Discrete Comput Geom 4:541-549 (1989)

On the Graph of Large Distances

P. Erdős,1 L. Lovász,2 and K. Vesztergombi3

¹ Mathematical Research Institute, Hungarian Academy of Sciences, Budapest, H-1053 Hungary

² Department of Computer Science, Eötvös Loránd University, Budapest, H-1088 Hungary

¹ Department of Mathematics, Faculty of Electrical Engineering, Budapest University of Technology, Budapest, H-1111 Hungary

Abstract. For a set S of points in the plane, let $d_1 > d_2 > \cdots$ denote the different distances determined by S. Consider the graph G(S, k) whose vertices are the elements of S, and two are joined by an edge iff their distance is at least d_k . It is proved that the chromatic number of G(S, k) is at most 7 if $|S| \ge \operatorname{const} k^2$. If S consists of the vertices of a convex polygon and $|S| \ge \operatorname{const} k^2$, then the chromatic number of G(S, k) is at most 3. Both bounds are best possible. If S consists of the vertices of a convex polygon then G(S, k) has a vertex of degree at most 3k - 1. This implies that in this case the chromatic number of G(S, k) is at most 3k. The best bound here is probably 2k + 1, which is tight for the regular (2k+1)-gon.

Discrete & Computational

Introduction

Let S be a set of n points in the plane. Let us denote by $d_1 > d_2 > \cdots$ the different distances determined by these points, and by n_i , the number of distances equal to d_i .

The number of distinct distances leads to interesting questions. A 40-year-old conjecture of Erdős [4, worth \$500] implies that the number of distinct distances determined by n points is at least $cn/(\log n)^{1/2}$ (if true, this is best possible apart from the value of c, as shown by the set of lattice points inside a circle). The case when the set S consists of the vertices of a convex polygon behaves better. Erdős conjectured and Altman [1], [2] proved that the number of distances determined by the vertices of a convex n-gon is at least $\lfloor n/2 \rfloor$, which is of course achieved for the regular n-gon.

The numbers n_i also lead to many difficult problems. Erdős [3] observed that each distance occurs at most $O(n^{3/2})$ times and showed that in the set of lattice points inside an appropriate circle, the same distance may occur $n^{1+\varepsilon/(\log \log n)}$ times. The upper bound has since been improved to $O(n^{4/3})$ by Spencer *et al.* [6]. For a survey of some related problems and results see Moser and Pach [12].

The situation is rather different in the case when S consists of the vertices of a convex *n*-gon. Erdős and L. Moser conjectured that in a convex *n*-gon every distance can occur at most *cn* times. This conjecture is still unsettled. A recent (unpublished) construction of P. Hajnal [11] shows that the same distance may occur about 9n/5 times. Even if we do not insist on strict convexity, the best construction known (a chain of regular triangles) gives the same distance only 2n-3 times.

The situation changes again if we consider the largest distance only. Hopf and Pannwitz [5] and Sutherland [7] proved that the maximum distance among *n* points occurs at most *n* times, i.e., $n_1 \le n$ (here, of course, the convex and nonconvex cases do not differ). Vesztergombi [8], [9] showed that $n_2 \le 4n/3$ in the convex case and $n_2 \le 3n/2$ in the general case, and these bounds are tight. More generally, she determined all homogeneous linear inequalities that hold for *n*, n_1 , and n_2 . She also observed that $n_k \le 2kn$.

Denote by G(S, k) the graph on vertex set S obtained by joining x to y if their distance is at least d_k . Altman's result mentioned above is equivalent to saying that in the convex case, G(S, k) does not contain a complete (2k+2)-gon. In this paper we study the chromatic number of this graph. We prove that if $n > n_0(k)$ then the chromatic number $\chi(G(S, k))$ is at most 7, and give a construction for which the equality holds for arbitrarily large n. Obviously without the assumption $n > n_0(k)$ the theorem is not true, since if we take the vertices of the regular (2k+1)-gon as our set of points then $\chi(G(S, k)) = 2k+1$.

If we assume that S is the vertex set of a convex polygon then we can prove an even stronger result: for $n > n_1(k)$ the chromatic number $\chi(G(S, k))$ is at most 3. The problem of determining the largest possible value of the chromatic number of G(S, k) for a given k (both in the convex and nonconvex case, without any assumption on the number of points) turns out quite difficult and we have only a partial answer. We conjecture that if S is the set of vertices of a convex polygon then the chromatic number of G(S, k) is at most 2k + 1. This is best possible (if true) as shown by the regular (2k + 1)-gon. This conjecture would generalize the result of Altman mentioned above. Perhaps in the convex case there always exists an x_i such that the degree of x_i is at most 2k. We prove the weaker result that for the vertex set S of a convex polygon there exists an x_i such that the degree of x_i is at most 3k-1. From this it follows that the number of edges in G(S, k)is at most 3kn, and that its chromatic number is at most 3k.

The results of Vesztergombi mentioned above imply that the number of edges in G(n, 2) is at most 2n. One may conjecture that the number of edges in G(n, k)is at most kn. Our result verifies this conjecture up to a constant factor and shows that the conjecture of Erdős and Moser is valid in the average for the "large" distances. Let us mention the related conjecture of Erdős that in a convex n-gon

On the Graph of Large Distances

there is always a vertex x_i such that the number of distinct distances from x_i is at least n/2.

It would be nice if in the nonconvex case the maximum of the chromatic number of G(S, k) for fixed k were also equal to the largest complete graph which can be contained in some G(S, k). If the above-mentioned conjecture of Erdős is true, then the largest complete graph contained in G(S, k) has $O(k(\log k)^{1/2})$ vertices. We can prove that the chromatic number is at most ck^2 . A bound of the form $k^{1+\epsilon}$ will not come out easily since so far we could not even prove that G(S, k) does not contain a complete graph on $k^{1+\epsilon}$ vertices.

In the one-dimensional case these problems are trivial. For large n, G(S, k) is bipartite and, for any n, the chromatic number of G(S, k) is at most k+1, which can of course be achieved.

The following problem might be of interest. Let x_1, \ldots, x_n be *n* points in the plane and l_1, \ldots, l_k , *k* arbitrary distances. Two points are joined by an edge if their distance is one of the l_i 's. Denote by f(k) the maximum possible chromatic number of this graph. Could this again be the size of the largest complete graph contained in such a graph?

1. The "Nonconvex" Case

We start with a simple lemma.

Lemma 1.1. Let C be a circle with center c and radius r, and let T be a set of points on the circle such that c is in the convex hull of T. Then for each point $p \neq c$ of the plane, there is a point $t \in T$ with d(p, t) > r.

Now we prove the main theorem of this section.

Theorem 1.2. If $n \ge n_2(k) = 18k^2$, then $\chi(G(S, k)) \le 7$.

Proof. Let $q \in S$ be a point of maximum degree in G(S, k). Consider the circle C with smallest radius r containing $S' = S - \{q\}$. If $r < d_k$ then we can cut the disc bounded by C into six pieces with diameter less than d_k . This yields a 6-coloration of G(S, k) - q, and using a seventh color for q we are done.

So suppose that $r \ge d_k$. Obviously, the convex hull of $C \cap S'$ contains the center c of C. So we can choose a subset T of $C \cap S'$ with $|T| \le 3$ such that the convex hull of T contains c. Hence, by Lemma 1.1, every point in S is connected to some point in T. So T contains a point of degree more than $6k^2$, and hence by its choice, q has degree greater than $6k^2$. Now among the neighbors of q, there are more than $2k^2$ which are connected to the same point $t \in T$.

But note that these points must lie on k concentrical circles about q as well as on k concentrical circles about t. These two families of circles have at most $2k^2$ intersection points, a contradiction.

Now we give a construction which shows that this upper bound for the chromatic number is sharp.

Take a regular 11-gon with vertices t_i (i = 0, ..., 10) on a circle with radius 1 and center O. Take the point p on the half-line t_0O for which $d(O, p) = d(t_3, p)$ holds (see Fig. 1). Draw a very short arc around p going through O and place the remaining points of S on this arc. Let us consider in this setting the 10 largest distances. These will be the six different distances $d(p, t_i)$ between p and the rest of the points, and the four largest chords in the regular 11-gon. One can easily check that the t_i 's need six colors and p needs a seventh color.

The threshold $n_2(k)$ in the theorem is sharp as far as the order of magnitude goes. In fact, let us modify the previous construction as follows. We construct the 11-gon and the point p as before, but now we also add a further point p' obtained by rotating p about O by 90°. Let us draw k-23 concentrical circles about p as well as about p' with radii very close to d(O, p), and let us add the $(k-23)^2$ intersection points of these circles inside the 11-gon. This way we get a set S with $\approx k^2$ points such that the chromatic number of G(S, k) is 8.

It would be interesting to determine the threshold for |S|(as a function of k) where the chromatic number of G(S, k) becomes bounded. This is related to the following question: given $t \ge 3$, what is the largest s such that G(S, k) can contain a complete bipartite graph $K_{t,s}$? A recent construction of Elekes [10] shows that, for each fixed t, s can be as large as $c_i k^2$.

2. The "Convex" Case

In this section we deal with the case when S is a set of vertices of a convex n-gon P (briefly, the "convex" case). The convexity of S gives a natural cyclic ordering of the points, so throughout the proofs we refer to this ordering. Before stating the main results of this section we make some simple observations.

Lemma 2.1. Suppose that $x_1, x_2, x_3, x_4 \in S$ (in this counterclockwise order) and

$$d(x_1, x_2) \ge d_k, \quad d(x_2, x_3) \ge d_k, \quad d(x_3, x_4) \ge d_k$$

Then for each $y \in S$ between x_4 and x_1 , at least one of the distances $d(x_i, y)$ is greater than d_k .

Fig. 2

Proof. Since the angle x_1yx_4 is less than 180° (because S is a convex set), at least one of the angles x_iyx_{i+1} (for i = 1, 2, 3) is less than 60°. Hence (x_i, x_{i+1}) cannot be the largest side of the triangle x_iyx_{i+1} , from which the lemma follows.

Lemma 2.2. Suppose that x_1 , x_2 , x_3 , y_1 , and y_2 are five vertices of S in this counterclockwise order, and assume that $d(x_1, x_2) \ge d_k$, $d(x_2, x_3) \ge d_k$, and $d(x_1, y_1) \le d(x_1, y_2)$. Then $d(y_2, x_2) \ge d_k$.

Proof. If the semiline x_2x_3 does not intersect the semiline y_2y_1 then the assertion is obvious. So assume that these similines intersect in a point z as in Fig. 2. Also assume, by way of contradiction, that $d(y_2, x_2) < d_k$. Now the angle $x_1y_2x_2 = \alpha$ is greater than the angle $y_2x_1x_2 = \beta$, because the lengths of the opposite sides of the triangle $y_2x_1x_2$ are in this order. Similarly, in the triangle y_2x_2z , the angle $x_2y_2z = \gamma$ is larger than the angle $x_2zy_2 = \delta$. On the other hand, since the angle x_1x_2z is less than 180°, the sum of the other angles in the convex quadrangle $y_2zx_2x_1$ must be more than 180°, which means that $180^\circ < \beta + (\alpha + \gamma) + \delta < 2(\alpha + \gamma)$. But then the angle $x_1y_2y_1 = \alpha + \gamma$ is obtuse and, hence, it is the largest angle in the triangle $x_1y_2y_1$. This contradicts our assumption that $d(x_1, y_1) \le d(x_1, y_2)$.

Lemma 2.3. Suppose that $x_1, x_2, x_3, x_4 \in S$ (in this counterclockwise order) and

$$d(x_1, x_2) \ge d_k, \quad d(x_2, x_3) \ge d_k, \quad d(x_3, x_4) \ge d_k.$$

Then the number of verticles of S between x_4 and x_1 is at most $12k^2 + 4k$.

Proof. By Lemma 2.1, each vertex between x_4 and x_1 is connected in G(S, k) to at least one of the x_i 's. By Lemma 2.2, there are at most k vertices between x_4 and x_1 which are connected in G(S, k) to a given x_i but no other x_j . On the other hand, all points which are connected to both x_i and x_j $(1 \le i < j \le 4)$ lie on k circles about x_i as well as on k circles about x_j , so their number is at most $2k^2$. This gives the bound in the lemma.

545

Lemma 2.4. If $n > 12k^2 + 8k$ then G(S, k) contains no convex quadrilateral.

Proof. Almost the same as the proof of 2.3.

Theorem 2.5. If k is fixed and $n > n_1(k) = 25\ 000k^2$ then $\chi(G(S, k) \le 3$.

Proof. Let $p = \lfloor n/720 \rfloor$. Then $p > 24k^2 + 8k + 2$ (except in the trivial case when k = 1). We can choose 2p + 1 consecutive vertices a_0, \ldots, a_{2p} such that the angle between the vectors a_0a_1 and $a_{2p-1}a_{2p}$ is less than 1°. Now we do the coloring the greedy way. We start at the point $t_1 = a_p$. We give the color 1 to the points in S going counterclockwise as long as possible, i.e., until we encounter a vertex t_2 which is connected in G(S, k) to a vertex t'_1 already colored with color 1. Now starting at t_2 go on using color 2 until it is impossible, i.e., until we encounter a vertex t_3 connected to a vertex t'_2 already colored with color 2. Going on with color 3, we either complete a 3-coloring of G, or else we find, similarly as before, vertices t_4 and t'_3 connected in G(S, k). Now we show that we can choose $x_1 = t'_1$, $x_2 \in \{t_2, t'_2\}$, $x_3 \in \{t_3, t'_3\}$, and $x_4 = t_4$ so that $d(x_1, x_2) \ge d_k$, $d(x_2, x_3) \ge d_k$, and $d(x_3, x_4) \ge d_k$. If $t_2 = t'_2$ and $t_3 = t'_3$ then this is obvious.

Assume that $t_2 \neq t'_2$. Now in the convex quadrangle $t'_1t'_2t_2t_3$ the sum of the lengths of the opposite edges (t'_1, t'_2) and (t_2, t_3) is at least $2d_k$, so at least one diagonal must be of length at least d_k . We choose x_2 accordingly, and similarly we choose x_3 .

So we have the same kind of configuration as in Lemma 2.3. Thus by Lemma 2.3 there are at most $12k^2+4k$ vertices between x_1 and x_4 . This in particular implies that $x_1 = a_i$ and $x_4 = a_j$ where

$$p-12k^2-4k \le i \le p < j \le p+12k^2+4k+1.$$

One of the pairs (x_1, x_3) and (x_2, x_4) , say the former, is also connected in G(S, k).

Now the angle $x_2x_1a_{i+1}$ cannot be larger than 91°, or else the segments x_2a_{i+1} , $x_2a_{i+2}, \ldots, x_2a_{i+k}$ are monotone increasing and all greater than d_k , which is impossible. Similarly, the angle $a_{i-1}x_1x_3$ is less than 91° and hence the angle $x_2x_1x_3$ is less than 2°. Let, e.g., $d(x_1, x_2) > d(x_1, x_3)$. Hence it is easy to deduce using the cosine theorem that $d(x_1, x_2) \ge 1.9d_k$. Hence

$$d(a_{2n}, x_2) \ge \sin(x_2 x_1 a_{2n}) d(x_1, x_2) \ge (\sin 88^\circ)(1.9d_k) \ge 1.8d_k.$$

But then relabeling a_{20} by x_1 we get a contradiction at Lemma 2.3.

Again, one can ask if the threshold $\operatorname{const} \cdot k^2$ is best possible. The source of this value is Lemma 2.3, where we use that two families of k concentric circles cannot have more that $O(k^2)$ points of intersection. It may seem that the additional information that the points considered are vertices of a convex polygon would exclude most of the intersection points. But this is not the case; we can construct a set S, consisting of the vertices of a convex polygon, such that $|S| > \operatorname{const} \cdot k^2$ and G(S, k) contains a K_4 (and hence its chromatic number is larger than 3). In particular, two families of k concentric circles will have $\operatorname{const} \cdot k^2$ points of intersection among the vertices of the convex polygon.

On the Graph of Large Distances

Let us sketch this construction. Let a = (0, 0), b = (1, 0), c = (3, 0), and d = (-1, 0). Let C_0 be the circle with radius 2 about b, and let p_0 be a point on C_0 very close to c. Then the angle dp_0c is 90°, hence the angle ap_0c is acute. Hence we can choose an interior point p_1 on the arc of C_0 between p_0 and c such that the angle ap_0p_1 is acute. We define the points p_2, \ldots, p_{k-1} on the circle C_0 similarly so that all the angles ap_ip_{i+1} are acute. Let D_i be the circle with center a through p_i . It follows from the construction that the circle D_i does not contain p_{i+1} in its interior but the line tangent to D_i at p_i does not separate p_{i+1} from a.

Let ε be a very small positive number and let C_i (i = 0, ..., k-1) be the circle about b with radius $2 - i\varepsilon$. Let p_{ij} be the intersection point of C_i and D_j in the upper half-plane. Then the points p_{ij} , a, and b form the vertices of a convex polygon and a, b, $p_{0,0}$, and $p_{k-1,k-1}$ form a complete quadrilateral in G(S, 2k+2).

Next we derive a bound on the chromatic number of G(S, k) without the hypothesis that |S| is large. First, let us define the following. Let xy be an edge of G(S, k). Let x_1 be the clockwise neighbor of x and y_1 be the counterclockwise neighbor of y. If $d(x_1, y) > d(x, y)$ we say that the edge x_1y covers the edge xy. Similarly, if $d(x, y_1) > d(x, y)$ we say that the edge xy_1 covers the edge xy. Starting from any edge xy, let us select an edge x'y' covering it, then an edge x''y'' covering x'y', etc. In at most k-1 steps we must get stuck (by the definition of G(S, k)). Let x_0y_0 be the edge for which we could not find any edge covering it. We call x_0y_0 a majorant of xy. Note that in this case the angles formed by x_0y_0 and the two edges of the polygon entering x_0 and y_0 from the side opposite to xy must be acute. It is also clear that the arcs x_0x and yy_0 contain at most k-1 sides of P together.

The following proposition will not be used directly, but it seems worth formulating.

Proposition 2.6. Let x_1, x_2, x_3 , and x_4 be four vertices of P (in this cyclic order) and assume that (x_1, x_2) and (x_3, x_4) are two edges of G(S, k). Then either between x_2 and x_3 or between x_4 and x_1 are no more than 2k-2 sides of P (see Fig. 3).

Fig. 3

Proof. Assume that the conclusion does not hold, and let y_1y_2 be a majorant of x_1x_2 and y_3y_4 be a majorant of x_3x_4 . Then these majorants are also noncrossing and y_1, y_2, y_3 , and y_4 appear in this cyclic order on the polygon. Moreover, from the above remarks it follows that all angles of the convex quadrangle $y_1y_2y_3y_4$ are acute. This is clearly impossible.

Theorem 2.7. If S is the set of vertices of a convex polygon then the graph G(S, k) has a point of degree at most 3k - 1.

Proof. Choose $x \in S$ and let y and z be the first vertices of S in the counterclockwise and clockwise directions, respectively, that are connected to x. Choose x so that the number of points between x and y is maximal (see Fig. 4).

Let sv be a majorant of zx. (It is possible that v = x or s = z). Suppose there are a points between x and v and b points between s and z, then $a+b \le k-1$. Let t be the kth point from x in the counterclockwise direction, and let u be the first vertex in the counterclockwise direction connected to t in G(S, k). Then because of the choice of x, there are not more sides of P between t and u than between x and y. Hence there are not more sides of P between y and u than between x and t, i.e., not more than a+k.

Let v's' be a majorant of tu. Obviously, v' lies on the arc vt. Just like in the proof of Proposition 2.6, the edges sv and v's' cannot be avoiding. Hence s must be on the arc us' and so the number of sides of P on the arc us is at most k-1. Hence the number of sides of P on the arc yz is at most $(a+k)+(k-1)+b \le 3k-2$. Hence the degree of x is at most 3k-1.

We obtain by induction:

Corollary 2.8. If S is the set of vertices of a convex polygon, then the number of edges in G(S, k) is at most (3k-1)n.

On the Graph of Large Distances

Moreover, we obtain from Theorem 2.7 by deleting a vertex with minimum degree and using induction:

Corollary 2.9. If S is the set of vertices of a convex polygon then the chromatic number of G(S, k) is at most 3k.

References

- 1. E. Altman (1963), On a problem of P. Erdős, Amer. Math. Monthly 70, 148-157.
- 2. E. Altman (1972), Some theorems on convex polygons, Canad. Math. Bull. 15, 329-340.
- 3. P. Erdős (1946), On sets of distances of n points, Amer. Math. Monthly 53, 248-250.
- P. Erdős (1960), On sets of distances of n points in Euclidean space, Magyar Tud. Akad. Mat. Kut. Int. Közl. 5, 165-169.
- 5. H. Hopf and E. Pannwitz (1934), Problem 167, Jahresber. Deutsch. Math.-Verein. 43, 114.
- J. Spencer, E. Szemere'di, and W. T. Trotter (1984), Unit distances in the euclidean plane, Graph Theory and Combinatorics, 293-305.
- 7. J. W. Sutherland (1935), Jahresber. Deutsch. Math.-Verein. 45, 33.
- K. Vesztergombi (1985), On the distribution of distances in finite sets in the plane, *Discrete Math.* 57, 129-146.
- 9. K. Vesztergombi (1986), On large distances in planar sets, Discrete Math. (to appear).
- 10. G. Elekes, Bipartite graphs of distances (to appear).
- 11. P. Hajnal (1986), Private communication.
- W. O. J. Moser and J. Pach (1986), Research Problems in Discrete Geometry, McGill University, Montreal.

Received October 30, 1986, and in revised form June 15, 1987.