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Abstract. We solve a problem of Dujmović and Wood (2007) by show-
ing that a complete convex geometric graph on n vertices cannot be de-
composed into fewer than n−1 star-forests, each consisting of noncrossing
edges. This bound is clearly tight. We also discuss similar questions for
abstract graphs.
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1 Introduction

To determine the smallest number of subgraphs of some special kind that a
graph G can be partitioned into is a large and classical theme in graph theory.
In particular, the parts may be required to be matchings (as in Vizing’s the-
orem [12]), complete bipartite graphs (as in the Graham-Pollak theorem [7]),
paths and cycles (as in Lovász’ theorem [9]), forests (as in the Nash-Williams
theorem [10]), etc.

Most likely, it was Erdős who first realized that one can ask many interesting
new extremal questions for graphs drawn in the plane or in some other surface,
if we replace the purely combinatorial conditions by geometric ones; see [11]. For
instance, we may require that the edges participating in a matching or a path do
not cross each other [4], [8]. In the 80s and 90s, the emergence of Graph Drawing
as a separate discipline gave fresh impetus to this line of research.
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A geometric graph G is a graph whose vertex set is a set of points in the
plane, no 3 of which are collinear, and whose edges are (possibly crossing) line
segments connecting certain pairs of vertices. If the vertices of G are in convex
position, that is, they form the vertex set of a convex polygon, then G is called
a convex geometric graph. In the sequel, whenever we say that a graph or a
geometric graph G can be decomposed into certain parts, we mean that its edge
set, E(G), can be partitioned into such parts. Each part can be regarded as a
different color class in the corresponding coloring.

A star is a graph consisting of a vertex together with some edges incident to it.
In particular, a single vertex is counted as a star. A graph whose every connected
component is a star is called a star-forest. The (edge set of a) complete graph
Kn with n vertices can be decomposed into n− 1 stars. Akiyama and Kano [2]
proved that fewer stars do not suffice. (This also follows from the Graham-Pollak
theorem [7], mentioned above.) However, it was also shown in [2] that one can
decompose Kn into much fewer star-forests: one needs only ⌈n/2⌉+ 1 of them.
Can one also decompose a complete convex geometric graph on n vertices into
fewer than n − 1 star-forests, if we insist that each star-forest is a plane graph,
that is, its edges do not cross each other? This question was raised by Dujmović
and Wood [6] (Section 10).

The aim of this note is to answer this question in the negative.

Theorem 1 Let n ≥ 1. The complete convex geometric graph with n vertices
cannot be decomposed into fewer than n− 1 plane star-forests.

On the other hand, there are complete geometric graphs where fewer than
n − 1 plane star-forests suffice: consider P = A1 ∪ A2 ∪ A3 ∪ A4 a point set
consisting of four pairwise disjoint sets A1, . . . , A4, each of size k, such that for
every choice P1 ∈ A1, . . . , P4 ∈ A4 we have that P4 lies inside the convex hull of
P1, P2 and P3. Then, it can be seen that the complete geometric graph on P can
be decomposed into 3k = 3n/4 plane star-forests, which come in three families:
the first family consists of stars emanating from points in A1 connecting to all
points in A1 and A2 together with stars emanating from points in A3 connecting
to all points in A3 and A4. Similarly, we draw stars emanating from points in A2

connecting to all points in A2 and A3 and from points in A4 connecting to all
points in A4 and A1, and for the last family stars from points in A1 connecting
to all points in A1 and A3 and from points in A2 connecting to all points in A2

and A4.
The most important unsolved question in this direction is, how much the

bound in Theorem 1 can be improved if we drop the assumption that the vertices
are in convex position. We conjecture that the above example is optimal.

Conjecture 2 Let n ≥ 1. There is no complete geometric graph with n vertices
that be decomposed into fewer than ⌈3n/4⌉ plane star-forests.

Note that in the example above, all star-forests had exactly two components.
A star-forest consisting of at most k connected components (stars) is said to be
a k-star-forest.



It is also an interesting open problem to determine the minimum number of
plane k-star-forests that a complete (convex) geometric graph of n vertices can
be decomposed into. We do not even know the answer to the analogous question
for abstract graphs.

Problem 3 Let k and n be fixed positive integers. What is the minimum number
of k-star-forests that a complete graph Kn of n vertices can be decomposed into?

As was mentioned earlier, for k = 1, the minimum is n − 1. The following
result settles the first nontrivial case.

Theorem 4 The complete graph with n > 3 vertices can be decomposed into
⌈3n/4⌉ 2-star-forests. This bound cannot be improved.

In particular, this shows that any counterexample to Conjecture 2 would
require the use of star-forests with more than 2 components.

Many other variants of decomposing complete geometric graphs have been
studied in the literature, including decompositions into plane spanning trees.
The conjecture that every complete geometric graph on 2m vertices can be de-
composed into m plane spanning trees has been recently disproved in [1]. Several
notions of thickness studied in [6] are concerned with decompositions of graphs
into plane substructures. For many other interesting questions on abstract and
geometric graph parameters, consult [3].

In Sections 2 and 3, we prove Theorems 1 and 4, respectively.

2 Covering with plane star-forests–Proof of Theorem 1

Recall that a plane star-forest is a star-forest which is a plane graph, i.e., its
edges do not cross each other. In this section, in a slight abuse of notations, we
will denote the complete convex geometric graph on n points as Kn. Instead
of decompositions of Kn into plane star-forests, it will be more convenient to
consider coverings, that is, to allow an edge to belong to more than one star-forest
(to have more than one “color”). This does not change the problem, because by
keeping just one color for each edge, we turn any covering of the edge set of Kn

into a decomposition.

Definition 5 A collection of plane star-forests, F1, F2, . . . , Ft forms a covering
of Kn if every edge of Kn belongs to at least one Fi.

For the proof, we need to introduce some simple terminology. The graphs
consisting of just one vertex or a single edge are also regarded as stars. Every
star S has a center. If S is a vertex, then it is its own center. If S is a single edge,
we arbitrarily fix one of its endpoints and call it the center of S. The center of
a star S is also said to be the center of any edge of S. Accordingly, if F is a
(plane) star-forest, we always assume that each of its components is a star with
a fixed center.



Proof (Proof of Theorem 1). For n = 1, 2, the statement is trivial. Assume for
contradiction and let n ≥ 3 be the smallest number for which the statement is
not true. Let Kn be a complete convex geometric graph, and denote its vertices
by P1, P2, . . . , Pn, in clockwise order. The indices are taken modulo n, so that
Pn+1 = P1, Pn+2 = P2, etc.

Suppose that Kn is covered by t plane star-forests, F1, F2, . . . , Ft, for some
t < n− 1. Our goal is to move some edges from one star-forest to another (i.e.,
to “recolor” them) in order to turn at least one Fi into a single star. We make
sure that after each step of this process, we obtain a covering of Kn with plane
star-forests. As soon as one of the Fis becomes a single star, we remove its center
from Kn, and contradict with n being the smallest number for which we have a
covering of Kn with fewer than n− 1 plane star-forests.

For every a, 1 ≤ a ≤ n, and for every k, 1 < k < n, we call the edge PaPa+k

a k-edge. Note that every k-edge is also a (n− k)-edge.

Definition 6 A k-edge PaPa+k is called supported if there exists Fi such that
PaPa+k belongs to Fi, and

(i) either all edges PaPa+1, PaPa+2, . . . , PaPa+k−1 belong to Fi,
(ii) or all edges Pa+1Pa+k, Pa+2Pa+k, . . . , Pa+k−1Pa+k belong to Fi.

Otherwise, we call it unsupported.

The goal is to recolor the edges step by step in order to make all the edges
supported. For this purpose, the following observation is useful for the recoloring
process.

Observation 7 Suppose that the complete geometric graph Kn is covered by t
plane star-forests, F1, F2, . . . Ft. Let S be a connected component of Fi (that is,
a star) where 1 ≤ i ≤ t. Assume that no edge of S crosses an edge of Fj where
1 ≤ j ≤ t, j ̸= i. Remove the edges in S from Fi and add them to Fj. Then any
edge that was supported before is still supported.

Lemma 8 Suppose that the complete geometric graph Kn can be covered by t
plane star-forests, for some positive integer t.

Then, for every k, 1 < k < n, there exists a covering of Kn by t plane
star-forests F1, F2 . . . , Ft such that every k′-edge with 1 < k′ ≤ k is supported.

Proof. We prove the lemma by induction on k.
Suppose that k = 2. By symmetry, it is sufficient to consider the 2-edge P1P3

(that is, a = 1). We can assume without loss of generality that P1P3 belongs
to Fi, for some i, and its center is P1 (which implies that P2P3 is not in Fi). If
P1P2 belongs to Fi, condition (i) in Definition 6 is satisfied, and we are done.
If P1P2 does not belong to Fi, then add it to Fi. Obviously, it cannot cross any
other edge in Fi. The only problem that may occur is that until now P2 was a
single vertex star in Fi, and now Fi has two stars that have a point in common.
In this case, simply erase the single vertex star P2 from Fi. Thus, the lemma is
true for k = 2.



Suppose next that k > 2 and the statement has already been verified for
k − 1. We want to prove it for k.

By symmetry, it is enough to consider the k-edge P1Pk+1 and make it sup-
ported without making the already supported edges unsupported. Suppose with-
out loss of generality that P1Pk+1 belongs to a star in Fi and the center of this
star is P1. The edges in Fi are marked blue.

Let l < k+1 be the largest index such that P1Pl does not belong to Fi. Then
the edges P1Pl+1, . . . , P1Pk+1 are all blue. If there is no such index l, then we
are done, because Fi satisfies condition (i) in Definition 6.

By the induction hypothesis the edge P1Pl is supported, so there exists a star-
forest Fj , j ̸= i, which contains P1Pl along with all the edges P1P2, P1P3, . . . , P1Pl−1

or along with all the edges P2Pl, P3Pl, . . . , Pl−1Pl. The edges of Fj are marked
red. We distinguish two cases depending on these two possibilities.

Case 1: The edges P1P2, P1P3, . . . , P1Pl belong to Fj.
We make two changes. See Figure 1.

Fig. 1. In Case 1, recolor P1P2, . . . , P1Pl from red to blue, and all blue stars spanned
by {P2, . . . , Pl} to red. A dotted line marks the absence of an edge.

Step 1: Remove the edges P1P2, P1P3, . . . , P1Pl from Fj and add all of them to
Fi (unless they were already in Fi).

Then P1Pk+1 will satisfy condition (i) of definition 6 in Fi (with a = 1).
However, in the process, we may have created some crossings within Fi, and Fi

may also cease to be a star-forest. Both of these problems can be avoided by
performing

Step 2: Remove from Fi all (blue) edges connecting two elements of {P2, P3, . . . , Pl}
and add them to Fj .

Note that by recoloring the blue edges within {P2, P3, . . . , Pl} to red, we do
not violate the condition that Fj is a plane star-forest. Indeed, unless l = 2,



originally, no element of {P2, P3, . . . , Pl} was connected by a red edge to any
vertex other than P1. Also by Observation 7, neither of the two steps results in
any previously supported edge becoming unsupported.

Case 2: The edges P2Pl, P3Pl, . . . , Pl−1Pl belong to Fj.
First, we will modify Fi by including the edge P1Pl. This will require some

care, to make sure that the new covering does not violate the conditions. See
Figure 2.

Fig. 2. In Case 2, P1Pl will have two colors: red and blue. Remove the color blue from
all previously blue edges incident to Pl.

Step 1: Add the edge P1Pl to Fi, but also keep it in Fj . Remove from Fi all
other edges incident to Pl.

Notice that after performing this step, we still have a covering of Kn by
plane star-forests. It is a covering, because all edges deleted from Fi also be-
longed, and continue to belong, to Fj . Obviously, Fi remains a star-forest : its
component containing P1 remains a star, because we removed from Fi any other
edge incident to Pl. Finally, Fi remains a plane graph, because its newly added
edge, P1Pl cannot cross any other blue edge. Indeed, such an edge should be
incident to Pl+1, contradicting our assumption that P1Pk+1 originally belonged
to a star in Fi, whose center is P1. Also note that edges incident to Pl in Fi form
a connected component which is already in Fj . So removing them is equivalent
to recoloring them as red, which, by Observation 7, does not make any already
supported edge unsupported.

Now we go back to the beginning of the proof, and again find the largest index
l′ such that P1Pl′ does not belong to Fi. Obviously, we have l′ < l. As before,
we distinguish two cases. In Case 1, we conclude that P1Pk+1 satisfies condition
(i) of Definition 6 in Fi (with a = 1), and we are done with the induction step.
In Case 2, we can include the edge P1Pl′ in Fi. Continuing like this, in fewer



than k steps, we arrive at a situation where either P1Pk+1 satisfies condition
(i) of definition 6 in Fi, or one by one, we manage to include all of the edges
P1Pk+1, P1Pk, . . . , P1P3, P1P2 in Fi, which again means that P1Pk+1 satisfies
condition (i) of definition 6 in Fi. This completes the proof of Lemma 8. ⊓⊔

Applying the lemma with k = n− 1 and a = 1, we can construct a covering
of Kn by fewer than n − 1 plane star-forests such that one of them, again de-
noted by Fi, has the property that either P1P2, P1P3, . . . , P1Pn belong to Fi, or
P1Pn, P2Pn, . . . , Pn−1Pn belong to Fi. That is, Fi is a single star of degree n−1,
centered at P1 or Pn. Deleting P1 or Pn, resp., from Kn, we obtain a covering of
Kn−1 with fewer than n−2 plane star-forests, which contradicts our assumption
that Theorem 1 is true for decompositions and, hence, for coverings of the com-
plete convex geometric graph Kn−1. This completes the proof of Theorem 1. ⊓⊔

3 2-Star-Forests–Proof of Theorem 4

Proof. Let V be an n-element set, and let V = V1 ∪ V2 ∪ V3 ∪ V4 be a partition
of V into 4 subsets as equal as possible. Suppose without loss of generality that

⌊n/4⌋ ≤ |V1| ≤ |V2| ≤ |V3| ≤ |V4| ≤ ⌈n/4⌉.

Let f : V2 → V1 be a surjection (onto mapping). For every u ∈ V2, consider
the two-star-forest Fu consisting of all edges connecting u to a every vertex in
V2 ∪ V3, and connecting f(u) to every vertex in V1 ∪ V4. These two-star-forests
completely cover all edges within V2 and V1, and all edges in V1 × V4 and in
V2 × V3. In a similar manner, we can construct |V4| two-star-forests that cover
all edges within V4 and V3, and all edges in V4 × V2 and V3 × V1. Finally, with
|V3| two-star-forests (with one center in V3 and one in V1), we can cover all edges
in V3 × V4 and V1 × V2. Thus, we covered Kn with |V2| + |V3| + |V4| = ⌈3n/4⌉
two-star-forests, as required.

Next, we show that Kn cannot be covered by fewer than ⌈3n/4⌉ two-star-
forests, for any n ≥ 4. The case n = 4 is easy. The proof is by contradiction. Let
n be the smallest value greater than 4 for which there exists a covering of Kn by
t ≤ ⌈3n/4⌉−1 two-star-forests. Denote the two-star-forests participating in such
a covering by F1, . . . , Ft. If any Fi has only one center, then deleting it from Kn,
together with all edges incident to it, we reduce the number of vertices by 1 and
the number of two-star-forests by 1. This would contradict the minimal choice
of n. Thus, we can and will assume that every Fi, 1 ≤ i ≤ t, has two centers.

Now consider a graph G with the same set of vertices as Kn, and for every
2-star-forest Fi, draw an edge in G between the two centers of stars in Fi.
The resulting graph G has at most ⌈3n/4⌉ − 1 edges and, therefore, at least
n−⌈3n/4⌉+1 connected components. Note that 3(n−⌈3n/4⌉+1) > ⌈3n/4⌉−1,
so there exists a connected component C in G with fewer than 3 edges.

If C is a single vertex u, then by construction it cannot be the center of
any two-star-forest. Thus, we would need at least n − 1 two-star-forests just to
cover the edges incident to u in Kn. If C consists of only one edge u1u2, then



neither of these vertices can be the center of any other two-star-forest. Thus, the
edge u1u2 was not covered by any two-star-forest Fj , which is a contradiction.
Finally, if C consists of two edges, u1u2 and u1u3, say, then it is not difficult to
see that at least one of the edges between u1, u2, u3 in Kn is not covered by any
two-star-forest Fj . In each of the above cases, we obtained a contradiction. This
completes the proof of Theorem 4. ⊓⊔

In view of Theorem 4, we state the following conjecture.

Conjecture 9 For any n ≥ k ≥ 2, the number of k-star-forests needed to cover

the complete graph Kn is at least
⌈ (k+1)n

2k

⌉
.

For k = 2, the conjecture is true, by Theorem 4. We construct an example
inspired by the construction in [2], showing that Conjecture 9, if true, is best
possible. For simplicity, we describe it only for the case where n is divisible by
2. Assuming n = 2t, and labeling the vertices by {v1, v2, · · · , vn}, we create t 2-
star-forests F1, F2, · · ·Ft by picking vertices vi and vi+t as centers of Fi, 1 ≤ i ≤ t
and connecting vi to all vertices vj , i < j < i + t, and connecting vi+t to all
vertices vj+t, i < j < i + t (the indices are taken modulo n). The introduced
2-star-forests cover all edges of Kn, except the set of edges vivi+t which can be
simply decomposed into ⌈ n

2k ⌉ k-star-forests. Altogether, Kn can be covered by
n
2 + ⌈ n

2k ⌉ k-star-forests.
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