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A stract. Answering an old question in com inatorial geometry, we show that any
configuration consisting of a set V of n points in general position in the plane and
a set of 6n -5 closed straight line segments whose endpoints lie in V, contains three

pairwise disjoint line segments .

A geometric graph is a pair G=(V, E), where V is a set of points (=vertices) in
general position in the plane, i .e ., no three on a line, and E is a set of distinct,
closed, straight line segments, called edges, whose endpoints lie in V. An old
theorem of the second author [Er] (see also [Ku] for another proof), states that
any geometric graph with n points and n + 1 edges contains two disjoint edges,
and this is est possi le for every n >_ 3 . For k>- 2, let f(k n) denote the maximum
num er of edges of a geometric graph on n vertices that contains no k pairwise
disjoint edges . Thus, the result stated a ove is simply the fact f(2, n) = n for all
n >_ 3 . Kupitz [Ku] and Perles [Pe] (see also [AA]) raised the pro lem of
determining or estimating f(kn) for k>_3 . In particular, they asked if f(3, n)
O(n) . This specific pro lem, of determining or estimating f(3, n), was already
mentioned in 1966 y Avital and Hanani [AH], and it seems it was a known
pro lem even efore that. In this note we answer this question y proving the
following .

Theorem 1 . For every n ? 1, f(3, n) < 6n - 5, i.e., any geometric graph with n
vertices and 6n -5 edges contains three pairwise disjoint edges .
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Before proving this theorem we note that clearly

f(3,n)=
(n)
2

	

for n :5 5

and the est-known lower ound for n >_ 6, given y Perles [Pe], is

2n_ z for odd n >- 5,
.f(3, n) > s

	

(1)í ,n-4 forevenn>2 .

To prove inequality (1) for odd n consider the geometric graph G„ whose n
vertices are the n -1 points v; _ (cos (27rj/ (n -1)), sin(2arj/(n -1))), <j < n -1,
together with the additional point u = (e, S) where e and S are small num ers
chosen so that {vo , . . . , v n_Z , u} is in general position . The edges of Gn are the
z(n-1) line segments

{[u,v;] : <_j<n-1}

V {[Vi, vj+(n-3)/2], [Vi, vÍ+(n - 1)/2], [Vi, vl+(n+1)/2] : OCJ < n 1},

where all indices are reduced modulo n -1 . We can easily check that if e and S
are sufficiently small then Gn contains no three pairwise disjoint edges . Thus
f(3, n) >_ 2n -2 for every odd n >- 5 . For even n, let Gn e the geometric graph
o tained from Gn+ , y deleting one of its vertices of degree 4 . Then Gn has 2n -4
edges and contains no three pairwise disjoint edges . This esta lishes (1). On the
other hand, Perles [Pe] showed that every geometric graph whose n vertices are
the vertices of a convex n-gon in the plane, with more than (k-1)n edges,
contains k pairwise disjoint edges . In particular, in the convex case 2n + 1 edges
guarantee three pairwise disjoint edges . Comparing this with (1) we conclude
that the convex case differs from the general one .

Our final remark efore the proof of Theorem 1 is that a special case of one
of the results in [AA] implies that, for every k=o (log n), f(k, n)=o(n2 ) . It is
very likely that, for every fixed k, f(k, n) = (n), and that, for every k= o(n),
f(k, n)=o(n 2 ), ut this remains open .

Proof of Theorem 1 . Let G e a geometric graph with n vertices and 6n - 5
edges. We must show that G contains three pairwise disjoint edges . It is first
convenient to apply an affine transformation on the plane, in order to make all
the edges of G almost parallel to the x-axis . This is done y first choosing the
x-axis so that any two distinct points of G have different x-coordinates, and
then, y resealing the y- coordinates so that the difference etween the x-coordin-
ates of any two distinct points of G is at least 1 times igger than the difference
etween their y-coordinates . Since any affine transformation maps disjoint seg-

ments into disjoint segments we may apply the a ove transformations, and hence
may assume that G satisfies the following :

The small angle etween any edge of G and the x-axis is less than Tr/2 . (2)
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We now define the clockwise derivative and the counterclockwise derivative
of an ar itrary geometric graph . Let H = (V, E) e a geometric graph and let
e = [u, v] e an edge of H. We say that e is clockwise good at u if there is another
edge e'= [ u, v] of H such that the directed line uv' is o tained from úv y
rotating it clockwise around a y an angle smaller than 7r/ 1 . If e is not clockwise
good at u, we say that it is clockwise ad at u . The edge e = [u, v] is clockwise
good if it is clockwise good at oth a and v. The clockwise derivative of H,
denoted y aH, is the geometric graph whose set of vertices is the set of all
vertices of H, and whose set of edges consists of all clockwise good edges of H.
The notions of an edge e = [u, v] which is counterclockwise good at u and that of
an edge which is counterclockwise good are defined analogously . The counterclock-
wise derivative of H, denoted y Ha, is also defined in an analogous manner .

Claim 1 . Let G = ( V, E) e a geometric graph with n >_ 2 vertices and m edges
satisfying (2) . Then the num er of edges of aG is at least m-(2n-2) . Similarly,
the num er of edges of Ga is at least m-(2n-2) .

Proof. We prove the assertion for aG. The proof for Ga is analogous . Let v E V
e an ar itrary vertex of G. We claim that the num er of edges of the form [v, u]

of G which are clockwise ad at v does not exceed 2 . Indeed, assume this is
false and let [v, u,], [v, u2], [v, u 3 ] e three such edges . Without loss of generality,
assume that the x- coordinates of u, and u 2 lie in the same side of the x- coordinate
of v . By (2), the angle etween [v, u,] and [v, u 2 ] is smaller than 7r/1, and
hence at least one of these two edges is clockwise good at v. This contradiction
shows that indeed at most two edges of the form [v, u] are clockwise ad at v.
The same argument shows that if u is a vertex of G whose x-coordinate is
maximum or minimum, then there is at most one edge incident with u which is
clockwise ad at u. Altogether, the total num er of clockwise ad edges is ounded
y 2+2 • (n-2)=2n-2, completing the proof of Claim 1 .

	

Returning to our graph G with n edges and 6n-5 edges, which satisfies (2),
define G, = Go, G2 = aG, , G3 = G 2 a . Clearly, all the graphs G,, G2, and G3
satisfy (2) and hence, y applying Claim 1 three times, we conclude that the
num er of edges of G3 is at least 6n - 5 -3(2n -2) = 1 . Let e = [u,, U2] e an
edge of G3 . Since G3 = G2 a, [u,, u 2 ] is a counterclockwise good edge of G2 .
Consequently, there is an edge [u,, v,] of G2 such that the directed line uiv, is
o tained from u;u2 y rotating it counterclockwise around u, y an angle smaller
than ar/1 (see Fig . 1) . Similarly, there is an edge [u 2 , v 2] of G2 with 4u,u2 v2 <
ar/ 1 , as in Fig . 1 . Since G2 = aG, there are edges [ v,, w, ] and [ V2, w2 ] of G,
with 4u, v, w, < 7r/ 1 and 4u2v2 W2 < 7r/ 1 , as in Fig . 1 . (It is worth noting that
it may e, for example, that [v,, w,] intersects oth [v2, u 2 ] and [v2, w2], or even
that w, = v2.) Finally, as G, = Ga there are edges [w,, x,] and [w 2 , x 2] of G, with
ziv, w,x, < 7r/ 1 and 4v2W2x2 < -rr/ 1 , as in Fig . 1 . All seven edges [x 2 , w 2 ],
[w2, v2 ], [v2 , u2 ], [u 2 , u,], [u,, v,], [v,, w,], and [w,, x,], depicted in Fig . l, elong
to G. To complete the proof we show that they must contain three pairwise
disjoint edges. Without loss of generality we may assume that 4U2 u,v, _> 4u,u 2v 2 .
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Fig. 1

If the length 1[v2i u2 ] of the segment [v 2 , u 2 ] satisfies 1[v2i u 2 ] >_ 1[u,, u2 ] ( as is
the case in Fig. 1), then we can easily check that [x 2 , w 2 ], [v 2 , u2], and [u,, v,]
are three pairwise disjoint edges . Otherwise, 1[v2, u z] < 1[u,, u 2 ] and then it is
easy to check that [v2 , w2], [u,, u 2 ], and [w,, v,] are three pairwise disjoint edges .
Therefore, in any case, G contains three pairwise disjoint edges, completing the
proof of Theorem 1 .
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