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We investigate r(K,,,, T) for a = 2 and a = 3, where T is an arbi- 
trary tree of order n. For a = 2, this Ramsey number is completely 
determined by r(IC ~J,K~,~J where m = A(T). For a = 3, we do 
not find such an “exact” result, but we do show that r(ICa,arT) 5 
max{ n + [cnl/sl, r( K a,s, Kl,,)}. Except for the choice of c this re- 
sult is best possible. 

1 Introduction 

Let T denote a tree of order n and maximum degree A(T) = m. The 

Ramsey number T(K~+, T) is the smallest integer p such that in every 
two-coloring of the edges of ICP there is either a monochromatic K,,, or 
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else a monochromatic copy of 7’. By tradition, we shall let the colors 
be R (red) and B {blue) with the resulting edge-induced subgraphs de- 
noted (R) and (B), respectively. It is well-known that the computation 
of r(1(;a+,T) is quite easy in some cases (e.g., for T = P,, a path of or- 
der n) but difficult in general. In particular, the “star” case T = Kl,,-1 
is known to be complicated. In this paper, we show that for a = 2 the 
problem of computing T(K~J,T), i.e. r(Cq,T), reduces to that of comput- 

ing +4, Jhlm). 
The following terminology will be used. An end-vertex is a vertex of 

degree one. An end-edge is an edge which is incident with an end-vertex, A 
suspended path in a graph G is a path (~0, xl,. . , ,zk) in which 51, . . . , zk-r 
have degree two in G. 

2 C&tree Ramsey numbers 

Let T be a tree of order n and maximum degree A(T) = m. In this section, 
we shall prove that 

r(C4, T) = max(4, n + 1,7-(c4, Kl,m))- 

Thus, T(&, T) is easily determined if f(m) = r(C4, I<r,m) is known. In [3], 
Parsons proved that if q is prime power, then f(q2) = q2 + Q + 1 and 
{!;Iw+ 1) = q2 + 4 + 2. .A table of f(m) for small values of m is shown 

m= 1234567 8 9 10 
f(m) = 4 4 6 7 8 9 11 12 13 14 I 

We start with the following bit of graph-theoretic folklore, which how- 
ever trivial, is the starting point for many results in extremal graph theory 
and Ramsey theory involving trees. 

Basic Lemma. IfS(G) > n - 1 then G contains every tree of order n. 

Lemma 1.1. IfF is any forest with q edges, then r(C4,F) < 2(q + 1). 

Proof. For the case in which F is a tree, this follows easily by a double ap- 
plication of the Basic Lemma. For the general case, it follows by induction 
on the number of components. q 

Except for some very special cases, the bound of Lemma 1.1 can be 
improved. 
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Lemma 1.2. If F is a forest with q edges and two or more components, 
then r(C4, F) 5 2q - 1 unless F 2 qK2 or F S (q - 2)Kz U KIJ. 

The next two results are well known. Lemma 1.3 is proved by Parsons 
in [3]. 

Lemma 1.3. For all m 1 2, T(C~, ICI,,) < m + [&?ij + 1. 

Lemma 1.4. For all n 2 3, T(C~,P~) = n + 1. 

To prove Lemma 1.4, just consider a maximal length path in (B). Its 
two end-vertices are joined to all of the remaining vertices in (8). Now we 
prove the main result of this section. 

Theorem 1. If T is a tree of order n and maximum degree A(T) = m, 
then r(C4, T) = max(4, n + 1, T(C+ KI,~)}. 

Proof. It is plain that p = max(4,n + 1, r(C41ir,m)} is a lower bound 
for r(Cq, T). Let (R, B) be any twocoloring of the edges of Ii, in which 
(R) ;2’ Cd. We claim that there is then an embedding of T into (B). For 
n 5 6, the verification is straightforward. There are 13 trees to consider. 
These trees and the corresponding values of T(C~,T) are shown in Figure 1 
overleaf. Our proof that the result holds for all n > 7 will be by induction. 
Since the case in which T is a path has been settled, we may assume 
that m > 3. To exhibit an embedding of T into (B), there are two basic 
strategies. 

(u) Embed a maximum degree vertex first, 

Let x be a maximum degree vertex of T and choose o(x) to be a max- 
imum degree vertex in (B). Thus, rr(z) has degree Ic > m in (B). Let 
NR and NB denote the neighborhoods of o(z) in (R) and (B), respectively. 
We wish to extend u to an embedding of T into (B). There are several 
cases in which such a strategy will be successful. 

(i) k 5 2(m - 1). 

Rewriting the inequality, we find k 2 2(k - m + 1). From Lemma 1.1, 
we see that within the subgraph of (B) spanned by NB there is any desired 
forest with k - m edges. Let T’ be a tree obtained from T by deleting 
(one at a time) end-vertices other than those which are adjacent to x until 
there are precisely k + 1 vertices left. Then F’ = T’ - z has k vertices 
and k - m edges. Thus, we are able to extend 0 so that it provides an 
embedding of T’ into (B), and LT maps V(F’) onto NB. We now seek to 
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T(Cq,T) = 4 : - a-.. 

r(C4, T) = 5 : .-. 

r(C4, T) = 6 : 
-( l = = = l .-< 

r(Cq, T) = 7 : 
+. l = = = = l < 

-+ >-( -4 

r(C4,T) = 8 : 

>r= 

Figure 1. r(C4, T) for trees of order at most six. 

extend o to an embedding of T into (B). Suppose that such an extension 
fails to exist. Then since p 2 n + 1, there must exist a vertex y E V(T), 
y # z, such that a(y) is adjacent in (R) to two vertices of NR. In other 
words, (3) contains a Cd, a contradiction. 

Henceforth we assume that Ic 2 2m - 1. 

(ii) T has a vertex of degree m 2 3 which is an “end-star.” 

Suppose that x is adjacent to m - 1 vertices of degree 1. Then T - x 
consists of a tree T’ and m - 1 isolated vertices. Choose c(x) to be a vertex 
of degree k 2 2m - 1 in (3) and attempt to extend the embedding as in 
case (i). In particular, let T” be a tree obtained from T’ by successively 
deleting end-vertices (but keeping all vertices which are adjacent to X) until 
there are precisely k - m •l- 1 vertices left. Now we want to extend ~7 so that 
it provides an embedding of T” into the subgraph of (B) spanned by NB. 
If this is possible, then o can be extended to an embedding of T into (B). 
For, otherwise, there is a vertex other than a(s) which is adjacent in (R) to 
two vertices of NR, so (R) contains a C 4. Note that since TN is a subgraph 
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of T, we have A(T”) 5 m. Now for m = 3, the desired embedding of T” 
follows immediately from the induction hypothesis if k 2 P(C’~,KI,~) = 6. 
If k = 5, then TN is the tree of order three and r(Cq,T”) = 4 < k. For 
m 2 4, use of the induction hypothesis shows that it suffices to verify that 
r(C4, I<~,,) 5 2m - 1. This is easily done; r(Cq, KI,~) = 7, r(Cq,Kr,s) = 8 
and m + [m + 1 2 2m - 1 for m 2 6 by an elementary calculation. 

Henceforth we assume that F = T - 5 has two or more nontrivial 
components. 

(iii) F %! mK2 or F 2 (m - 2)Kz U K~,Q. 

Consider first the case where F E mX2. Then r(Cq, F) = 2m t 1 
for m 2 2 and we wish to prove that T(C~, T) = 2m + 2 for m 2 3. If 
k = 2m - 1, then the subgraph of (B) spanned by NB contains (m - l)l<~. 
The remaining vertex of Ng is adjacent to one of the two vertices in NR 
and this gives the desired graph. If k = 2m, then the subgraph of (B) 
spanned by NR U N, contains mK2 and again we find the desired graph. 
The case where F 2 (m - 2)K2 U 11 ‘1,~ is similar. In view of Lemma 1.2, 
we may now assume that P(C~, F) 5 2p - 1, when F is of size q. 

(iv) 2m > n - 1. 

Since F has n - m - 1 edges, then T(C,, F) 5 2(n - m - 1) - 1 < 
2m - 1 5 k. In this case, the subgraph of (B) spanned by NB contains F 
so we have an embedding of T into (B). 

Now suppose that strategy (u) fails. Then F = T - x has at least two 
non-trivial components and 2A(T) < n - 1. The first condition implies 
that T has (at least) three independent end-edges. This observation gives 
rise to the second strategy. 

(b) Complete the embedding of T using a matching. 

Let T’ denote the tree obtained from T by deleting the three indepen- 
dent end-edges. Then T’ is a tree of order n - 3 and maximum degree 
A(T’) < m < [f]. 

We now claim that T(C~, T’) = n - 2. This follows from the induction 
hypothesis if r(Cq, Kr,,) < n - 2 when m < [Fj, This is surely the case 
for n = 7, 8, and 9, and it follows for n 2 10 by an elementary calculation 
using the result of Lemma 1.3, r(Cq,Kl,,) < m + [m + 1. 

Observe that the Basic Lemma yields the simple fact that r(.Kr,z, T) = 
ntl. Thus, we may assume the existence of a Ii1,2 in (R). Since r(Cq, T’) = 
n - 2, we may assume a T’ in (B) which is vertex disjoint from the Kl,2 
in (R). Let Y = {yr,y2,ya,y4} denote the set of four vertices which are 
disjoint from the T’ which is embedded in (B). In view of the way T’ was 
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constructed, there is a set of three vertices X = (51, ~2,~s) for which a 
matching of X into Y in (B) would yield an embedding of T. Since the 
subgraph of (R) spanned by Y contains a K~J, every vertex of X is adjacent 
in (B) to at least one vertex of Y. Moreover, Hall’s condition cannot fail 
for any other subset of X since this would also imply a C4 in (R). Hence, 
there is a matching of X into Y and so an embedding of T into (B). 

Thus, in all cases either strategy (a) or strategy (b) is successful and 
the proof is complete. 0 

The preceding theorem reduces the problem of computing T(C~, T) to 
one of computing r(C4, Kr,+). Outside of special values of m (e.g., m = q2 
or m = q2 + l), little is known concerning exact values of f(m) for large m. 
The following result gives a modest improvement in our knowledge of the 
asymptotic behavior of this sequence of Ramsey numbers. 

Theorem 2. Let pk denote the kth prime. If 

Pk+l - Pk < P; 

for all suficiently large k, then 

($1 

7‘(c4,h;,n) > n + Ini - 6ngj 

for all suficiently large n. 

Remark. At present, the best known value of (Y for which (t) holds is 
less than rr/ze, but improvements in this value are being obtained rapidly. 
In any case, by Lemma 1.3 and Theorem 2, T(C~,K+) is determined to 

within 6ng. 

Proof of Theorem 2. Let p be the smallest prime which exceeds nk. In 
[l] and [2], it is shown that there exists a graph Ge of order N = p2 +p+ 1 
which contaips no C4 and in which the degree of each vertex is p or p + 1. 
Set m = Lnz - 6n?]. W e wish to establish the existence of a graph of 
order n + m which contains no C4 and in which the degree of each vertex 
is at least m. To this end, we randomly delete d = N - (n + m) vertices 
from Ge to obtain a random graph G. A given vertex x which is of degree p 
in Go will be described as bad if it is not deleted and has degree < m in G. 
Let B, denote the event: “z is bad.” Thus, the random graph G will belong 
to B, if for some k > p - m, k vertices are deleted from the p vertices 
in the neighborhood of 5 and the remaining d - k deleted vertices do not 
include z, It follows that 

Wz) = c (3 (“,p, ‘)/($ 
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where the sum extends over all k > p - m. By elementary analysis, 

where e = 2.71828.. . . By‘our choice of p and m, all terms in the sum have 
k > p-m > 6n%. Also,p< ni+ns and N -d=n+m>n. Intheworst 
case, p (and therefore d) are as large as possible while k and N - d are as 
small as possible. Even in this case, epd/k(N - d) < g + O(1). It follows 
that nP(B,) --) 0 as n -+ co. Clearly, the same analysis holds if z has 
degree p + 1. Consequently, there is a positive probability that all vertices 
are good when n is sufficiently large. Thus our random graph construction 
is successful. cl 

3 K&ree Ramsey numbers 

The following result shows that the Ramsey number ~(Ks,s, T) is deter- 
mined by m = A(T) ‘f 1 m is quite close to 72. Otherwise, our result yields 
only an upper bound. 

Theorem 3. There exists a constant c such that for eoery tree of order n 
and maximum degree A(T) = m, 

7-(&J, 7’) 2 maxin + rc74, 7f~~3,dil,m)}. 

To set the stage for the proof of this result, we first recall the sim- 
ple argument by which one may obtain an upper bound for ?‘(Ka,b,l<r,n). 
Namely, by the pigeonhole principle, if 

p(y) > w- 1,($ 
then p > r(l<+ Kr+). The argument of Theorem 1 can be extended to 
show that there is a c such that ?‘(1<2J, T) 5 max{ n + c, r(Kz,b, Kilm)} for 
all trees of order n and maximum degree m. Assembling these facts, we 
have the following result. 

Lemma 3.1. Let T be an arbitrary tree of order n. Then, for all SUB- 
ciently large n, 

(i) ~(K2,3, T) < n + 27~3, 

(ii) ~(li;2,4, T) < n + 3n3, 

(iii) ~(K3,3,Kl,~) < n + 3n+. 
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Remark. The constants chosen here are rather generous, so the given 
inequalities hold for even quite small values of n. 

Proof of Theorem 3. The proof will be by induction. We shall argue 
that with c = 20 there is an integer no so that for all n > no, the truth 
of the theorem for all k < n implies its truth for n. Having done so, we 
need only adjust (if necessary) the value of c so the result holds for all n. 
In what follows there is always the tacit assumption that n is sufficiently 
large. Set p = max{n + r2Oni], r(Iis,a, KI,~)} and assume that (R, B) is 
a two-coloring of the edges of Ii, in which (R) 2 Ka,a. There are four cases 
to consider. 

(i) m > + 

Use the first strategy of Theorem 1; if x is a maximum degree vertex 
in T, then make o(z) a maximum degree vertex of (B). Thus Q(X) has 
degree k > m in (B) and, by Lemma 3.1, we may also assume that Ic > 
n - 3ng. Certainly, the number of vertices to which a(s) is adjacent in (R) 
does not exceed 3n% $20ni < 4nz. As in the proof of Theorem 1, let 
NR and NB denote the neighborhoods of a(z) in (R) and (B), respectively. 

Describe a vertex in NB as pwerless if it is adjacent to at least d = [Ions1 
vertices of NR in (R). If ~NR/ = s and there are t powerless vertices, then 

for, otherwise, there is a KS,3 in (R) with two powerless vertices and a(z) 
on one side and three vertices from NR on the other. It follows that t < g. 
This number is much less than then number of isolated vertices in F = T-x. 
The remaining vertices in Ng will be called power&Z. Note that there are at 
least F powerful vertices. This is more than enough to ensure that there 
is an embedding of the non-trivial components of F into the subgraph 
of (B) spanned by the powerful vertices. (Here we use the crude bound 
r(K3,3, q I 3(q + 1) f or a forest with 4 edges and note that our F has at 
most 2 edges.) We now face the problem that there may not be enough 
vertices left over in NB to account for all the isolated vertices of F. To 
find an embedding of T into (B) we need to take appropriate “small” trees 
(altogether involving at most 3ng vertices) rooted at powerful vertices and 
find an embedding of an isomorphic tree where all vertices except the root 
reside in NR. Let a(y) denote a powerful vertex which is the root of such 
a tree. The existence of such an embedding is ensured by the fact that the 
vertex in question is powerful. As such, it is adjacent in (B) to at least 
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10ni vertices in excess of what may be needed to complete its tree. Let 
Y denote the set of vertices in NR to which a(y) is adjacent in (B). The 
subgraph of (R) spanned by Y cannot contain a #2,s, for then (R) would 
contain a Ks,~. Suppose that within the subgraph of (B) spanned by Y we 

need to find a forest Fi with T vertices. Success is ensured since T < 3n3 
and 

IYI > T + lo& > T + 2rfr s T(K~,~, F’). 

We now assume that A(T) < F. 

(ii) T has six independent end-edges. 

Since m = A(T) < F, we have 

p = n t [2Onil > T(K~,~, T). 

It follows that (R) contains a Ii s,d. Let T’ denote the tree obtained from T 
by deleting six independent end-edges. Then r(Ka,s, T’) < p - 6, so we find 
a K2,4 in (R) and a T’ in (B) which are vertex disjoint. Let Y denote the set 
of all vertices disjoint from the embedded T’. Thus IYI = p- n+ 6 2 14. In 
view of the construction of T’, there is a set X = {x1,52,. . . , zs} for which 
a matching of X into Y in (B) would yield an embedding of T. Since the 
subgraph of (R) p s anned by Y contains 112,4, every vertex of X is adjacent 
in (B) to at least two vertices of Y. Hence, failure of Hall’s condition would 
yield a K,,, in (R) with T 2 3 and s > IYI - (r - 1) > 3. Consequently, 
Hall’s condition must be satisfied and there is an embedding of T into (B). 

(iii) T has a swspended path of length at least six, 

Let T’ be a tree obtained from T by reducing the length of an appro 
priate suspended path by one. By induction, we find an embedding of T’ 
into (B). It is not difficult to show that if there are as many as eleven 
vertices external to the embedded T’, then the absence of a KS,3 in (R) 
implies that there is an embedding of T into (B). In fact, there are more 
than [2Onk1 additional vertices, so this case causes no problem. 

(iv) The residue. 

By now, our tree is quite special. It has at most five vertices of degree 
three or more and it has no suspended path of length six. As usual, let 
z denote a maximum degree vertex of T. In view of the observations just 
made, we can be sure that 2 is adjacent to about t or more vertices of 
degree one. Furthermore, the forest F = T - 2 has at most four non- 
trivial components. Now we return to the first strategy and let cr(z> by a 
maximum degree vertex in (B). 
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Note that almost all vertices of F are either isolated or have degree one. 
(The number of exceptions is limited by the fact that at most five vertices 
have degree three or more and the fact that the suspended paths which join 
these vertices are of length at most five.) Suppose that a(z) has degree Ic 
in (B). Delete end-vertices from F to obtain a forest F’ of order k. Now 
delete all isolated vertices from F’ to obtain F”. We claim that there is an 
embedding of F” into the subgraph of (B) induced by the set of powerful 
vertices in NB. This follows immediately from the induction hypothesis, 
since F” is of order at most Ic - 2 and has no vertex of degree > $, whereas 
there are at least K - f4. r. powerful vertices. Now we just need to extend 
the embedding into NR to obtain an embedding of T into (B). This only 
involves choosing the appropriate vertices within NR to play the role of 
end-vertices in T and (at the same time) possibly releasing some vertices 
within NB so they can play the role of end-vertices which are adjacent to z. 
But there is no problem, because each powerful vertex is adjacent in (R) 
to at most 10~1; vertices of NR and the whole graph contains 20ni vertices 
in addition to the number needed for T. This completes the proof. cl 

Except for the value of the constant c, this result is best possible. Let 
pr3(mod4)b p e rime and consider a tree T of order n = p” - p+ 2 which 
has exactly two vertices of degree greater than one. Of necessity, these two 
vertices are adjacent. We claim that T(K~,~,T) 2 p” + 1. To see this, we 
use the example of W. G. Brown [l]. This is a graph of order p3 which is 
regular of degree p2 - p and contains no K3,3. This graph has the property 
that for any two non-adjacent vertices, there are exactly p - 1 vertices to 
which the two are commonly adjacent. It follows that the complement of 
this graph does not contain T since there are always p - 1 vertices which 
cannot be used in any attempted embedding. Now, if the degrees of the 
two “high degree” vertices of T are as balanced as possible, we ensure that 
r(Ks,s, Kr,,) < n + [cn-1, at least when n is large. Thus, in this example ; 

the result T(K s,s, T) 5 n + [cni] cannot be improved except for the choice 
of c. 

4 Open questions 

There is still much more which could be known concerning the asymptotic 
behavior of f(n) = ~((74, Kl,,). F or example, it is conjectured that for every 
constant c there are infinitely many n for which every graph of order n 
and minimum degree 2 fi - c contains a Cd. That is, infinitely often 
j(m)<mtfi-c’. One of the authors (E.P.) offers $100 for a proof or 
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disproof. Clearly, infinitely often j(n + 1) = f(n) t 1 and infinitely often 
f(n + 1) > j(n) + 1. Is it true that f(n + 1) = f(n) holds i.0. but that the 
density of these n is 0 and is it true that j(n t 1) 5 f(n) t 2 for all n? 
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