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ABSTRACT 

We prove the following conjecture of Erdljs and Hajnal: For any fixed 
positive integer t and for any 2-coloring of the edges of K,, there exists 
X c V(K,) such that 1x1 I t and X monochromatically dominates all but 
at most n/2’ vertices of K,. In fact, X can be constructed by a fast 
greedy algorithm. 

1. INTRODUCTION 

A 2-colored graph G is a graph with edges colored red or blue. A set X C V(G) 
r-dominates, (b-dominates) Y C V(G) if X tl Y = 0 and for each y E Y there 
exists x E X such that the edge (x, y) is red (blue). The set X C V(G) domi- 
nates Y C V(G) if either X r-dominates Y or X b-dominates Y. 

Note that in this definition of domination X does not dominate itself. In par- 
ticular, a set A on t vertices is said to dominate all but at most k vertices of G if 
A dominates B and IV(G) - A - BI 5 k. The following conjecture is due to 
Erdos and Hajnal ([2]). For given positive integers n, t, any &colored K,, (com- 
plete graph on n vertices) has a set X, of at most t vertices dominating all but at 
most n/2’ vertices of K, . The conjecture is trivial for t = 1, and the case t = 2 
has been proved by Erdos and HajnaI. In this paper the general conjecture is 
proved. In fact, the proof method shows that one vertex of X, can be chosen ar- 
bitrarily. The following “antisymmetric” or “off-diagonal” generalization of the 
conjecture is also proved: for any p E (0, 1)) i.e., real /3, 0 < 0 < 1, a 2- 
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colored K,, either contains a set X, such that /Xtl 5 t and X, r-dominates all but 
at most /3’n vertices of K, , or contains a set X, such that IX,1 I t and X, 
b-dominates all but at most (1 - /3)‘n vertices of K,. 

The results mentioned so far are corollaries of the following theorem: 

Theorem 1. Let G = [X, Y] be a 2-colored complete bipartite graph, t be a 
nonnegative integer, and p E (0, 1). Then at least one of the following two 
statements is true: 

1. Some subset of at most t vertices of X r-dominates all but at most 
@+‘(lXl + IYl> vertices of Y. 

2. Some subset of at most t vertices of Y b-dominates all but at most 
(1 - p)‘+‘(/Xl + [Yl) vertices of X. 

Corollary 1. Let K,, be a-colored, p a vertex of K,,, and k a positive integer 
and /3 E (0,l). Then there exists a set A C V(K,) such that p E A, and 
b1 5 k and either A r-dominates all but at most (n - l)p’ vertices of K,, or A 
b-dominates all but at most (n - 1) (1 - 0)” vertices of K, . 

Proof. Let X denote the set of red adjacencies of p in K, and let Y denote 
the set of blue adjacencies of p in K,, . Apply the theorem with t = k - 1. 

Choosing /3 = l/2 in Corollary 1 gives the following corollary: 

Corollary 2. Let K, be 2-colored, p E V(K,) and k is a positive integer. 
There exists a set A C V(K,) such that p E A, ]A] 5 k and A dominates all but 
at most (n - 1)/2’ vertices of K,. 

If k = llog(n - 1)J + 1 (log is of base 2), then (n - 1)/2* < 1, so the next 
corollary follows from Corollary 2. 

Corollary 3. Let K, be 2-colored, p E V(K,). Then there exists a set A C 
V(K,) such that IAl 5 Llog(n - l>J + 1, p E A, and A dominates all vertices 
ofK, -A. 

The proof of Theorem 1 is given in the next section. The third section of the 
paper is a summary of remarks and related results. 

2. PROOF OF THEOREM 1 

The following proposition will be used in the proof of Theorem 1: 

Proposition. Let y E [0, l] and let t be a nonnegative integer. If [A,B] is a 
2-colored complete bipartite graph such that the red degree of each vertex in A 
is at most y/B 1, then there exists a subset of at most t vertices of B that b- 
dominates all but at most -y’lAl vertices of A. 
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Proof The proposition is trivial for t = 0. Assume that r Z 1 and let 
y, E B be a vertex of maximum blue degree. Since [A, B] has at least 
(1 - Y) iA/ IB 1 bl ue edges, the blue degree of y, is at least (1 - y) IAl. There- 
fore, y, b-dominates all but at most y[Al vertices of A. Let A, denote the set of 
vertices in A not b-dominated by { y,}, and repeat the process with [A,, B 1. 
Since the number of blue edges of [A,, B ] is at least (1 - y) IA,/ IB 1, there 
exists y2 E B with blue degree at least (1 - y) b, 1 in [A 1, B 1. Therefore yz b- 
dominates all but at most rb,l vertices of A,, which implies that {y,, yz} b- 
dominates all but at most ?]A,] I y*lAI vertices of A. Note that yz = y, is 
possible. The proposition follows by repeating this argument. 

The following inequality of Minkowski is needed (see [l], p. 26): 

Lemma. If a,, b, are nonnegative real numbers for i = 1,2, . . . , n, then 

fi (a, + 6,)“” 
I=1 

L (fJ4)“” + (&3)1’n 

Proof of Theorem 1. The theorem is trivial for t = 0. Assume that t 2 1 
and let xi be a vertex of X with largest red degree in [X, I’]. Set Y, = I,.&,), 
where I,,(x) denotes the set of red adjacencies of x. Let x2 be a vertex of X 
with largest red degree in [X, Y - Y,], set Y2 = I&x2) fl (Y - Y,). Continue 
this process until x, is defined. In general, x, is a vertex of X with largest red 
degree in the complete bipartite graph 

Note that the vertices x1,x2, . . . ,x, are not necessarily distinct. 
For i = 1,2, . . . , t set 

Ly, = 

With this notation 

r-dominates all but at most a = (1 - o$ (1 - cz2) . . . (1 - a,) IY 1 vertices of Y. 
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Choose 1 so that 

From the definition of x1, each vertex of X has red degree at most IYI 1 in the 
complete bipartite graph 

Since 

I-1 

p-1 = a1 Y - u q I I /=1 

one can apply the proposition with y = cq to the complete bipartite graph 

It follows from the proposition that some subset of at most t vertices of 
l-l 

Y- uy, 

j=l 

b-dominates all but at most c@l vertices of X. The choice of q implies that 
CYflXl 5 ci!~a*. . . clr,IXl, so some subset of at most t vertices of Y b-dominates 
all but at most b = apz. . . at/xl vertices of X. 

The proof is completed by showing that either a 5 p”‘(jXl + IYl) or b 5 
(1 - /3)“‘(jXl + 1~1). Set a, = (1 - ai),bi = cq for i = 1,2,. . . , t and 
a ,+, = IYl/(jXl + IY(), b,+l = IXl/(lXl + IYl). Apply the lemma with n = t + 1 
to obtain 

Since fi -k (1 - p) ‘= 1, either 

( 1 1x14 IYI 

I/@+ I) 

d p 

or 

( 1 1x1 !L Iyl 

1Wl) 

5 (1 - P), 

and the proof of Theorem 1 is complete. 
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3. REMARKS AND RELATED PROBLEMS 

It is worth mentioning that the proof of Theorem 1 is constructive; in fact, it is 
a greedy-type low-order polynomial algorithm to find the required (red or blue) 
dominating set. The same remark is true for the corollaries of Theorem 1; 
in particular, a dominating set of at most log n vertices can be found in a 2- 
colored K, by a fast greedy algorithm. One might expect that the reason for this 
algorithmically nice behavior is that the results are not sharp. However, this is 
not the case; the random ‘L-coloring of K, shows that Corollaries 2 and 3 are 
reasonably sharp. 

Theorem 2. For fixed E > 0 and t there exists n, = n,,(~, t) and a 2-coloring 
of K, for n L n, such that each t-element subset fails to dominate at least 
((l/23 - ~)n vertices of K,,. 

Proof. Let t be fixed, E fixed, and set p = ((l/2’) - ~)n. Assume that the 
edges of K, are colored red or blue with probability l/2. The probability that a 
fixed t-element vertex set of K,, r-dominates all but exactly k vertices is 

(n;i)(1 -$-“(i)“. 

Therefore, the probability that some t-element vertex set of K, dominates all 
but at most p vertices is at most 

(1) 

If x < 1 then there exists a 2-coloring of K,, such that each subset of t ver- 
tices of K,, fails to dominate at least p vertices as required. 

The condition for nondecreasing terms in the summation of (1) is that 
n 2 (t + 2’ - 1)/2’~. So in case 

t+2’-1 
rlz 

2’6 ’ (2) 

the summation has the trivial upper bound (p + 1) times the (p + 1)th 
term. Thus p 5 n, (“if) < (i) < n”/(pP(n - P)“-~), (y> < n’/t!, and c, = 
2(1 - (l/2’))-‘/t! gives 

x < c,n’+’ ” 
pP(n - p)“-” (1-g”(&) 

Set q = p/n = l/2’ - E, so that (3) can be written as 

x < c,nI+q+J(’ ; 11%3’3n = Cpf+lA” (4) 
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The following inequality is needed. For positive a, b, LY, /3 such that ar + /z? = 1, 
aaba 5 DLU + /3b with equality if and only if a = b ([l], p. 15). With (Y = q, 
/3 = 1 - q, a = 1/(2’q), b = (1 - (1/2’))/(1 - q) this inequality gives that 
A I 1 with equality if and only if q = llr. Since q = l/2’ - E, equality can- 
not hold. Therefore A < 1. Since A depends only on E and t, the right-hand 
side of (4) clearly tends to zero if e, t are fixed and n tends to infinity. There- 
fore x < 1 holds for n 2 n, = n,(t, E). 

Theorem 3. For given E > 0, there exists no = no(e) and a 2-coloring of K, 
such that for n 2 no each set of at most (1 - E) log n vertices fails to dominate 
some vertices of K,, 

Proof. The proof (and the theorem) is almost the same as the proof a result 
of Erdiis about the S(k) property of tournaments ([3] or [4], p. 40). If 

n-k 

< 1, 

then there exists a 2-coloring of K, where each set of k vertices fails to domi- 
nate some vertices of K,. It is easy to check that this inequality is true if 
k = (1 - E) log n and n is large. 

It is natural to ask analogous questions when the edges of K,, are colored with 
more than two colors. 

If the edges of K,, are colored with I colors then for each t there exist some 
subset of at most t vertices of K. that (monochromatically) dominates all but at 
most ((r - l)/r)‘n vertices of K,. 

One can check that the statement is essentially true for t = 2 (the required 
color can be the one used most frequently on K,) and it is also true if the majority 
color class induces a regular subgraph of K,, However, as H. A. Kierstead 
observed ([5]), if t I 3 and r 2 3, the statement is false. The simple example 
is a K,, whose vertices are partitioned into three sets, A,, A>, A,. If 1 5 i 5 
j I 3 and x E Ai, y E Aj, then the edge xy is colored with color i. Clearly, any 
3 vertices fail to dominate at least n/3(> n(i3) vertices showing that the state- 
ment is false. 
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