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Abstract. We consider the variation of Ramsey numbers introduced by Erdős and Pach [6],
where instead of seeking complete or independent sets we only seek a t-homogeneous set, a vertex
subset that induces a subgraph of minimum degree at least t or the complement of such a graph.

For any ν > 0 and positive integer k, we show that any graph G or its complement contains as
an induced subgraph some graph H on ℓ ≥ k vertices with minimum degree at least 1

2
(ℓ − 1) + ν

provided that G has at least kΩ(ν2) vertices. We also show this to be best possible in a sense. This
may be viewed as correction to a result claimed in [6].

For the above result, we permit H to have order at least k. In the harder problem where we
insist that H have exactly k vertices, we do not obtain sharp results, although we show a way to
translate results of one form of the problem to the other.
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1. Introduction. Recall that the (diagonal, two-colour) Ramsey number is de-
fined to be the smallest integerR(k) for which any graph onR(k) vertices is guaranteed
to contain a homogeneous set of order k—that is, a set of k vertices corresponding to
either a complete or independent subgraph. The development of asymptotic bounds
for these numbers is an important and challenging area of mathematics with a history
of more than eighty years. Since the work of Erdős and Szekeres [8] and Erdős [5],
there has been no progress in improving bounds on the first-order term of lnR(k),
so even seemingly small improvements in asymptotic bounds on R(k) are of major
importance [3].

We consider a degree-based generalisation of R(k) where, rather than seeking a
clique or coclique of order at least k, we seek instead an induced subgraph of order
at least k with high minimum degree (clique-like graphs) or low maximum degree
(coclique-like graphs). We call this the variable quasi-Ramsey problem. By gradually
relaxing the degree requirement, we get a spectrum of Ramsey-type problems where
we see a sharp change at a certain point. Erdős and Pach [6] introduced such problems
and obtained some interesting results summarised below.

1.1. The variable quasi-Ramsey problem. For a graph G = (V,E), we
write G for the complement of G. As a starting point, Erdős and Pach observed
the following.

Proposition 1.1 ([6]).
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(i) For 0 ≤ α < 1
2 , there exists a constant C(α) such that, for each k ∈ N and

any graph G with at least C(α)k vertices, G or G has an induced subgraph H on ℓ ≥ k
vertices with minimum degree at least αℓ.

(ii) For 1
2 < α ≤ 1, there exists a constant C(α) > 1 such that, for each k ∈ N,

there is a graph G with at least C(α)k vertices satisfying the following. If H is any
induced subgraph of G or G on ℓ ≥ k vertices, then H has minimum degree less than
αℓ.

Investigating the abrupt change at α = 1
2 , Erdős and Pach [6] proved the following

much stronger result, using graph discrepancy to prove part (i) and a weighted random
graph construction to prove part (ii).

Theorem 1.2 ([6]).

(i) There exists a constant C > 0 such that, for each k ∈ N, k > 1, and any
graph G with at least Ck ln k vertices, G or G has an induced subgraph H on ℓ ≥ k
vertices with minimum degree at least 1

2ℓ.
(ii) For any ρ ≥ 0, there is a constant Cρ > 0 such that, for large enough k,

there is a graph G with at least Cρk ln k/ ln ln k vertices satisfying the following. If H
is any induced graph of G or G on ℓ ≥ k vertices, then H has minimum degree less
than 1

2ℓ− ρ.

Our first goal is to further investigate the abrupt change described above. We
obtain sharp results by the application of a short discrepancy argument and the
analysis of a probabilistic construction similar to Proposition 1.1(ii).

Theorem 1.3.

(i) Let ν ≥ 0 and c > 4/3 be fixed. For large enough k and any graph G with at

least kc10
6ν2+4/3 vertices, G or G has an induced subgraph H on ℓ ≥ k vertices with

minimum degree at least 1
2 (ℓ − 1) + ν

√

(ℓ − 1) ln ℓ.
(ii) There is a constant C > 0 such that, if ν(·) is a non-decreasing non-negative

function, then for large enough k there is a graph G with at least Ckν(k)
2+1 vertices

such that the following holds. If H is any induced subgraph of G or G on ℓ ≥ k
vertices, then H has minimum degree less than 1

2 (ℓ− 1) + ν(ℓ)
√

(ℓ− 1) ln ℓ.

Theorem 1.3 exhibits a threshold phenomenon which we elucidate in Section 1.3,
where we also make comparisons to Proposition 1.1 and Theorem 1.2. Erdős and
Pach claimed that their argument for Theorem 1.2(i) could be extended to prove

the statement of Theorem 1.3(i) with the term kc10
6ν2+4/3 replaced by Ck ln k and

1
2 (ℓ−1)+ν

√

(ℓ− 1) ln ℓ replaced by 1
2ℓ+ν

√
ℓ(ln ℓ)3/2. Their claimed result contradicts

Theorem 1.3(ii) for ν(ℓ) = ν ln ℓ.

Slightly before the abrupt change occurs, we have found the construction for
Theorem 1.2(ii) remains valid, and this yields the following. This improvement is
mainly technical in nature, but we have included it for completeness.

Theorem 1.4. For any ν > 0, there exists Cν > 0 such that, for large enough
k, there is a graph G with at least Cνk ln k/ ln ln k vertices satisfying the following. If
H is any induced subgraph of G or G on ℓ ≥ k vertices, then H has minimum degree
less than (12 − ℓ−ν)(ℓ − 1).

1.2. The fixed quasi-Ramsey problem. So far, we have discussed the variable
quasi-Ramsey problem where we seek to guarantee the existence of a clique-like or
coclique-like induced subgraph of order at least k. It is also natural to ask for such an
induced subgraph of order exactly k, and we call this the fixed quasi-Ramsey problem.
In Section 4, we provide a probabilistic thinning lemma (Lemma 4.1) that allows us
to translate results about the variable problem into results about the fixed problem.
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The lemma roughly says that, in any graph of large minimum degree, we can find an
induced subgraph of any order that (approximately) preserves the minimum degree
condition in an appropriate way. We can use this thinning lemma to establish bounds
similar to Proposition 1.1(i). We can also use it, together with Theorem 1.2(i), to
prove the following result.

Theorem 1.5. There exists a constant C > 0 such that, for large enough k and
any graph G with at least Ck ln k vertices, G or G has an induced subgraph H on
exactly k vertices with minimum degree at least 1

2 (k − 1)− 2
√

(k − 1) ln k.

The bound Ck ln k in Theorem 1.5 is tight up to a ln ln k factor by Theorem 1.4.
A similar but different result was proved with a graph discrepancy argument.

Theorem 1.6 ([6]). There exists a constant C > 1 such that for every k, ν ∈ N

and any graph G with at least Cνk2 vertices, G or G has an induced subgraph H on
exactly k vertices with minimum degree at least 1

2k + ν.

1.3. Thresholds and bound comparisons. We introduce some terminology
and notation to facilitate easy comparison of the above results and to describe a
threshold phenomenon. A t-homogeneous set is a vertex subset of a graph that induces
either a graph of minimum degree at least t or the complement of such a graph. Let
f : Z+ 7→ N be a non-decreasing non-negative integer function satisfying f(ℓ) < ℓ for
all ℓ. For any positive integer k, the variable quasi-Ramsey number Rf (k) is defined
to be the smallest integer such that any graph of order Rf (k) contains an f(ℓ)-
homogeneous set of order ℓ for some ℓ ≥ k. For integers t and k with 0 ≤ t < k, the
fixed quasi-Ramsey number R∗

t (k) is defined to be the smallest integer such that any
graph of order R∗

t (k) contains a t-homogeneous set of order k. We refer to both Rf (k)
and R∗

t (k) as quasi-Ramsey numbers. Versions of these parameters were introduced
in [6].

Note that Proposition 1.1 shows that, for any fixed ε > 0, as f changes from a
function satisfying f(ℓ) ≤ (12 − ε)ℓ for all ℓ to a function satisfying f(ℓ) ≥ (12 + ε)ℓ
for all ℓ, Rf (k) changes from polynomial (indeed, linear) to superpolynomial (indeed,
exponential) growth in k. Theorem 1.2(i) narrows this gap by showing that we can
replace (12 −ε)ℓ above with 1

2 ℓ to achieve polynomial growth in k. Theorem 1.3 shows

that as f changes from a function satisfying f(ℓ) ≤ 1
2 ℓ + o(

√
ℓ ln ℓ) for all ℓ to a

function satisfying f(ℓ) ≥ 1
2ℓ+ω(

√
ℓ ln ℓ) for all ℓ, Rf (k) changes from polynomial to

superpolynomial growth in k.

The fixed quasi-Ramsey numbers are less well understood. Theorem 1.5 shows
that R∗

t (k) = O(k ln k) for t ≤ 1
2k−ω(

√
k ln k), while Theorem 1.6 shows that R∗

t (k) =
O(k2) for t = 1

2k+O(1). Since R∗
f(k)(k) ≥ Rf (k), Theorem 1.3(ii) implies that R∗

t (k)

is superpolynomial in k if t ≥ 1
2k + ω(

√
k ln k).

1.4. Further related work. We mention work on the fixed quasi-Ramsey prob-
lem by Chappell and Gimbel [2]. Using an Erdős–Szekeres-type recursion, they proved
for t ≥ 1 that

R∗
t (k) ≤ (k − t− 1)

(

2(t− 1)

t− 1

)

+

(

2t

t

)

≤ (k − t+ 3)4t−1.

They gave an exact formula for R∗
t (k) when t is small: if 1 ≤ t ≤ 1

4 (k + 2), then
R∗

t (k) = k + 2t − 2. They also showed the lower bound of k + 2t − 2 holds for all
t ≤ 1

2 (k + 1); a construction certifying this is depicted in Figure 1.
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P Q

R

Fig. 1: An illustration of the construction by Chappell and Gimbel that gives Rt(k) ≥

k+2t− 2 for all t ≤ 1
2
(k+1). In this example, P is a clique of order 2(t− 1), Q is a coclique

of order 2(t− 1), R is a coclique of order k− 2t+ 1, all possible edges between P and R are
present, all possible edges between Q and R are absent, and the bipartite subgraph induced
by the edges between P and Q is (t−1)-regular. (Note that the subgraph on R could instead
be chosen arbitrarily.)

Notation. Chappell and Gimbel chose the complementary interpretation forR∗
t (k)—

so the sets of order k have maximum degree bounded by t—and referred to the pa-
rameters as defective Ramsey numbers. Our R∗

t (k) is essentially the same as what
is R∗

t/k(k) in the notation of Erdős and Pach, while our Rf slightly refines their Rα

allowing for more precise statements.
Structure of the paper. We prove Theorem 1.3(i) in Section 2. We prove Theo-

rem 1.3(ii) and discuss related results in Section 3. We state and prove the thinning
approach and discuss its applications, such as Theorem 1.5, in Section 4. In Section 5,
we prove Theorem 1.4. We give some concluding remarks and prompt some questions
for further investigation in Section 6.

2. An upper bound using discrepancy. We use a result on graph discrepancy
to prove Theorem 1.3(i). Given a graph G = (V,E), the discrepancy of a set X ⊆ V
is defined as

D(X) := e(X)− 1

2

(|X |
2

)

,

where e(X) denotes the number of edges in the subgraph G[X ] induced by X . We
use a result of Erdős and Spencer [7, Ch. 7], which is the same result used by Erdős
and Pach for their proof of Theorem 1.2(i).

Lemma 2.1 (Theorem 7.1 of [7]). Provided n is large enough, if t ∈ {1, . . . , n},
then any graph G = (V,E) of order n satisfies

max
S⊆V,|S|≤t

|D(S)| ≥ t3/2

103

√

ln(5n/t).

Proof. [Proof of Theorem 1.3(i)] Fix ν ≥ 0 and let G = (V,E) be any graph

on at least N = kc10
6ν2+4/3 vertices. For the theorem, it suffices to prove that G

or G has an induced subgraph H on ℓ ≥ k vertices with minimum degree at least
1
2 (ℓ − 1) + ν

√

(ℓ− 1) ln ℓ. For any X ⊆ V , we define the following skew form of
discrepancy:

Dν(X) := |D(X)| − ν
√

|X |3 ln |X |.
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Let X ⊆ V be a set attaining maximum skew discrepancy. By symmetry we may
assume that D(X) > 0. Then, for any x ∈ X , we have

(2.1) degG[X](x) ≥ 1
2 (|X | − 1) + ν

√

|X | ln |X |.

To see (2.1), suppose x ∈ X has strictly smaller degree than claimed and set X ′ :=
X \ {x}. Then

Dν(X
′) ≥ e(X ′)− 1

2

(|X | − 1

2

)

− ν
√

(|X | − 1)3 ln(|X | − 1)

> e(X)− 1

2

(|X |
2

)

− ν
√

|X | ln |X | − ν
√

(|X | − 1)3 ln(|X | − 1).

Note that
√

|X |3 ln |X | >
√

|X | ln |X |+
√

(|X | − 1)3 ln(|X | − 1), which by the above
implies Dν(X

′) > Dν(X), contradicting the maximality of Dν(X).

If k is large enough, then by Lemma 2.1 there exists a set of at most k4/3 vertices
with discrepancy at least νk2

√
c ln k. Recall that c > 4/3. So, in evaluating the skew

discrepancy of this set, the ordinary discrepancy term will dominate the ‘skew term’,
which is equal to −νk2

√

4/3 lnk. We may thus assume that Dν(X) ≥ k2 if k is large
enough, but now note that this implies that |X | ≥ k, as required.

This argument is considerably shorter than Erdős and Pach’s proof of Theo-
rem 1.2(i). We can instead follow their approach more closely, albeit with the choice
of skew discrepancy defined in the proof of Theorem 1.3(i) rather than a ‘more skewed’
choice suggested in [6, Equation (1′)]. After appropriate adjustments, we then obtain

an improvement upon Theorem 1.3(i) whereby kc10
6ν2+4/3 with c > 4/3 is replaced

by 200(k ln k)c10
6ν2+1 with c > 1. Note that with ν = 0 this results in a bound akin

to Theorem 1.2(i). For clarity of exposition, we elected for the shorter argument here,
and it nevertheless yields the threshold phenomenon we desire.

3. Random graph lower bounds. Next we give probabilistic lower bounds for
the quasi-Ramsey numbers. We elaborate on an observation by Erdős and Pach. We
apply upper bounds on the order of largest t-homogeneous sets in random graphs to
extend the classic lower bounds on R(k) [5, 12]. We rely on analysis from [10], which
amongst other things thoroughly describes the expected behaviour of t-dependent
sets—i.e. vertex subsets that induce subgraphs of maximum degree at most t—in the
random graph Gn,1/2 with vertex set [n] = {1, . . . , n} and edge probability 1

2 . We
need a result best stated with large deviations notation. For more on large deviations,
consult [4]. Let

Λ∗(x) =

{

x ln(2x) + (1− x) ln(2(1− x)) for x ∈ [0, 1]

∞ otherwise

(where Λ∗(0) = Λ∗(1) = ln 2). This is the Fenchel-Legendre transform of the loga-
rithmic moment generating function associated with the Bernoulli distribution with
probability 1

2 (cf. Exercise 2.2.23(b) of [4]). Some easy calculus checks that Λ∗(x) has
a global minimum of 0 at x = 1

2 , is strictly decreasing on [0, 12 ) and strictly increasing
on (12 , 1]. The following is a bound on the probability that a given subset of order k
in Gn,1/2 is t-dependent. This bound is known to be tight for the ranges of t̄ and k
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for which we apply it.
Lemma 3.1 (Lemma 2.2(i) of [10]). Given t̄, k with t̄ ≤ 1

2 (k − 1),

P(∆(Gk,1/2) ≤ t̄) ≤ exp

(

−
(

k

2

)

Λ∗

(

t̄

k − 1

))

.

Proposition 3.2. For any ε ≥ 0, let f(ℓ) be any function satisfying f(ℓ) ≥
(12 + ε)(ℓ− 1) for all ℓ. Then, as k → ∞,

Rf (k) ≥ (1 + o(1))
k

e
exp

(

k − 1

2
Λ∗

(

1

2
− ε

))

.

Proof. For any δ > 0 and some large enough integer k, let

n =

⌊

1

1 + δ

k

e
exp

(

k − 1

2
Λ∗

(

1

2
− ε

))⌋

.

Consider the random graph G ∼ Gn,1/2. Given a subset S ⊆ [n] of ℓ ≥ k vertices,

let AS be the event that δ(G[S]) ≥ f(ℓ) or δ(G[S]) ≥ f(ℓ), where δ(·) denotes the
minimum degree of the graph. Since ε ≥ 0, we have by Lemma 3.1 that

P(AS) ≤ 2 exp

(

−
(

ℓ

2

)

Λ∗

(

ℓ− f(ℓ)− 1

ℓ− 1

))

≤ 2 exp

(

−
(

ℓ

2

)

Λ∗

(

1

2
− ε

))

.

Note that we allow the possibility that ε > 1/2, in which case the above inequality
gives P(AS) ≤ 0. So the probability that AS holds for some set S ⊆ [n] of ℓ ≥ k
vertices is at most

∑

S⊆[n],|S|≥k

P(AS) ≤
n
∑

ℓ=k

(

n

ℓ

)

2 exp

(

−
(

ℓ

2

)

Λ∗

(

1

2
− ε

))

≤ 2

n
∑

ℓ=k

(

en

ℓ
· exp

(

− ℓ− 1

2
Λ∗

(

1

2
− ε

)))ℓ

≤ 2

n
∑

ℓ=k

(1 + δ)−ℓ < 1,

where in this sequence of inequalities we have used the definition of n, the fact that
ℓ ≥ k, and a choice of k large enough. Thus, for k large enough, there exists a graph
on n vertices for which each induced subgraph of order ℓ ≥ k and its complement
have minimum degree less than f(ℓ). Since we proved this statement holds for any
δ > 0, the result follows.

As we see now, Theorem 1.3(ii) follows the same argument.
Proof. [Proof of Theorem 1.3(ii)] Into the proof of Proposition 3.2, we substitute

ε = ε(ℓ) = ν(ℓ)

√

ln ℓ

ℓ− 1
.

By the Taylor expansion of Λ∗ (for 0 ≤ ε ≤ 1/2), we have that

Λ∗

(

1

2
− ε

)

=

(

1

2
− ε

)

ln(1− 2ε) +

(

1

2
+ ε

)

ln(1 + 2ε)

=
∞
∑

j=1

(2ε)2j

2j(2j − 1)
≥ 2ε2.
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Note that Λ∗
(

1
2 − ε

)

≥ 2ε2 in fact holds for all ε ≥ 0. Now, for any δ > 0, let

n =

⌊

1

1 + δ

kν(k)
2+1

e

⌋

,

where k is some large enough integer. Again consider the random graph G ∼ Gn,1/2.

Let f(ℓ) = (12 + ε(ℓ))(ℓ − 1) and AS be as in Proposition 3.2. As we did before, but
also using the Taylor expansion above, we obtain that the probability AS holds for
some set S ⊆ [n] of ℓ ≥ k vertices is at most

∑

S⊆[n],|S|≥k

P(AS) ≤ 2

n
∑

ℓ=k

(en

ℓ
· exp

(

−(ℓ− 1)ε2
)

)ℓ

= 2

n
∑

ℓ=k

( en

ℓν(ℓ)2+1

)ℓ

≤ 2
n
∑

ℓ=k

(1 + δ)−ℓ < 1,

by the choice of n, ℓ ≥ k, ν(ℓ) ≥ ν(k), and k large enough. Thus, for k large enough,
there is a graph on n vertices where each induced subgraph of order ℓ ≥ k and its
complement have minimum degree less than f(ℓ). This holds for any δ > 0, so the
result follows.

For the fixed quasi-Ramsey numbers R∗
t (k), we can get a constant factor improve-

ment upon the bound implied by Proposition 3.2 by additionally using the Lovász
Local Lemma as Spencer [12] did for R(k). In particular, for t = t(k) ≥ (12 +ε)(k−1),
the factor is exp

(

Λ∗
(

1
2 − ε

))

. This is standard and the calculations are similar to
those used above, so we omit the proof.

Proposition 3.3. For ε ≥ 0, let t = t(k) ≥ (12 + ε)(k − 1). Then, as k → ∞,

R∗
t (k) ≥ (1 + o(1))

k

e
exp

(

k + 1

2
Λ∗

(

1

2
− ε

))

.

4. A thinning argument for upper bounds. We start this section by explic-
itly stating our thinning approach.

Lemma 4.1. For any 0 < c < 1 and ε > 0, let k be such that

exp

(

1

2
ε2(k − 1)

)

> k.(4.1)

If H is a graph of order ℓ ≥ k such that δ(H) ≥ cℓ, then there exists S ⊆ V (H) of
order k such that δ(H [S]) ≥ (c− ε)(k − 1).

For Lemma 4.1, we require a Chernoff-type bound for the hypergeometric distri-
bution. Given positive integers N , b, a with a, b ≤ N , choose S ⊆ [N ] with |S| = b
uniformly at random (u.a.r.). The random variable given by X = |S ∩ [a]| is a hyper-
geometric random variable with parameters N , b, a.

Lemma 4.2 (Theorem 2.10 and (2.6) of [9]). If X is a hypergeometric random
variable with parameters N , b, a, and d ≥ 0, then

P

(

X ≤ ab

N
− d

)

≤ exp

(

−d2N

2ab

)

.
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Proof. [Proof of Lemma 4.1] Assume c, ε, k, and H are as in the statement of the
lemma. Given a vertex v ∈ V (H) and a subset T ⊆ V (H) \ {v} of order k− 1, we call
(v, T ) a pair. We say that a pair (v, T ) is good if degT (v) ≥ (c− ε)(k − 1); otherwise
it is bad. Given a subset U ⊆ V (H) of order k, we say it is good if (w,U \ {w}) is
good for all w ∈ U ; otherwise it is bad.

Note that if we can find a good U in H , then we are done. Also observe that if
U is bad for all U ⊆ V (H) of order k, then there must be at least

(

ℓ
k

)

distinct bad

pairs. However, there are ℓ
(

ℓ−1
k−1

)

pairs in total. So there exists a good U provided
that, when choosing a pair (v, T ) u.a.r.,

P((v, T ) is bad) <

(

ℓ

k

)/

ℓ

(

ℓ− 1

k − 1

)

=
1

k
.

We pick (v, T ) u.a.r. by choosing v u.a.r. before choosing T u.a.r. Note that, given v
and a uniform choice of subset T ⊆ V (H) \ {v} of order k − 1, the random variable
degT (v) has a hypergeometric distribution with parameters ℓ, k − 1, deg(v). Since
cℓ ≤ deg(v) ≤ ℓ, we have by Lemma 4.2 that

P((v, T ) is bad | v) = P(degT (v) < (c− ε)(k − 1))

≤ P

(

degT (v) <
deg(v)(k − 1)

ℓ
− ε(k − 1)

)

≤ exp

(

−ε2(k − 1)ℓ

2 deg(v)

)

≤ exp

(

−1

2
ε2(k − 1)

)

.

By (4.1), the last quantity is less than 1/k so it follows that

P((v, T ) is bad) =
1

ℓ

∑

v

P((v, T ) is bad | v) < 1

k
,

as desired.
Our first application of the thinning lemma is the following upper bound for R∗

t (k).
This complements the bounds of Chappell and Gimbel mentioned in the introduction.
Since it is not close to the lower bound, we did not attempt to optimise it, though it
can easily be improved to roughly (ε−1/2

√

1/2 + ε) · k.
Theorem 4.3. Let ε > 0. If t = t(k) ≤ (12 − ε)(k − 1), then

R∗
t (k) ≤ ε−1/2

√
1 + ε · (k + o(k)).

Proof. Choose k large enough so that it satisfies (4.1) with ε halved, and let G be
a graph of order n ≥ ε−1/2

√
1 + ε(k+ γk) for some small fixed γ > 0. By considering

G or its complement, we may assume without loss of generality that |E(G)| ≥ 1
2

(

n
2

)

.
We require the following explicit form of Theorem 1.1(i). This is essentially given
as Exercise 12.8 in [1], so we omit the proof. (The idea is to repeatedly remove any
vertex of too small degree.)

Lemma 4.4. Let 0 ≤ α < 1/2 and suppose that

n ≥
√
1− α

(

1
2 − α

)1/2
· k ·

(

1 +
1

k(1− α)
(

1
2 − α

)1/2

)1/2
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(for k chosen large enough). If G is a graph with |V (G)| = n and |E(G)| ≥ 1
2

(

n
2

)

,
then it has a subgraph H of order at least k such that δ(H) ≥ α|V (H)|.

For large enough k, our choice of n satisfies the hypothesis of the lemma with
α = 1

2 (1 − ε). So we are guaranteed a subgraph H with |V (H)| ≥ k and δ(H) ≥
1
2 (1 − ε)|V (H)|. By Lemma 4.1 with c = 1

2 (1 − ε) and ε halved, there exists S ⊆
V (H) ⊆ V (G) of order k with δ(G[S]) ≥ (12 − ε)(k − 1).

We also apply our thinning lemma to prove Theorem 1.5.
Proof. [Proof of Theorem 1.5] Let G be a graph of order Ck ln k, where C is the

same constant as in Theorem 1.2(i). Then G or G contains a subgraph H of order ℓ,
where k ≤ ℓ ≤ Ck ln k, with δ(H) ≥ 1

2ℓ. For the application of Lemma 4.1, set c = 1
2

and ε =
√

2 ln(k + 1)/(k − 1). Then exp
(

1
2ε

2(k − 1)
)

= k+1 > k, and so Lemma 4.1
yields a set S ⊆ V (H) ⊆ V (G) of order k such that

δ(G[S]) = δ(H [S]) ≥
(

1

2
− ε

)

(k − 1) ≥ 1

2
(k − 1)− 2

√

(k − 1) ln k,

which proves the theorem.

5. A weighted random graph construction. In this section, by a careful
analysis of the weighted construction that Erdős and Pach used for Theorem 1.2(ii),
we extend the validity of that result, thereby establishing Theorem 1.4.

Proof. [Proof of Theorem 1.4] By the monotonicity of Rt(ℓ), there is no loss of

generality in assuming ν < 2
7 . Let ν′ = 1

2ν + 1
7 . Let k be some sufficiently large

integer. Let g(·) be the function defined by

g(x) =

⌊

ν′

8

lnx

ln lnx

⌋

and write z = g(k). Construct a graph G = (V,E) randomly as follows. The vertex
set is defined V = V1 ∪ · · · ∪ Vz, for disjoint sets V1, . . . , Vz with

|V1| = · · · = |Vz| =
⌊(

1− 1

2z

)

k

⌋

.

Note that |V | < k ln k and

|V | ≥ z(k − 1) ≥
1
2ν + 1

7

10
· k ln k

ln ln k
.

Thus we can safely choose Cν = ν/20 for the statement of the theorem. The random
edge set E of G is determined according to a skewed distribution. Given vertices
vi ∈ Vi and vj ∈ Vj , the probability of their being joined by an edge is defined by

P(vivj ∈ E) = pij =

{

1
2 − (2z)−4(i+j)−1 if i 6= j;
1
2 + (2z)−8i if i = j.

The remainder of the proof is devoted to proving that G has the properties we
desire with positive probability. Let X be an arbitrary subset of ℓ ≥ k vertices and
for convenience write ℓi = |X ∩ Vi| for every i ∈ {1, . . . , z}. We will show that X
is t-homogeneous with very small probability, where t = (12 − ε̂)(ℓ − 1) for some
ε̂ = ε̂(ℓ) > 0 to be specified later.
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First we concentrate on the minimum degree of the graph G[X ] induced by X . To
this end, let j′ be the largest integer that satisfies ℓj′ ≥ ℓ/(4z2), so that ℓi < ℓ/(4z2)
for all i > j′. By this choice of j′, note that

∑

i<j′

ℓi ≥ ℓ− |Vj′ | −
zℓ

4z2
≥ ℓ−

(

1− 1

2z

)

k − ℓ

4z

=

(

1− 1

4z

)

(ℓ − k) +
k

4z
≥ ℓ

4z
,

for large enough k. We consider the minimum degree only among vertices in X ∩ Vj′ .
Let v ∈ X ∩ Vj′ . Since the degree of v in G[X ] is the sum

∑

i e(v,X ∩ Vi) (where
e(v, S) denotes the number of edges between v and S), its expectation satisfies

E(degG[X](v)) = (ℓj′ − 1)pj′j′ +
∑

i6=j′

ℓipij′

= (ℓj′ − 1)

(

1

2
+

1

(2z)8j′

)

+
∑

i6=j′

ℓi

(

1

2
− 1

(2z)4(i+j′)+1

)

≤ 1

2
(ℓ− 1) +

ℓj′ − 1

(2z)8j′
−
∑

i<j′

ℓi
(2z)4(i+j′)+1

≤ 1

2
(ℓ− 1) +

ℓj′ − 1

(2z)8j′
− ℓ(2z)2

2(2z)8j′
≤
(

1

2
− 1

(2z)8z

)

(ℓ − 1),

for large enough k. We also easily have that E(degG[X](v)) ≥ 1
3 (ℓ − 1). Since

degG[X](v) is a sum of independent Bernoulli random variables, it follows by Ho-
effding’s inequality (cf. [9, Eq. (2.14)]) that, for any ε > 0, provided k is large enough,

P(degG[X](v) > (1 + ε)E(degG[X](v)))

< exp(− 1
3ε

2
E(degG[X](v))) ≤ exp(− 1

9ε
2(ℓ − 1)).(5.1)

Although this bound is already quite small, for our purposes we require an even
stronger bound on P(δ(G[X ]) > (1 + ε)E(degG[X](v))). For this, we restrict our
attention further by bounding the minimum degree among vertices of some arbitrary
subset Y ⊆ X ∩ Vj′ of order 1

2εℓj′ . Now if v ∈ Y has degree in G[X ] greater than
(1 + ε)E(degG[X](v)), then the number of neighbours of v outside Y must be greater

than (1+ 1
2ε)E(degG[X](v))). Note that the random variables that count the number

of neighbours of v in G[X ] outside Y for all v ∈ Y are mutually independent. Also,
since Y is small, the following analogue of (5.1) holds for each v ∈ Y , as long as k is
large enough:

P(e(v,X \ Y ) > (1 + 1
2ε)E(degG[X](v))) < exp(− 1

36ε
2(ℓ − 1)).

Combining these observations, it follows, for any ε > 0, that if k is sufficiently large
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then

P

(

δ(G[X ]) > (1 + ε)

(

1

2
− 1

(2z)8z

)

(ℓ− 1)

)

≤ P(δ(G[X ]) > (1 + ε)E(degG[X](v)))

≤ P(∀v ∈ Y : degG[X](v) > (1 + ε)E(degG[X](v)))

≤
∏

v∈Y

P(e(v,X \ Y ) > (1 + 1
2ε)E(degG[X](v)))

≤ exp(− 1
72ε

3(ℓ− 1)ℓj′) ≤ exp

(

−ε3(ℓ − 1)ℓ

288z2

)

.(5.2)

Next we concentrate on the minimum degree of the complement of G[X ]. To
this end, let j∗ ∈ {1, . . . , z} be such that ℓj∗(2z)

−4j∗ is maximised. By an averaging
argument, this choice of j∗ implies

ℓj∗

(2z)4j∗
≥ ℓ

z(2z)4z
≥ ℓ− 1

z(2z)4z
.

We shall consider the maximum degree only among vertices inX∩Vj∗ . Let v ∈ X∩Vj∗ .
Then we have that the expected degree of v in G[X ] satisfies for all large enough k
that

E(degG[X](v)) = (ℓj∗ − 1)pj∗j∗ +
∑

i6=j∗

ℓipij∗

= (ℓj∗ − 1)

(

1

2
+

1

(2z)8j∗

)

+
∑

i6=j∗

ℓi

(

1

2
− 1

(2z)4(i+j∗)+1

)

≥ 1

2
(ℓ− 1) +

ℓj∗ − 1

(2z)8j∗
− ℓj∗(z − 1)

(2z)8j∗+1
≥ 1

2
(ℓ − 1) +

ℓj∗

2(2z)8j∗

≥
(

1

2
+

1

(2z)8z+1

)

(ℓ− 1).

We also easily see that E(degG[X](v)) ≤ 2
3 (ℓ−1). By similar arguments as above, but

for the complement G of G, we obtain, for any ε > 0, that if k is large enough then

P
(

δ(G[X ]) > (1 + ε)
(

1
2 − (2z)−8z−1

)

(ℓ− 1)
)

≤ exp

(

−ε3(ℓ− 1)ℓ

72z(2z)4z

)

.(5.3)

To tie everything together, we apply (5.2) and (5.3) with a common choice of ε.
In particular, let ε̂(·) be the function defined by

ε̂(x) = (2g(x))−8g(x)−2

and let ε = ε̂(k ln k). Note that since k ≤ ℓ ≤ |V | < k ln k we have that ε < ε̂(ℓ) ≤
ε̂(k). By our definition of g(·), we obtain that as k → ∞ both

ε̂(k) ∼ k−(1+o(1))ν′

and ε ∼ k−(1+o(1))ν′

,

so that ε̂(ℓ) > ℓ−ν for large enough k, by the choice of ν′. Also, for large k,

(1 + ε)
(

1
2 − (2z)−8z

)

≤ (1 + ε)
(

1
2 − (2z)−8z−1

)

≤ 1
2 − ε̂(k) ≤ 1

2 − ε̂(ℓ) ≤ 1
2 − ε.
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Then, by (5.2) and (5.3), the probability that the set X is ((12 − ε̂(ℓ))(ℓ − 1))-
homogeneous is, for all k sufficiently large, at most

2 exp

(

− ε3(ℓ − 1)ℓ

288z(2z)4z

)

≤ 2 exp

(

− ℓ(ℓ− 1)

144(2g(k ln k))28g(k ln k)+7

)

= 2 exp(−ℓ2−(1+o(1))7ν′/2) < 2 exp(−k2−(1+o(1))7ν′/2).

The above estimate holds for any X with ℓ ≥ k vertices. Thus the probability
that G has a ((12 − ε̂(ℓ))(ℓ − 1))-homogeneous set with ℓ ≥ k vertices is less than

2zk · 2 exp(−k2−(1+o(1))7ν′/2),

which is less than 1 for k large enough, since z = ko(1) and ν′ < 2
7 . For large enough k

we have ε̂(ℓ) > ℓ−ν , and so conclude there is a graph of order at least Cνk ln k/ ln ln k
in which no vertex subset of order ℓ ≥ k is ((12−ℓ−ν)(ℓ−1))-homogeneous, as required.

6. Concluding remarks and open problems. Theorem 1.3 demonstrates
that the threshold between polynomial and super-polynomial growth of the variable
quasi-Ramsey numbers Rf (k) occurs for f(ℓ) =

1
2ℓ+Θ(

√
ℓ ln ℓ). Erdős and Pach did

not notice this phenomenon and indeed presumed a different outcome. It is rare to see
sharp asymptotic results in this area of mathematics, so this reaffirms the intimate
connection between graph discrepancy and the probabilistic method.

We may also ask for finer detail on the abrupt change in the variable quasi-Ramsey
problem for minimum density around 1

2 .
1. For ε > 0, what precisely is the least choice of f(ℓ) for which Rf (k) =

Ω(k(ln k)1+ε)? We only know it satisfies 1
2ℓ ≤ f(ℓ) ≤ 1

2ℓ+ o(
√
ℓ ln ℓ).

2. Does a form of Theorem 1.3(i) hold for ν = ν(ℓ) → ∞ as ℓ → ∞?
Our understanding of fixed quasi-Ramsey numbers R∗

t (k) is less clear, even if
thinning has brought us to a slightly better viewpoint. We believe that it would be
difficult to determine the second-order term in the polynomial-to-super-polynomial
threshold for R∗

t (k). The threshold might be at t = 1
2k + Θ(

√
k ln k), this being the

boundary case for super-polynomial behaviour in Proposition 3.2 or 3.3. We cannot
rule out that the threshold is close to t = 1

2k + Θ(ln k), this being the boundary
case for polynomial behaviour in Theorem 1.6. It is unlikely that one can use the
thinning method to obtain sharp bounds for the fixed quasi-Ramsey number R∗

t (k)
for t ≥ 1

2 (k − 1). It seems that for this one would need bounds on the variable
quasi-Ramsey numbers that contradict Theorem 1.3(ii).

We concentrated on the case of minimum density around 1
2 , but it would also

be interesting to better understand the parameters further away from the threshold.
Intuitively, tightening the existing bounds in the exponential regime could be as dif-
ficult as the analogous problem for R(k), but in the linear regime there is room for
improvement, especially near the threshold.

Let us examine the bounds for R∗
t (k). Fix α ∈ [0, 1] and suppose t = t(k) satisfies

t ∼ α(k−1) as k → ∞. If α > 1
2 , then Proposition 3.2 or 3.3 and the Erdős–Szekeres-

type bound of Chappell and Gimbel together give

1

2
Λ∗(1− α) + o(1) ≤ 1

k
lnR∗

t (k) ≤ 2α ln 2 + o(1).

Recall that Λ∗(1−α) ↓ 0 as α ↓ 1
2 and Λ∗(0) = ln 2. It is curious that these bounds do

not imply that 1
k lnR∗

t (k) is strictly smaller than 1
k lnR(k) for any α > 1

2 , but there
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might be a way to prove such a statement without improving the exponential bounds
directly. If 1

4 ≤ α < 1
2 , then the lower bound certified in Figure 1 and Theorem 4.3

(plugging in ε = 1/2− α) together give

2α+ 1 + o(1) ≤ 1

k
R∗

t (k) ≤
√

(

1
2 − α

)−1
+ 1 + o(1).

The thinning upper bound can be improved slightly, but close to α = 1
2 a new idea

may be needed for upper and lower bounds that agree up to a constant multiple,
independent of 1

2 −α. For α < 1
4 , there is the exact formula of Chappell and Gimbel.

To conclude, we reiterate a problem left open by Erdős and Pach, which asks
about arguably the most interesting case for R∗

t (k), the symmetric choice t = 1
2 (k−1),

rounded up or down. They showed that

R∗
1

2
(k−1)(k) = Ω

(

k ln k

ln ln k

)

and R∗
1

2
(k−1)(k) = O(k2),

but what is the correct behaviour of R∗
1

2
(k−1)

(k)? Note added: subsequent to the

present work, three of the authors have improved the upper bound to O(k ln2 k) [11].
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