
Discrete Comput Geom 4 :541-549 (1989)

On the Graph of Large Distances

P. Erdös, t L . Lovász ,2 and K. Vesztergombi3

I Mathematical Research Institute, Hungarian Academy of Sciences,
Budapest, H-1053 Hungary

2 Department of Computer Science, Eötvös Loránd University,
Budapest, H-1088 Hungary

3 Department of Mathematics, Faculty of Electrical Engineering,
Budapest University of Technology, Budapest, H-1111 Hungary

Discrete & Computational

ometry
1989
e
Springer-Verlag New York Inc .

Abstract. For a set S of points in the plane, let d, > d 2 > • - - denote the different
distances determined by S.. Consider the graph G(S, k) whose vertices are the
elements of S, and two are joined by an edge ifI their distance is at least d, ; . It is
proved that the chromatic number of G(S, k) is at most 7 if IS1 const k 2 . If S
consists of the vertices of a convex polygon and ~S1 >_ const k 2 , then the chromatic
number of G(S, k) is at most 3 . Both bounds are best possible. If S consists of the
vertices of a convex polygon then G(S, k) has a vertex of degree at most 3k-1 .
This implies that in this case the chromatic number of G(S, k) is at most 3k . The
best bound here is probably 2k+1, which is tight for the regular (2k+1)-gon .

Introduction

Let S be a set of n points in the plane . Let us denote by d, > d2 > • • - the different
distances determined by these points, and by n ;, the number of distances equal
to d; .

The number of distinct distances leads to interesting questions . A 40-year-old
conjecture of Erdős [4, worth $500] implies that the number of distinct distances
determined by n points is at least cn/(log n) 1/2 (if true, this is best possible apart
from the value of c, as shown by the set of lattice points inside a circle) . The
case when the set S consists of the vertices of a convex polygon behaves better .
Erdős conjectured and Altman [1], [2] proved that the number of distances
determined by the vertices of a convex n-gon is at least [n/2 j, which is of course
achieved for the regular n-gon .
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The numbers n; also lead to many difficult problems . Erdős [3] observed that
each distance occurs at most O(n 3 / 2 ) times and showed that in the set of lattice
points inside an appropriate circle, the same distance may occur n"' I(IOglo g" )
times . The upper bound has since been improved to O(n4/3 ) by Spencer et al.
[6] . For a survey of some related problems and results see Moser and Pach
[12] .

The situation is rather different in the case when S consists of the vertices of
a convex n-gon . Erdős and L. Moser conjectured that in a convex n-gon every
distance can occur at most en times . This conjecture is still unsettled . A recent
(unpublished) construction of P . Hajnal [11] shows that the same distance may
occur about 9n/5 times . Even if we do not insist on strict convexity, the best
construction known (a chain of regular triangles) gives the same distance only
2n-3 times .

The situation changes again if we consider the largest distance only . Hopf and
Pannwitz [5] and Sutherland [7] proved that the maximum distance among n
points occurs at most n times, i .e ., n, <_ n (here, of course, the convex and
nonconvex cases do not differ) . Vesztergombi [8], [9] showed that n 2 <_ 4n/3 in
the convex case and n 2 <_ 3n/2 in the general case, and these bounds are tight .
More generally, she determined all homogeneous linear inequalities that hold
for n, n,, and n 2 . She also observed that n k 2kn .

Denote by G(S, k) the graph on vertex set S obtained by joining x to y if
their distance is at least dk . Altman's result mentioned above is equivalent to
saying that in the convex case, G(S, k) does not contain a complete (2k+2)-gon .
In this paper we study the chromatic number of this graph . We prove that if
n > n o(k) then the chromatic number X(G(S, k)) is at most 7, and give a construc-
tion for which the equality holds for arbitrarily large n . Obviously without the
assumption n > no(k) the theorem is not true, since if we take the vertices of the
regular (2k+1)-gon as our set of points then X(G(S, k))=2k+1 .

If we assume that S is the vertex set of a convex polygon then we can prove
an even stronger result : for n > n,(k) the chromatic number X(G(S, k)) is at most
3. The problem of determining the largest possible value of the chromatic number
of G(S, k) for a given k (both in the convex and nonconvex case, without any
assumption on the number of points) turns out quite difficult and we have only
a partial answer . We conjecture that if S is the set of vertices of a convex polygon
then the chromatic number of G(S, k) is at most 2k+1 . This is best possible (if
true) as shown by the regular (2k+1)-gon . This conjecture would generalize the
result of Altman mentioned above . Perhaps in the convex case there always exists
an x; such that the degree of x; is at most 2k. We prove the weaker result that
for the vertex set S of a convex polygon there exists an x ; such that the degree
of x; is at most 3k-1 . From this it follows that the number of edges in G(S, k)
is at most 3kn, and that its chromatic number is at most 3k.

The results of Vesztergombi mentioned above imply that the number of edges
in G(n, 2) is at most 2n. One may conjecture that the number of edges in G(n, k)
is at most kn. Our result verifies this conjecture up to a constant factor and shows
that the conjecture of Erdős and Moser is valid in the average for the "large"
distances. Let us mention the related conjecture of Erdős that in a convex n-gon
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there is always a vertex x; such that the number of distinct distances from x ; is
at least n/2 .

It would b,: nice if in the nonconvex case the maximum of the chromatic
number of G( . S, k) for fixed k were also equal to the largest complete graph
which can be contained in some G(S, k) . If the above-mentioned conjecture of
Erdős is true, then the largest complete graph contained in G(S, k) has
O(k(log k)' 12 ) vertices . We can prove that the chromatic number is at most ck 2 .
A bound of the form k"' will not come out easily since so far we could not
even prove that G(S, k) does not contain a complete graph on k"' vertices .

In the one-dimensional case these problems are trivial . For large n, G(S, k)
is bipartite and, for any n, the chromatic number of G(S, k) is at most k+1,
which can of course be achieved .

The following problem might be of interest . Let X1, . . . , x„ be n points in the
plane and l	lk , k arbitrary distances . Two points are joined by an edge if
their distance is one of the l;'s . Denote by f(k) the maximum possible chromatic
number of this graph . Could this again be the size of the largest complete graph
contained in such a graph?

1 . The "Nonconvex" Case

We start with a simple lemma .

Lemma 1 .1 . Let C be a circle with center c and radius r, and let T be a set of
points on the circle such that c is in the convex hull of T . Then for each point p c
of the plane, there is a point t c T with d (p, t) > r .

Now we prove the main theorem of this section .

Theorem 1.2 . If n _> n 2(k) = 18k2 , then X(G(S, k)) <_ 7 .

Proof. Let q c S be a point of maximum degree in G(S, k) . Consider the circle
C with smallest radius r containing S'=S-{q} . If r<dk then we can cut the
disc bounded by C into six pieces with diameter less than dk . This yields a
6-coloration of G(S, k) - q, and using a seventh color for q we are done .

So suppose that r >_ dk . Obviously, the convex hull of C n S' contains the
center c of C. So we can choose a subset T of C n S' with I T J <_ 3 such that the
convex hull of T contains c . Hence, by Lemma 1.1, every point in S is connected
to some point in T. So T contains a point of degree more than 6k 2 , and hence
by its choice, q has degree greater than 6k 2. Now among the neighbors of q,
there are more than 2k2 which are connected to the same point t E T.

But note that these points must lie on k concentrical circles about q as well
as on k concentrical circles about t. These two families of circles have at most
2k 2 intersection points, a contradiction .
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Now we give a construction which shows that this upper bound for the
chromatic number is sharp .
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Fig. 1

Take a regular 11-gon with vertices t ; (i = 0, . . . , 10) on a circle with radius 1
and center O . Take the point p on the half-line t oo for which d(O, p)=d(t3i p)
holds (see Fig . 1). Draw a very short arc around p going through O and place
the remaining points of S on this arc . Let us consider in this setting the 10 largest
distances. These will be the six different distances d (p, t;) between p and the rest
of the points, and the four largest chords in the regular 11-gon . One can easily
check that the t i 's need six colors and p needs a seventh color .

The threshold n2(k) in the theorem is sharp as far as the order of magnitude
goes. In fact, let us modify the previous construction as follows . We construct
the 11-gon and the point p as before, but now we also add a further point p'
obtained by rotating p about O by 90°. Let us draw k-23 concentrical circles
about p as well as about p' with radii very close to d(O, p), and let us add the
(k-23) 2 intersection points of these circles inside the 11-gon. This way we get
a set S with = k2 points such that the chromatic number of G(S, k) is 8 .

It would be interesting to determine the threshold for ISI(as a function of k)
where the chromatic number of G(S, k) becomes bounded . This is related to the
following question: given t >_ 3, what is the largest s such that G(S, k) can contain
a complete bipartite graph K,, S ? A recent construction of Elekes [10] shows that,
for each fixed t, s can be as large as c,k2 .

2. The "Convex" Case

In this section we deal with the case when S is a set of vertices of a convex n-gon
P (briefly, the "convex" case) . The convexity of S gives a natural cyclic ordering
of the points, so throughout the proofs we refer to this ordering . Before stating
the main results of this section we make some simple observations .

Lemma 2 .1 . Suppose that x,, x2, x3 , x4 E S (in this counterclockwise order) and

d(x,, x2) dk,

	

d (x2, x3) dk,

	

d(x3, x4) dk .

Then for each y c S between x4 and x, , at least one of the distances d (x;, y) is
greater than dk .
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Fig. 2

Proof. Since the angle x,yx 4 is less than 180° (because S is a convex set), at
least one of the angles xyxi+ , (for i = 1, 2, 3) is less than 60°. Hence (x i , x ; + ,)
cannot be the largest side of the triangle xyx i+,, from which the lemma
follows .
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Lemma 2.2. Suppose that x,, x 2i x 3 , y,, and Y2 are five vertices of S in this
counterclockwise order, and assume that d(x,, x2 ) >_ dk , d(x2 , x 3 ) >_ dk , and

d(x,,Y&)!~ d(x, ,Y2) . Then d(Y2,x2)>_dk .

Proof. If the semiline x2x3 does not intersect the semiline y2y, then the assertion
is obvious . So assume that these similines intersect in a point z as in Fig . 2. Also
assume, by way of contradiction, that d(y2 , x2 ) < dk . Now the angle x,y 2x 2 = a
is greater than the angle y2x,x2 = i3, because the lengths of the opposite sides of
the triangle y2x,x 2 are in this order . Similarly, in the triangle y2x 2 z, the angle
x2y2 z = y is larger than the angle x 2 zy2 - S. On the other hand, since the angle
x,x2z is less than 180°, the sum of the other angles in the convex quadrangle
y2zx2x, must be more than 180°, which means that 180° < /3 + (a + y) + S <
2(a + y) . But then the angle x,y 2y, = a + Y is obtuse and, hence, it is the largest
angle in the triangle x,y 2 y, . This contradicts our assumption that d (x, , y,) <_

d(x,, Y2) .
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Lemma 2.3 . Suppose that x,, x 2 , x 3 , x4 E S (in this counterclockwise order) and

d(x,, x2) > dk,

	

d(x2, x3) > dk,

	

d (x3, x4) dk .

Then the number of verticles of S between x4 and x, is at most 12k 2 +4k.

Proof. By Lemma 2.1, each vertex between x 4 and x, is connected in G(S, k)
to at least one of the xi 's. By Lemma 2.2, there are at most k vertices between
x4 and x, which are connected in G(S, k) to a given x i but no other x; . On the
other hand, all points which are connected to both xi and x; (1 < i <j<_ 4) lie on
k circles about x i as well as on k circles about x;, so their number is at most 2k2 .
This gives the bound in the lemma .

	

El
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Lemma 2.4 . If n > 12k2 +8k then G(S, k) contains no convex quadrilateral .

Proof. Almost the same as the proof of 2 .3 .
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Theorem 2 .5 . If k is fixed and n > n,(k) = 25 000k2 then X(G(S, k) 3 .

Proof. Let p = [n/720] . Then p > 24k 2 +8k+2 (except in the trivial case when
k = 1) . We can choose 2p+ 1 consecutive vertices ao , . . . , a 2p such that the angle
between the vectors a oa, and a2p_,a2p is less than 1° . Now we do the coloring
the greedy way . We start at the point t, = ap . We give the color 1 to the points
in S going counterclockwise as long as possible, i .e ., until we encounter a vertex
t 2 which is connected in G(S, k) to a vertex t, already colored with color 1 . Now
starting at 12 go on using color 2 until it is impossible, i .e ., until we encounter a
vertex t3 connected to a vertex t2 already colored with color 2 . Going on with
color 3, we either complete a 3-coloring of G, or else we find, similarly as before,
vertices t4 and t3 connected in G(S, k) . Now we show that we can choose x, = t,,
x2 E {t2 , t'2}, x 3 E {t3 , t3}, and x 4 = t4 so that d (x,, x 2 ) >_ dk , d (x 2 , x3 ) dk , and
d (X3, x4 ) >_ dk . If t2 = t2 and t 3 = t3 then this is obvious .

Assume that t2 o tz . Now in the convex quadrangle tIt't 2 t 3 the sum of the
lengths of the opposite edges (t,, tz) and (t 2 , t3) is at least 2dk , so at least one
diagonal must be of length at least dk . We choose x2 accordingly, and similarly
we choose x3 .

So we have the same kind of configuration as in Lemma 2 .3. Thus by
Lemma 2.3 there are at most 12k2 +4k vertices between x, and x4 . This in
particular implies that x, = ai and x4 = ai where

p-12k2 -4k<_ i<_ p< j <_ p+12k 2 +4k+1 .

One of the pairs (x,, x3 ) and (x 2 , x4), say the former, is also connected in G(S, k) .
Now the angle x2x,a; +, cannot be larger than 91°, or else the segments x2a ; + ,,

x2a;+2, . • • , x2a;+k are monotone increasing and all greater than dk , which is
impossible . Similarly, the angle a ;_,x,x 3 is less than 91° and hence the angle
x2x,x3 is less than 2° . Let, e .g ., d(x,, x2) > d(x,, x3 ) . Hence it is easy to deduce
using the cosine theorem that d (x,, x2 ) >_ 1 .9dk . Hence

d(a, p , x2 )? sin(x2x,a2p )d(x, , x2 ) >_ (sin 88°)(1 .9dk ) >_ 1 .8dk .

But then relabeling a2p by x, we get a contradiction at Lemma 2 .3 .

Again, one can ask if the threshold const • k2 is best possible . The source of
this value is Lemma 2 .3, where we use that two families of k concentric circles
cannot have more that 0(k 2) points of intersection . It may seem that the additional
information that the points considered are vertices of a convex polygon would
exclude most of the intersection points . But this is not the case; we can construct
a set S, consisting of the vertices of a convex polygon, such that IS1 > const • k 2
and G(S, k) contains a K4 (and hence its chromatic number is larger than 3) . In
particular, two families of k concentric circles will have const • k2 points of
intersection among the vertices of the convex polygon .
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Let us sketch this construction . Let a = (0, 0), b = ( 1, 0), c = (3, 0), and d =
(-1, 0). Let Co be the circle with radius 2 about b, and let po be a point on Co
very close to c. Then the angle dpo c is 90°, hence the angle apo c is acute . Hence
we can choose an interior point p, on the arc of C o between po and c such that
the angle apop, is acute . We define the points P2,- . . , pk , on the circle Co similarly
so that all the angles ap ipi+ , are acute . Let Di be the circle with center a through
p i . It follows from the construction that the circle Di does not contain p i+ , in its
interior but the line tangent to D i at p i does not separate pi+ , from a.

Let E be a very small positive number and let C i ( i = 0, . . . , k -1) be the circle
about b with radius 2 - iE. Let p i; be the intersection point of Ci and D; in the
upper half-plane. Then the points p i;, a, and b form the vertices of a convex
polygon and a, b, po , o , and pk_,, k _, form a complete quadrilateral in G(S, 2k+2) .

Next we derive a bound on the chromatic number of G(S, k) without the
hypothesis that ~S1 is large . First, let us define the following . Let xy be an edge
of G(S, k) . Let x, be the clockwise neighbor of x and y, be the counterclockwise
neighbor of y . If d (x, , y) > d (x, y) we say that the edge x, y covers the edge xy.
Similarly, if d (x, y,) > d (x, y) we say that the edge xy, covers the edge xy . Starting
from any edge xy, let us select an edge x'y' covering it, then an edge x"y" covering
x'y', etc. In at most k-1 steps we must get stuck (by the definition of G(S, k)) .
Let xoy o be the edge for which we could not find any edge covering it . We call
xoyo a majorant of xy . Note that in this case the angles formed by x oyo and the
two edges of the polygon entering x o and yo from the side opposite to xy must
be acute . It is also clear that the arcs x ox and yyo contain at most k -1 sides of
P together.

The following proposition will not be used directly, but it seems worth formu-
lating .

Proposition 2.6. Let x,, x z , x 3i and x4 be four vertices of P (in this cyclic order)
and assume that (x,, x z ) and (x3 , x4 ) are two edges ofG(S, k). Then either between
xz and x 3 or between x4 and x, are no more than 2k-2 sides of P (see Fig . 3) .

Fig . 3
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Proof. Assume that the conclusion does not hold, and let y,y2 be a majorant of
xlx2 and y3y4 be a majorant of x3x 4 . Then these majorants are also noncrossing
and y,, y2 , y3 , and y4 appear in this cyclic order on the polygon . Moreover, from
the above remarks it follows that all angles of the convex quadrangle YIY2Y3Y4
are acute. This is clearly impossible .
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Theorem 2.7. If S is the set ofvertices ofa convex polygon then the graph G(S, k)
has a point of degree at most 3k-1 .

Proof. Choose x c S and let y and z be the first vertices of S in the counterclock-
wise and clockwise directions, respectively, that are connected to x . Choose x so
that the number of points between x and y is maximal (see Fig . 4) .

Let sv be a majorant of zx. (It is possible that v = x or s = z) . Suppose there
are a points between x and v and b points between s and z, then a + b<- k -1 .
Let t be the kth point from x in the counterclockwise direction, and let u be the
first vertex in the counterclockwise direction connected to t in G(S, k) . Then
because of the choice of x, there are not more sides of P between t and u than
between x and y. Hence there are not more sides of P between y and u than
between x and t, i .e ., not more than a + k.

Let v's' be a majorant of tu . Obviously, v' lies on the arc vt. Just like in the
proof of Proposition 2 .6, the edges sv and v's' cannot be avoiding. Hence s must
be on the arc us' and so the number of sides of P on the arc us is at most k -1 .
Hence the number of sides of P on the arc yz is at most (a + k) + (k -1) + b<
33 k - 2. Hence the degree of x is at most 3 k -1 .
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We obtain by induction :

Corollary 2.8 . If S is the set of vertices of a convex polygon, then the number of
edges in G(S, k) is at most (3k -1) n .

	

0
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Moreover, we obtain from Theorem 2 .7 by deleting a vertex with minimum
degree and using induction :

Corollary 2.9 . If S is the set of vertices of a convex polygon then the chromatic
number of G(S, k) is at most 3k .
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