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1. Introduction

A family of at least three sets is a sunflower (or a Δ-system) if every element is 
contained either in all of the sets, or in at most one. If a family of sets contains no 
sets that form a sunflower, it is called sunflower-free. This notion was introduced by 
Erdős and Rado [10] in 1960, and it has become one of the standard tools in extremal 
combinatorics [14]. Erdős and Rado conjectured that the maximum size of any sunflower-
free family of k-element sets is at most ck, for a suitable constant c > 0. This conjecture 
is still open; for recent progress, see [4].

Erdős and Szemerédi [11] studied the maximum possible size of a sunflower-free family 
of subsets of {1, . . . , n}. Denote this quantity by f(n) and let μ = lim f(n)1/n. Erdős 
and Szemerédi conjectured that μ < 2, and this was proved by Naslund and Sawin [18], 
using the methods of Croot, Lev, P. Pach [6], Ellenberg and Gijswijt [8], and Tao [19]. 
They showed that μ < 1.89, while the best currently known lower bound, μ > 1.551, 
follows from a construction of Deuber et al. [7].

Erdős, Milner and Rado [9] called a family of at least three sets a weak sunflower if the 
intersection of any pair of them has the same size. For a survey, see Kostochka [16]. In the 
literature, we can also find pseudo-sunflowers [13] and near-sunflowers [3]. By restricting 
the parities of the sets, other interesting questions can be asked, some of which can be 
answered by the so-called linear algebra method (even-town, odd-town theorems; see [5]).

We introduce the following new variants of sunflowers.

Definition 1. A nonempty family of nonempty sets forms an even-sunflower (short for 
even-degree sunflower), if every element of the underlying set is contained in an even 
number of sets (or in none).

Analogously, a family of at least two nonempty sets forms an odd-sunflower (short 
for odd-degree sunflower), if every element of the underlying set is contained in an odd 
number of sets, or in none.

Note that any family of pairwise disjoint sets is an odd-sunflower, but not an even-
sunflower. A (classical) sunflower is an odd-sunflower if and only if it consists of an 
odd number of sets. In particular, an odd-sunflower-free family is also sunflower-free, 
as any sunflower contains a sunflower that consists of three sets. On the other hand, 
there exist many odd-sunflowers that contain no sunflower of size three. For example, 
{{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} is a minimal odd-sunflower. This example can be gener-
alized as follows.

Let Cn denote the (n − 1)-uniform family consisting of all (n − 1)-element subsets of 
{1, . . . , n}. (In some papers this family is denoted by 

( [n]
n−1

)
.) Let C+

n denote the same 
family completed with the set {1, . . . , n}. Obviously, Cn is an odd-sunflower if and only 
if n is even, and it is an even-sunflower if and only if n is odd. The family C+

n is an odd-
sunflower if and only if n is odd, and it is an even-sunflower if and only if n is even. Notice 
that in any subfamily of these families, the nonzero degrees of the elements differ by at 
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most one. Therefore, in every subfamily of Cn and C+
n which is an odd- or even-sunflower, 

all nonzero degrees need to be the same, showing that Cn and C+
n are minimal odd- or 

even-sunflowers. There are many other examples; e.g., all graphs in which every degree 
is odd/even are 2-uniform odd/even-sunflowers. In fact, every cycle is a minimal 2-
uniform even-sunflower. In general, it is not hard to show that it is NP-complete to 
decide whether an input family is odd-sunflower-free or not (see Appendix A), so there 
is no hope of a characterization of minimal odd-sunflowers either. This is in contrast 
with (classic) sunflowers, where the problem is trivially in P. Nevertheless, for any fixed 
k, there is a constant number of minimal k-uniform odd-sunflowers; we study these in 
Section 5.

The main question studied in this paper is the following: What is the maximum size of 
a family F of subsets of {1, . . . , n} that contains no even-sunflower (or no odd-sunflower, 
respectively)? We denote these maximums by feven(n) and by fodd(n), respectively. As 
in the case of the even-town and odd-town theorems, the answers to these questions are 
quite different.

Theorem 2. For any even-sunflower-free family F ⊂ 2{1,...,n}, we have |F| ≤ n. That is,

feven(n) = n.

Theorem 3. For every sufficiently large n, there exists an odd-sunflower-free family F ⊂
2{1,...,n} with |F| > 1.502148n. That is, for every n > n0

fodd(n) > 1.502148n.

Let μodd = lim fodd(n)1/n. (The existence of the limit easily follows from our Lemma 5
and Fekete’s lemma, just like for ordinary sunflowers; see [1].) Using the fact that any 
odd-sunflower-free family F is also sunflower-free, the result of Naslund and Savin [18]
mentioned above implies that fodd(n) ≤ 1.89n. Thus, we have

1.502148 < μodd ≤ μ < 1.89.

It would be interesting to decide whether μodd is strictly smaller than μ, and to find a 
direct proof for μodd < 2. Is the new slice rank method required?

The starting point of our approach is a 50 years old idea of Abbott, Hanson, and 
Sauer [2] concerning ordinary sunflowers: one can use “direct sums” to recursively pro-
duce larger constructions from smaller ones; see Lemmas 5 and 6 and the discussion on 
MathOverflow [17].

The rest of this paper is organized as follows. In Section 2, we prove Theorem 2. In 
Section 3, we show that if n is large enough, then the largest odd-sunflower-free families 
on the underlying set {1, . . . , n} cannot be obtained by using only direct sums in the way 
(to be) described in Lemma 5. Building on this, in Section 4, we establish Theorem 3. 
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In Section 5, we study minimal k-uniform odd-sunflower-free families and characterize 
them for k ≤ 3. The final section contains some remarks and open problems.

2. Proof of Theorem 2

The lower bound feven(n) ≥ n follows from taking n singleton sets. For the upper 
bound feven(n) ≤ n, we sketch the argument in two different forms: using linear algebra 
(as in the usual proof of the odd-town theorem) and by a parity argument (which does 
not work there).

First proof. Represent each set by its characteristic vector over Fn
2 . If |F| > n, these 

vectors have a nontrivial linear combination that gives zero. The sets whose coefficients 
are one in this combination yield an even-sunflower. �
Second proof. There are 2|F| − 1 nonempty subfamilies of F . If |F| > n, then by the 
pigeonhole principle, there are two different subfamilies, F1, F2 ⊂ F , that contain an 
odd number of times precisely the same elements of {1, . . . , n}. That is, for every i ∈
{1, . . . , n}, we have

|{F1 ∈ F1 : i ∈ F1}| ≡ |{F2 ∈ F2 : i ∈ F2}| (mod 2).

But then their symmetric difference, F1ΔF2, is an even-sunflower. �
3. Direct sum constructions

Before we prove Theorem 3, we give some definitions and state some simple lemmas.
In a multifamily of sets, every set F can occur a positive integer number of times. 

This number is called the multiplicity of F . A multifamily of at least two nonempty sets 
is an odd-sunflower if the degree of every element of the underlying set is odd or zero. 
Note that, similarly to sunflowers, restricting an odd-sunflower multifamily to a smaller 
underlying set also gives an odd-sunflower multifamily, unless fewer than two nonempty 
sets remain.

A family F is called an antichain, or Sperner, if it is containment-free, i.e., F, G ∈ F
and F ⊂ G imply that F = G. Let foa(n) denote the maximum size of an odd-sunflower-
free antichain F on the underlying set {1, . . . , n}. Note that any slice of F , i.e., any 
subfamily of F whose sets are of the same size, form an antichain. Obviously, we have 
fodd(n)/n ≤ foa(n) ≤ fodd(n) and, therefore,

lim foa(n)1/n = μodd.

Given two families, F and G, on different base sets, their direct sum is defined as 
F +G = {F ∪G | F ∈ F , G ∈ G}. When we write F +F , then we mean that we take two 
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copies of F on two disjoint base sets. We can repeatedly apply this operation to obtain 
F + F + · · · + F . In such direct sum constructions, we call F the “building block.”

We start with the following simple construction.

Construction 1. Let k = �n/3	. Make k disjoint groups of size 3 from {1, . . . , n}. Define 
F as the family of all sets that intersect each group in exactly 2 elements. Then we have 
|F| = 3k, i.e., 3

√
3n, whenever n is divisible by 3. We prove that this construction is 

odd-sunflower-free using a series of lemmas, implying

μodd ≥ 3
√

3 > 1.44. (1)

Lemma 4. If F is an odd-sunflower-free family, and H is a multifamily of size at least 
two, comprised of elements F , then H is an odd-sunflower multifamily if and only if it 
consists of an odd number of copies of a single member F ∈ F , and an even number of 
copies of some subsets of F .

In particular, if |H| is even, it cannot be an odd-sunflower.

Remark. If F is an odd-sunflower-free antichain, then the multifamily H is an odd-
sunflower if and only if it consists of an odd number of copies of the same set F ∈ F .

Proof. The “if” part of the statement is obvious.
Assume that H is an odd-sunflower. Reduce the multifamily H to a family H′ by delet-

ing all sets of even multiplicity and keeping only one copy of each set whose multiplicity 
is odd. This does not change the parity of the degree of any element.

Suppose that H′ ⊆ F consists of at least two sets. Since H′ ⊆ F is odd-sunflower-
free, there is an element which is contained in a nonzero even number of sets of H′ and, 
therefore, in a nonzero even number of sets in the multifamily H. This contradicts our 
assumption that H was an odd-sunflower.

If H′ is empty, then any element covered by H is contained in an even number of sets 
from H′, thus H again cannot be an odd-sunflower.

Finally, consider the case when the reduced family H′ consists of a single set F ∈ F . If 
all sets in the multifamily H are copies of F , we are done. Otherwise, there are some other 
sets F ′ �= F participating in H with even multiplicity. If any such F ′ has an element that 
does not belong to F , then this element is covered by a nonzero even number of sets of 
the multifamily H, contradicting the assumption that H is an odd-sunflower. Therefore, 
all such F ′ are subsets of F , as claimed. �
Lemma 5. If F and G are odd-sunflower-free families, and at least one of them is an an-
tichain, then F +G is also odd-sunflower-free. Moreover, if both F and G are antichains, 
then so is F + G.



6 P. Frankl et al. / Journal of Combinatorial Theory, Series A 206 (2024) 105889
Remark. If none of F and G are antichains, then it can happen that F + G con-
tains an odd-sunflower. For example, if F = {{1}, {1, 2}} and G = {{3}, {3, 4}}, then 
{{1, 3}, {1, 2, 3}, {1, 3, 4}} is an odd-sunflower.

Proof. The “moreover” part of the statement, according to which F +G is an antichain, 
is trivial.

Suppose for contradiction that F +G has a subfamily H consisting of at least two sets 
that form an odd-sunflower. Without loss of generality, G is an antichain.

Assume first that the parts of the sets of H that come from G are not all the same. 
These parts are the restriction of H to the underlying set of G, so they form a multifamily 
which is an odd-sunflower. Applying Lemma 4 to this subfamily, it follows that the parts 
of the sets in H that come from G all coincide, contradicting our assumption.

Otherwise, the parts of the sets of H that come from G are all the same, in which case 
the parts that come from F are all different. But then we can use that F is sunflower-
free. �
Corollary 6. For any integers n, m, t > 0, we have foa(n + m) ≥ foa(n) · foa(m), and 
thus foa(tn) ≥ f t

oa(n) and μodd ≥ foa(n)1/n.

This follows by repeated application of Lemma 5 to the direct sum construction with 
building block F , i.e., to F + F + · · · + F . When F = C3 consists of the two-element 
subsets of {1, 2, 3}, we recover Construction 1. This proves (1).

4. Wreath product constructions

In this section, we describe another construction that uses the wreath product of two 
families. This is a common notion in group theory [15], but less common in set theory. 
It was introduced in the PhD thesis of the first author [12]; see also [17].

Let n, m be positive integers, F ⊆ 2{1,...,n}, G ⊆ 2{1,...,m} families of subsets of 
N = {1, . . . , n} and M = {1, . . . , m}, respectively. Take n isomorphic copies G1, . . . , Gn

of G with pairwise disjoint underlying sets M1, . . . , Mn. Define the wreath product of F
and G, denoted by F 
 G, on the underlying set 

⋃n
i=1 Mi, as follows.

F 
 G = {
⋃

i∈F

Gi | F ∈ F , Gi ∈ Gi}.

That is, for each F ∈ F , for every choice of Gi ∈ Gi for every i ∈ F , we take the set 
∪i∈FGi. We obviously have |F 
G| =

∑
F∈F |G||F |. Thus, |F 
G| = |F||G|k holds, provided 

that F is k-uniform, i.e., |F | = k for every F ∈ F .

Lemma 7. If F and G are odd-sunflower-free families and G is an antichain, then F 
 G
is also odd-sunflower-free. Moreover, if F is also an antichain, then so is F 
 G.
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Remark. If G is not an antichain, then it may happen that F
G contains an odd-sunflower 
for odd-sunflower-free F and G, even if F was an antichain. For example, if F = {{1, 2}}
and G = {{3}, {3, 4}}, then the three sets {31, 32}, {31, 32, 41}, {31, 32, 42} form an 
odd-sunflower.

Proof. The “moreover” part of the statement, according to which F 
 G is an antichain, 
is trivial.

We need to show that in any family H of at least two sets from F 
 G, there is an 
element contained in a nonzero even number of sets from H. Consider the multifamily 
H′ of sets from F , in which the multiplicity of a set F is as large, as many sets of the 
form ∪i∈FGi belong to H.

Since F is sunflower-free, there are two possibilities.
Case A: Some set in the multifamily H′ has multiplicity greater than one.

In this case there exists an element i ∈ F such that the multifamily of sets from Gi, 
consisting of the intersections of the sets from H with Mi, has at least two distinct sets. 
Otherwise, the sets of H that correspond to the repeated set of H′ would coincide, and 
H has no repeated sets. Applying Lemma 4 to the multifamily of sets from Gi for such 
an i, we find an element of Mi contained in a nonzero even number of sets from H, as 
required.
Case B: The multifamily H′ is not an odd-sunflower. That is, there exists an element 
i ∈ {1, . . . , n} which is covered by an even number of sets in H′.

This means that H has a nonzero even number of sets with nonempty intersections 
with Mi. Thus, applying Lemma 4 to the multifamily of sets from Gi formed by these 
nonempty intersections, again we find an element of Mi contained in a nonzero even 
number of sets from H.

This completes the proof. �
Corollary 8. Let F be a k-uniform odd-sunflower-free antichain on n elements. Then we 
have

foa(nm) ≥ |F|(foa(m))k.

In particular, foa(nm) ≥ n(foa(m))n−1, for odd n.

The second part of the corollary follows by choosing F = Cn, the family of all (n −1)-
element subsets of {1, . . . , n}. These families have high uniformity, so they are natural 
candidates to increase the size of the family fast, because the uniformity k appears in 
the exponent in Corollary 8.

As a simple, concrete application, consider the following.

Construction 2. The family C9 
C3 consists of |C9||C3|8 = 9 ·38 = 310 subsets of a 9 ·3 = 27-
element set. Thus, we have
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μodd ≥ |C9 
 C3|1/27 = 310/27 > 1.502144. (2)

Lemma 7 implies that C9 
 C3 contains no odd-sunflower. Thus, foa(27) ≥ 310, and by 
Corollary 6, μodd ≥ foa(27)1/27.

By Corollaries 6 and 8, we get μodd ≥ foa(mn)1/mn ≥ (n|G|n−1)1/mn. Here, to get the 
best bound, we need to choose n so as to maximize the last expression. Letting n = x|G|, 
we obtain

μodd ≥ (n|G|n−1)1/mn = (x|G|n)1/mn = |G|1/mx1/xm|G|.

Since |G| and m are independent of n, this is equivalent to maximizing x1/x. A simple 
derivation shows that the optimal choice is x = e, so we need n to be the largest odd 
integer smaller than e|G|, or the smallest odd integer greater than e|G|. In the case of 
Construction 2, 3e is closest to 9.

The above reasoning also shows that any lower bound |G|1/m ≤ μodd that comes from 
the direct sum construction using G as the building block, can be slightly improved by 
taking Cn 
 G for some odd n close to e|G|. For example, if G = C9 
 C3 is the 16-uniform 
family of 310 sets on 27 elements obtained in Construction 2, then we can choose n to 
be 160511 ≈ e310.

Construction 3. The family C160511 
 (C9 
 C3) consists of |C160511||C9 
 C3|160510 = 160511 ·
31605100 subsets of a 160511 · 27 = 4333797-element set. Thus, we have

μodd ≥ (160511 · 31605100)1/4333797 > 1.502148. (3)

Of course, the improvement on the lower bound for μodd is extremely small as the 
families grow.

5. Minimal odd-sunflowers (MOS-s)

An odd-sunflower is called minimal, or a MOS, if it has no proper subfamily which 
is an odd-sunflower. A k-uniform MOS is a k-MOS. We start with the following simple 
observation that will help us characterize all MOS’s.

Lemma 9. If the underlying set of a MOS F has n elements, then |F| ≤ n.
Moreover, if F is a k-MOS for an even k, then |F| ≤ n − 1.

Proof. Assume that F is an odd-sunflower. If |F| > n, then by Theorem 2, F has a 
subfamily F ′ which is an even-sunflower. But then F \F ′ is an odd-sunflower contained 
in F , contradicting the minimality of F .

If F is a k-MOS on n elements where k is even, then the sum of the degrees in every 
subfamily F ′ ⊂ F is even. So, there are only 2n−1 options for the degree sequences of 
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the elements modulo 2, over all subfamilies F ′. If |F| = n, then there are two distinct 
subfamilies F1, F2 ⊂ F that give the same degree sequence. In this case, however, F \
(F1ΔF2) would be a smaller odd-sunflower contained in F . �

Up to isomorphism, there is only one 1-MOS: the family consisting of two singletons, 
{{1}, {2}}.

We have two different 2-MOS-s: {{1, 2}, {3, 4}}, and {{1, 2}, {1, 3}, {1, 4}}. Indeed, 
if a 2-uniform family does not have the second configuration, then it corresponds to a 
graph where the maximum degree is two. In an odd-sunflower every degree is odd. Hence, 
every degree must be one, in which case we have a collection of disjoint sets: the first 
configuration.

Note that the above examples either consist of two disjoint sets or form a (classic) 
sunflower. For 3-MOS-s, this is not true. Notice that if we only considered minimal odd-
sunflowers consisting of at least three sets, then in the 1-uniform case the only minimal 
example would be {{1}, {2}, {3}}, while in the 2-uniform case the examples would be 
{{1, 2}, {3, 4}, {5, 6}} and {{1, 2}, {1, 3}, {1, 4}}. All of these examples are sunflowers 
with three petals.

Next, we characterize all 3-MOS-s. Of course, two disjoint 3-element sets form a 3-
MOS. To simplify the notation, in the sequel, we omit the inner set symbols, so this 
example will be denoted as {123, 456}.

If in a 3-MOS, there is an element contained in all sets, then deleting these elements 
gives a 1- or 2-uniform family, which we have characterized already. Because of the odd-
degree condition for the elements contained in all sets, we can use only those examples 
from above that consist of three sets. These give the following 3-MOS-s: {123, 124, 125}
or {123, 145, 167}.

If there is no element contained in all sets of a 3-MOS F , we define for any element 
x of the underlying set, a graph Gx as follows. Let

Fx = {F ∈ F : x ∈ F} and Fx = {F ∈ F : x /∈ F}.

Let the vertices of Gx be the elements of the underlying set of Fx, apart from x, and let 
the edge set of Gx be Ex = E(Gx) = {F \ {x} : F ∈ Fx}. From our earlier observations, 
we can conclude that Gx has maximum degree two and it has no three disjoint edges. 
This implies that |Ex| ≤ 6.

However, we can prove a better bound. First of all, since every degree is odd, deg(x) =
|Ex| is also odd, thus |Ex| ≤ 5. If |Ex| = 5, then, using the fact that Gx has maximum 
degree two and it has no three disjoint edges, it must be either a cycle of length five or 
the disjoint union of a triangle and a path of length two. We will show that in fact none 
of these cases is feasible.

If Gx is a cycle on five vertices, then each set in Fx must intersect all edges of Gx, 
because F is an intersecting family. This implies that the underlying set of F has only 
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six elements. Then, by Lemma 9, Fx consists of only one set, and it cannot turn the 
degrees of all five even-degree vertices of Fx odd.

If Gx is the disjoint union of a triangle {12, 23, 31} and a path {45, 56}, then let

Fx = {x12, x23, x31, x45, x56}.

As F is intersecting, all sets from Fx must consist of the element 5, and two of the ele-
ments 1, 2, 3. Hence, the degree of one of 1, 2, 3 will be even, irrespective of the cardinality 
of Fx, which is impossible.

We obtained

Lemma 10. In a 3-MOS, in which no element is contained in all sets, the degree of every 
element x contained in more than one set is |Ex| = 3.

From here, we can conclude that |F| ≤ 7 as follows.
Pick any set 123 ∈ F . Every set in F must intersect 123, so each of them must 

contribute to at least one of E1, E2, and E3, where 123 contributes thrice. Therefore, 
the number of sets in F is at most 1 +3 · 2 = 7. Moreover, unless F is 3-regular, we even 
have |F| ≤ 5, by repeating the above argument by picking 1 to be an element included 
in only one set. From here, a case analysis (which can be found in Appendix B) gives 
the following.

Proposition 11. Up to isomorphisms, we have the following 7 different 3-MOS-s:

Case (1): Two disjoint triples: {123, 456}.
Case (2): Sunflower of 3 triples with one common element: {123, 145, 167}.
Case (3): Sunflower of 3 triples with two common elements: {123, 124, 125}.
Case (4): C4: {123, 124, 134, 234}.
Case (5): Complement of a 5-cycle: {123, 124, 135, 245, 345}.
Case (6): C4 with one element split into three: {123, 124, 135, 236}.
Case (7): {123, 124, 156, 256, 345, 346}.

Note that each 3-MOS satisfies |F| ≤ 6.

Remark. More generally, with the above reasoning we can bound the number of k-tuples 
in a k-MOS as 1 +(k−1)g(k) where g(k) is the size of the largest sunflower-free family. If 
the Erdős–Rado conjecture is true, this gives an upper bound of ck. Maybe it is possible 
to prove such an exponential bound without invoking the conjecture as well. For example, 
using Lemma 9 another upper bound is 1 + (k − 1)gv(k) where gv(k) is the size of the 
base set of the largest sunflower-free family. We could not find any papers studying the 
quantity gv(k), and the base set of most sunflower-free constructions grows only linearly 
in k. However, it is not hard to see that we have an exponential lower bound even in 
the case when the family is odd-sunflower-free: gv(k) ≥ 2k − 1. This is achieved by the 



P. Frankl et al. / Journal of Combinatorial Theory, Series A 206 (2024) 105889 11
k-uniform family whose sets are the root-to-leaf paths in a rooted binary tree of depth 
k. Note that this construction is not optimal, in fact, not even maximal; we can add, 
say, a set that contains the two children of the root, and k − 2 new vertices.

6. Concluding remarks

In this note, we studied the Erdős–Szemerédi-type sunflower problem for odd-
sunflowers. We want to remark that our structural result is also true for (ordinary) 
sunflowers, using essentially the same proof.

Proposition 12. If F is any sunflower-free k-uniform family on n elements, denot-
ing the direct sum construction with building block F by F (t) = F + · · · + F , then 
limt→∞ |F (t)|1/tn < μ.

In other words, direct sum constructions will never reach the optimal value μ. As far 
as we know, this result is new. The best currently known examples of Deuber et al. [7]
use a combination of a direct sum construction and some other ad hoc tricks that do not 
work for odd-sunflowers.

What about the Erdős–Rado-type sunflower problem, i.e., what is the maximum pos-
sible size of an odd-sunflower-free k-uniform set system? We pose the following weakening 
of Erdős and Rado’s conjecture.

Conjecture 13. The maximum size of any odd-sunflower-free k-uniform family is at most 
ck, for a suitable constant c > 0.

Note that the respective problem does not make sense for even-sunflowers, as any 
number of disjoint sets is even-sunflower-free.

Added after the first version
In the first preprint of this manuscript, we posed the following conjecture, already 

discussed at the end of Section 5.

Conjecture 14. The maximum number of base elements, each of which is contained in at 
least one set of a sunflower-free k-uniform family, is at most ck, for a suitable constant 
c > 0.

It was pointed out by Zach Hunter that a simple argument shows that the maxi-
mum number of base elements grows roughly the same way as the maximum number of 
sets, see https://mathoverflow .net /a /463150 /955. In particular, his argument shows that 
Conjecture 14 is equivalent to the Erdős-Rado conjecture about the size of sunflower-free 
k-uniform families.

https://mathoverflow.net/a/463150/955
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Appendix A. NP-hardness sketch

Proposition 15. It is NP-complete to decide whether an input family contains an odd-
sunflower or not.

We will denote the above decision problem by OddSF.

Proof. OddSF is obviously in NP, as we can check whether a subfamily is an odd-
sunflower. To prove NP-hardness, we reduce the NP-complete problem 3DM (3-
Dimensional Matching) to OddSF. In the 3DM problem, our input is a 3-partite 
3-uniform hypergraph, with n vertices in each part, and our goal is to decide whether 
there are n edges that cover each vertex exactly once, called a 3-dimensional matching.

For simplicity, we assume that n is odd. Our goal is to convert a 3-partite 3-uniform 
hypergraph H into a family F such that F is odd-sunflower-free if and only if H has no 
3-dimensional matching. The base set of F will be the set of vertices of H, and some 
additional elements. From each edge e of H, we take n copies for our family F , and to 
each copy of e we add some further elements. We take a Cn on n new elements, and 
we add a different (n − 1)-element set from it to each of the n copies of each edge e. 
Furthermore, for any two copies of some edges e and f that contain the same vertex v of 
H, i.e., v ∈ e, f , we take a new element that we add to only these two copies. Note that 
we allow e = f , so in particular, we take a new element for any two copies of the same 
edge. This ensures that in an odd-sunflower the corresponding original edges in F cover 
each vertex at most once. Similarly, for any two copies of different edges e and f that 
contain the same (n −1)-element set from Cn, we take a new element that we add to only 
these two copies. This ensures that an odd-sunflower contains each (n − 1)-element set 
from Cn exactly once, as Cn is a minimal odd-sunflower. Therefore, any odd-sunflower 
consists of exactly n sets, each of which is derived from a copy of a different edge, which 
were pairwise disjoint in H; in other words, they form a 3-dimensional matching in H. 
This finishes the proof of the NP-hardness. �
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Appendix B. Proof of Proposition 11

We prove that according to which up to isomorphisms, we have the following 7 different 
3-MOS-s:

Case (1): Two disjoint triples: {123, 456}.
Case (2): Sunflower of 3 triples with one common element: {123, 145, 167}.
Case (3): Sunflower of 3 triples with two common elements: {123, 124, 125}.
Case (4): C4: {123, 124, 134, 234}.
Case (5): Complement of a 5-cycle: {123, 124, 135, 245, 345}.
Case (6): C4 with one element split into three: {123, 124, 135, 236}.
Case (7): {123, 124, 156, 256, 345, 346}.

Proof. Assume that F is a 3-MOS. F is intersecting unless F consists of two disjoint 
triples, case (1).

If F is linear (any two sets intersect in exactly one element), then take any {x} =
F1 ∩F2. Since the degree of x is odd, there is an F3 � x, in which case F1, F2, F3 form a 
3-sunflower, case (2).

Otherwise, without loss of generality, assume that 123, 124 ∈ F . Using that every 
degree is either one or three, there is exactly one other set F that contains 1. If 1, 2 ∈ F , 
we are in case (3).

If F = 134, every set must contain at least two of 2,3,4, otherwise they would be 
disjoint from 123 or 124. But since the degree of each of them is three, this is only 
possible if there is exactly one more set containing them all, case (4).

More generally, if there are three sets that pairwise intersect in two elements, we are 
in case (3) or case (4).

If F = 135, every other set must contain 2 or 3 to intersect 123, so we have either 
two, or just one more set. To satisfy that each degree is odd, in the former case we must 
be in case (5), in the latter in case (6). If F is 145, 235, 245 cases are the same.

Finally, if F = 156, and we are in none of the previous cases, then to ensure that 
every other set intersects 123 and 124, there is one set that contains 2, but not 3 or 4, 
and two sets that both contain 3 and 4. Moreover, all these sets must also contain one 
of 5 and 6 to intersect 156. The only option is case (7). �
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