
either an edge of H or is incident with at least one vertex of G which is not in H).
For example, consider the graph H with degree set 2(H)= {2,3,4) in Figure 4. If
we take two copies of H and join corresponding vertices in the two copies whose
degrees are less than 4, then we produce the graph F with 2(F) = (3,4) . Repeating
this process with F gives a 4-regular graph G. This procedure can then be used to
prove König's result .

Figure 4 . Constructing regular graphs .



The Search for "Irregularity ." The results mentioned above constitute only a
very small sample of what's known about regular graphs . We now propose a
question and, at the same time, illustrate how one might go about introducing a new
concept that can become a topic for future research . The question is :

Which class of graphs is opposite to the regular graphs?
Or, perhaps, we may rephrase this as :

How should one define an irregular graph?

Here, of course we are taking "irregular" as an antonym for "regular"-it is not
meant as a synonym for "nonregular." In research, the goal is not only to come up
with a definition that seems natural but to arrive at a class of graphs with
interesting, and perhaps even some surprising, properties .

Probably the most obvious candidate for the definition of an irregular graph is a
graph whose vertices have distinct degrees . However, we have already seen that
no graph (with at least two vertices) has this property . We might vary this definition
a little and define a graph G with n vertices to be irregular if the vertices of G have
distinct degrees, except for one pair (i .e ., G is irregular if 1-9 (G) I = n - 1) . We know
such types of graphs exist since each of the complementary graphs, G 1 and G2 , of
Figure 2 satisfies this definition . However, this is not an ideal way to define an
irregular graph, for it was proved in [2] that there is only one connected graph G
with n > 2 vertices such that 1-9(G)I = n - 1, and that the only other graph with n
vertices and having a degree set of cardinality n - 1 is G. The reader might enjoy
constructing these graphs G and determining which degree is repeated . Further,
such graphs have been completely determined, and so defining these graphs to be
irregular does not produce any new problems of interest to study .

In order to consider another approach to define an irregular graph, we introduce
the idea of distance. The length of a path in a graph is the number of edges in it . For
distinct vertices u and v in a connected graph G, the distance d(u, v) between u and
v is the smallest length of all paths in G between u and v . For example, in the graph
G 1 of Figure 2, we have d (v 1 , v 3 ) = 1 and d (v 1 , v 2 ) = 2 . Note that in any graph,
d(u, v) = 1 if and only if u and v are adjacent. This, and the idea of distance degree
regular graphs defined by Bloom, Kennedy, and Quintas [3], suggests another way
to look at regular graphs and, possibly, to define irregular graphs .

A graph G is regular if the same number of vertices are at distance 1 from each
vertex of G. For appropriate integers k, we could define a graph G to be distance-k
regular if every vertex of G has the same number of vertices at distance k from it.
Thus, distance-1 regular graphs and regular graphs are the same thing . The graph G
of Figure 5 is distance-2 regular (though it's not regular) since there are exactly two
vertices at distance 2 from each of its vertices .

0

Figure 5 . A distance-2 regular, nonregular graph .
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The preceding discussion suggests defining a connected graph G with n >- 2
vertices to be distance-k irregular (k, a positive integer) if for every two distinct
vertices u and v of G, the number of vertices at distance k from u is different from
the number of vertices at distance k from v . We have already noted that no graph is
distance-1 irregular . For k >_ 2, no graph is distance-k irregular either . To see this,
suppose that G is a distance-k irregular graph with n vertices . Then G must contain
a vertex u having no vertices at distance k from it, and a vertex v such that n - 1
vertices are at distance k from v . But then all other vertices of G, including u, are at
distance k from v, and a contradiction is produced .

We have suggested some possible definitions of an irregular graph, but for
various reasons, all attempts to define these graphs have been unsatisfactory . Now,
however, we will describe a definition with some potential .

Let G be a regular graph . Then all the neighbors of v (the vertices adjacent to v)
have degree r if G is r-regular . This means that every regular graph is locally
regular . This suggests yet another way to define an irregular graph . First, define a
graph G to be locally irregular if for each vertex v of G the neighbors of v have
distinct degrees . These graphs do exist. Some locally irregular graphs are shown in
Figure 6 .
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Figure 6 . Three locally irregular graphs .

Locally irregular graphs that are also connected have been defined and studied
recently in [1], and have been referred to as highly irregular graphs . There are
surprisingly many highly irregular graphs, as was pointed out in [1] .

Let's look at a few properties of these graphs . Let G be a highly irregular graph
whose largest degree is d. If v is a vertex of degree d in G, then (since all the
neighbors of v have different degrees) the degrees of the neighbors of v must be
1, 2, . . ., d. Suppose u is the neighbor of v that has degree d. Then u too must have
d neighbors with different degrees . Further, since G is highly irregular, u and v
cannot have a common neighbor w since u and v would then be two neighbors of w
with the same degree . Therefore, if G has n vertices, then n >t 2d . Thus, the largest
degree in a highly irregular graph is at most half the number of vertices .

From a highly irregular graph G, we can construct another highly irregular graph
H having 2n vertices by taking two copies of G and joining a vertex of degree d in
one copy to a vertex of degree d in the other. In [1], it was proved that there exist
highly irregular graphs with n vertices for every positive integer n except 3, 5, and 7 .
There are only two connected graphs with three vertices, and neither of these is
highly irregular since each vertex of degree 2 has two neighbors with the same
degree .

Let's see next why there is no highly irregular graph with 5 vertices . Suppose that
there is such a graph G . By our earlier observation about largest degrees, the



maximum degree d must satisfy d :5 5/2, so d _< 2 . Since G is connected, we cannot
have d E ( 0,1) . Hence, d = 2 . Let u be a vertex of degree 2 in G. Then one neighbor
w of u must have degree 1, and the other neighbor v of u must have degree 2 .
Similarly, v is adjacent to u and to a vertex of degree 1 . But this implies that G has
only four vertices, which is a contradiction .

We leave it as an interesting exercise to verify that there is no highly irregular
graph with 7 vertices .

As mentioned earlier, König proved that if H is a graph whose largest degree is r,
then there is an r-regular graph G containing H as an induced subgraph . In [1], it
was shown that for every graph H there is a highly irregular graph G containing H
as an induced subgraph . To illustrate the proof of this analogue, consider the
non-highly irregular graph H in Figure 7. Taking two copies H1 and H2 (as
indicated in Figure 7), we join each pair v; and v; (i = 1, 2,3) but not v4 and v, .
Further, each vertex v; of H1 is joined to the vertices of H 2 which correspond to the
vertices of H 1 that are not adjacent to v, . The construction of the desired highly
irregular graph G is completed by adding four new vertices u 1 , u 2 , ui, u2, and
joining u l to V 1 ; U l' to V '1 ; U2 to v, and V2 ; and u' to v1 and V2 .

H:
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Figure 7 . Constructing a highly irregular graph .

The class of highly irregular graphs seems to be sufficiently numerous and diverse
so as to be an appropriate answer to our question posed in the title . However,
before we conclude, let us mention one other alternative . The concept of the degree
of a vertex in a graph G can be generalized in the following way : For a given graph
F, the F-degree of a vertex v in G is the number of subgraphs of G, isomorphic to
F, to which v belongs. Consequently, the ordinary degree of a vertex v is the
K2-degree of v. (The complete graph K 2 was shown in Figure 1 .)

A graph G is F-regular of degree r if every vertex of G has F-degree r . The graph
G of Figure 9 is K 3-regular of degree 3, but it is not regular . Let P3 denote the graph
that is a path with three vertices (see Figure 9) . It was shown in [4] that a graph G is
P3-regular of degree at least 2 if and only if G is regular.

G :
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Figure 8 . A k 3 -regular graph .
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The concept just introduced suggests yet another type of irregular graph . For a
graph F, let a graph G be called F-irregular if the vertices of G have distinct
F-degrees . Since we have seen earlier that no graph with at least two vertices is
distance-1 irregular, no such graph is F-irregular for F = K2 . However, this is not
the case for all choices of F; for example, the graph G of Figure 9 is P 3-irregular .
(Each vertex of this graph is labeled with its P 3-degree.)

0
0

R

Figure 9 . A P3 -irregular graph G .

P. Erdös, L. Székely, and W. T. Trotter have shown the existence of infinitely
many K3-irregular graphs, while it was shown in [4] that K,;irregular graphs exist
for every n >_ 3 . In fact, we believe that F-irregular graphs exist for every connected
graph F with at least three vertices . We noted earlier that there is no regular,
P3-irregular graph . This suggests a question, whose answer is unknown to us : Do
regular, K3-irregular graphs exist?
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The statistician is no longer an alchemist expected to produce gold from any
worthless material offered him . He is more like a chemist capable of assaying
exactly how much of value it contains, and capable also of extracting this
amount, and no more . In these circumstances, it would be foolish to commend
a statistician because his results are precise or to reprove because they are not . .
If he is competent in his craft, the value of the result follows solely from the
value of the material given him . It contains so, much information and no more .
His job is only to produce what it contains .

R. A. Fisher
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