Discrete Comput Geom 4:287-290 (1989)

Disjoint Edges in Geometric Graphs

N. Alon^{1*} and P. Erdös²

¹ Department of Mathematics, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel

² Mathematical Institute of the Hungarian Academy of Sciences, Budapest, Hungary

Abstract. Answering an old question in combinatorial geometry, we show that any configuration consisting of a set V of n points in general position in the plane and a set of 6n-5 closed straight line segments whose endpoints lie in V, contains three pairwise disjoint line segments.

Discrete & Computational

C 1989 Springer-Verlag New

A geometric graph is a pair G = (V, E), where V is a set of points (=vertices) in general position in the plane, i.e., no three on a line, and E is a set of distinct, closed, straight line segments, called edges, whose endpoints lie in V. An old theorem of the second author [Er] (see also [Ku] for another proof), states that any geometric graph with n points and n+1 edges contains two disjoint edges, and this is best possible for every $n \ge 3$. For $k \ge 2$, let f(k n) denote the maximum number of edges of a geometric graph on n vertices that contains no k pairwise disjoint edges. Thus, the result stated above is simply the fact f(2, n) = n for all $n \ge 3$. Kupitz [Ku] and Perles [Pe] (see also [AA]) raised the problem of determining or estimating f(k n) for $k \ge 3$. In particular, they asked if $f(3, n) \le$ O(n). This specific problem, of determining or estimating f(3, n), was already mentioned in 1966 by Avital and Hanani [AH], and it seems it was a known problem even before that. In this note we answer this question by proving the following.

Theorem 1. For every $n \ge 1$, f(3, n) < 6n - 5, i.e., any geometric graph with n vertices and 6n - 5 edges contains three pairwise disjoint edges.

^{*} Research supported in part by an Allon Fellowship and by a Bat Sheva de-Rothschild grant.

Before proving this theorem we note that clearly

$$f(3, n) = \binom{n}{2} \quad \text{for } n \le 5$$

and the best-known lower bound for $n \ge 6$, given by Perles [Pe], is

$$f(3, n) \ge \begin{cases} \frac{5}{2}n - \frac{5}{2} & \text{for odd } n \ge 5, \\ \frac{5}{2}n - 4 & \text{for even } n \ge 2. \end{cases}$$
(1)

To prove inequality (1) for odd *n* consider the geometric graph G_n whose *n* vertices are the n-1 points $v_j = (\cos (2\pi j/(n-1)), \sin(2\pi j/(n-1))), 0 \le j < n-1$, together with the additional point $u = (\varepsilon, \delta)$ where ε and δ are small numbers chosen so that $\{v_0, \ldots, v_{n-2}, u\}$ is in general position. The edges of G_n are the $\frac{5}{2}(n-1)$ line segments

$$\{[u, v_j]: 0 \le j < n-1\} \\ \cup \{[v_i, v_{j+(n-3)/2}], [v_i, v_{j+(n-1)/2}], [v_j, v_{j+(n+1)/2}]: 0 \le j < n-1\},\$$

where all indices are reduced modulo n-1. We can easily check that if ε and δ are sufficiently small then G_n contains no three pairwise disjoint edges. Thus $f(3, n) \ge \frac{5}{2}n - \frac{5}{2}$ for every odd $n \ge 5$. For even n, let G_n be the geometric graph obtained from G_{n+1} by deleting one of its vertices of degree 4. Then G_n has $\frac{5}{2}n-4$ edges and contains no three pairwise disjoint edges. This establishes (1). On the other hand, Perles [Pe] showed that every geometric graph whose n vertices are the vertices of a convex n-gon in the plane, with more than (k-1)n edges, contains k pairwise disjoint edges. In particular, in the convex case 2n+1 edges guarantee three pairwise disjoint edges. Comparing this with (1) we conclude that the convex case differs from the general one.

Our final remark before the proof of Theorem 1 is that a special case of one of the results in [AA] implies that, for every $k = o(\log n)$, $f(k, n) = o(n^2)$. It is very likely that, for every fixed k, f(k, n) = O(n), and that, for every k = o(n), $f(k, n) = o(n^2)$, but this remains open.

Proof of Theorem 1. Let G be a geometric graph with n vertices and 6n-5 edges. We must show that G contains three pairwise disjoint edges. It is first convenient to apply an affine transformation on the plane, in order to make all the edges of G almost parallel to the x-axis. This is done by first choosing the x-axis so that any two distinct points of G have different x-coordinates, and then, by rescaling the y-coordinates so that the difference between the x-coordinates of any two distinct points of G is at least 1000 times bigger than the difference between their y-coordinates. Since any affine transformation maps disjoint segments into disjoint segments we may apply the above transformations, and hence may assume that G satisfies the following:

The small angle between any edge of G and the x-axis is less than $\pi/200$. (2)

Disjoint Edges in Geometric Graphs

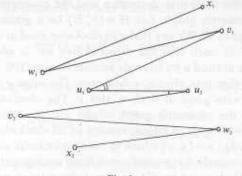
We now define the clockwise derivative and the counterclockwise derivative of an arbitrary geometric graph. Let H = (V, E) be a geometric graph and let e = [u, v] be an edge of H. We say that e is clockwise good at u if there is another edge e' = [u, v'] of H such that the directed line uv' is obtained from uv by rotating it clockwise around u by an angle smaller than $\pi/100$. If e is not clockwise good at u, we say that it is clockwise bad at u. The edge e = [u, v] is clockwise good if it is clockwise good at both u and v. The clockwise derivative of H, denoted by ∂H , is the geometric graph whose set of vertices is the set of all vertices of H, and whose set of edges consists of all clockwise good at u and that of an edge which is counterclockwise good are defined analogously. The counterclockwise derivative of H, denoted by $H\partial$, is also defined in an analogous manner.

Claim 1. Let G = (V, E) be a geometric graph with $n \ge 2$ vertices and m edges satisfying (2). Then the number of edges of ∂G is at least m - (2n - 2). Similarly, the number of edges of $G\partial$ is at least m - (2n - 2).

Proof. We prove the assertion for ∂G . The proof for $G\partial$ is analogous. Let $v \in V$ be an arbitrary vertex of G. We claim that the number of edges of the form [v, u] of G which are clockwise bad at v does not exceed 2. Indeed, assume this is false and let $[v, u_1], [v, u_2], [v, u_3]$ be three such edges. Without loss of generality, assume that the x-coordinates of u_1 and u_2 lie in the same side of the x-coordinate of v. By (2), the angle between $[v, u_1]$ and $[v, u_2]$ is smaller than $\pi/100$, and hence at least one of these two edges is clockwise good at v. This contradiction shows that indeed at most two edges of the form [v, u] are clockwise bad at v. The same argument shows that if u is a vertex of G whose x-coordinate is maximum or minimum, then there is at most one edge incident with u which is clockwise bad at u. Altogether, the total number of clockwise bad edges is bounded by $2+2 \cdot (n-2) = 2n-2$, completing the proof of Claim 1.

Returning to our graph G with n edges and 6n-5 edges, which satisfies (2), define $G_1 = G\partial$, $G_2 = \partial G_1$, $G_3 = G_2\partial$. Clearly, all the graphs G_1 , G_2 , and G_3 satisfy (2) and hence, by applying Claim 1 three times, we conclude that the number of edges of G_3 is at least 6n-5-3(2n-2)=1. Let $e=[u_1, u_2]$ be an edge of G_3 . Since $G_3 = G_2 \partial$, $[u_1, u_2]$ is a counterclockwise good edge of G_2 . Consequently, there is an edge $[u_1, v_1]$ of G_2 such that the directed line $\overline{u_1v_1}$ is obtained from $\overline{u_1 u_2}$ by rotating it counterclockwise around u_1 by an angle smaller than $\pi/100$ (see Fig. 1). Similarly, there is an edge $[u_2, v_2]$ of G_2 with $\angle u_1 u_2 v_2 <$ $\pi/100$, as in Fig. 1. Since $G_2 = \partial G_1$ there are edges $[v_1, w_1]$ and $[v_2, w_2]$ of G_1 with $\measuredangle u_1 v_1 w_1 < \pi/100$ and $\measuredangle u_2 v_2 w_2 < \pi/100$, as in Fig. 1. (It is worth noting that it may be, for example, that $[v_1, w_1]$ intersects both $[v_2, u_2]$ and $[v_2, w_2]$, or even that $w_1 = v_2$.) Finally, as $G_1 = G\partial$ there are edges $[w_1, x_1]$ and $[w_2, x_2]$ of G, with $x_1v_1w_1x_1 < \pi/100$ and $x_1v_2w_2x_2 < \pi/100$, as in Fig. 1. All seven edges $[x_2, w_2]$, $[w_2, v_2], [v_2, u_2], [u_2, u_1], [u_1, v_1], [v_1, w_1], and [w_1, x_1], depicted in Fig. 1, belong.$ to G. To complete the proof we show that they must contain three pairwise disjoint edges. Without loss of generality we may assume that $x_1u_2u_1v_1 \ge x_1u_2v_2$.

N. Alon and P. Erdös



If the length $l[v_2, u_2]$ of the segment $[v_2, u_2]$ satisfies $l[v_2, u_2] \ge l[u_1, u_2]$ (as is the case in Fig. 1), then we can easily check that $[x_2, w_2]$, $[v_2, u_2]$, and $[u_1, v_1]$ are three pairwise disjoint edges. Otherwise, $l[v_2, u_2] < l[u_1, u_2]$ and then it is easy to check that $[v_2, w_2]$, $[u_1, u_2]$, and $[w_1, v_1]$ are three pairwise disjoint edges. Therefore, in any case, G contains three pairwise disjoint edges, completing the proof of Theorem 1.

Acknowledgment

We would like to thank Y. Kupitz, I. Krasikov, and M. A. Perles for helpful discussions.

References

- [AA] J. Akiyama and N. Alon, Disjoint simplices and geometric hypergraphs, Proc. 3rd New York Conference on Combinatorial Mathematics, Annals of the New York Academy of Sciences, to appear.
- [AH] S. Avital and H. Hanani, Graphs, Gilyonot Lematematika 3(2) (1966), 2-8 (in Hebrew).
- [Er] P. Erdös, On sets of distances of n points, Amer. Math. Monthly 53 (1946), 248-250.
- [Ku] Y. S. Kupitz, Extremal Problems in Combinatorial Geometry, Aarhus University Lecture Notes Series, No. 53, Aarhus University, Denmark, 1979.
- [Pe] M. A. Perles, Unpublished notes.

Received May 19, 1988.