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Abstract. If we two-colour a circle, we can always find an inscribed triangle with
angles (π7 ,

2π
7 , 4π

7 ) whose three vertices have the same colour. In fact, Bialostocki and
Nielsen showed that it is enough to consider the colours on the vertices of an inscribed
heptagon. We prove that for every other triangle T there is a two-colouring of the circle
without any monochromatic copy of T .

More generally, for k ≥ 3, call a k-tuple (d1, d2, . . . , dk) with d1 ≥ d2 ≥ · · · ≥ dk > 0

and
∑k

i=1 di = 1 a Ramsey k-tuple if the following is true: in every two-colouring of
the circle of unit perimeter, there is a monochromatic k-tuple of points in which the
distances of cyclically consecutive points, measured along the arcs, are d1, d2, . . . , dk in

some order. By a conjecture of Stromquist, if di =
2k−i

2k−1
, then (d1, . . . , dk) is Ramsey.

Our main result is a proof of the converse of this conjecture. That is, we show that

if (d1, . . . , dk) is Ramsey, then di = 2k−i

2k−1
. We do this by finding connections of the

problem to certain questions from number theory about partitioning N into so-called
Beatty sequences. We also disprove a majority version of Stromquist’s conjecture, study
a robust version, and discuss a discrete version.

1. Introduction

In the May 2021 issue of the American Mathematical Monthly, Robert Tauraso posed
the following problem [14]: If all the points of the plane are arbitrarily coloured blue or
red, find a convex pentagon with all vertices the same colour and with prescribed area 1.
A beautiful solution was suggested by Walter Stromquist, which reduced the question to
a Ramsey-type problem, interesting in its own right.

Consider 31 points evenly spaced on a circle, and colour each of them arbitrarily blue
or red. Then we can always find 5 points with the same colour that divide the circle into
arcs proportional to 1 : 2 : 4 : 8 : 16. (The arcs need not be in the order suggested by
the proportion. That is, 1 : 4 : 8 : 2 : 16 counts as a success, see Figure 1) Notice that
no matter in what order 5 points divide the circle into such arcs, their convex hull is a
pentagon of the same area. Thus, all we have to do is to start with a circle for which
this area is 1. Stromquist managed to verify the above statement by computer, and he
formulated the following attractive conjecture.

Figure 1. A set of 5 blue points dividing the circle into arcs proportional
to 1 : 2 : 4 : 8 : 16.
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Conjecture 1.1 (Stromquist’s conjecture). For any k ≥ 3, consider 2k − 1 points evenly
spaced on a circle, and colour each of them arbitrarily blue or red.

Then we can always find k points with the same colour that divide the circle into arcs
proportional to 1 : 2 : 4 : . . . : 2k−1, but not necessarily in this order.

The case k = 3 was settled a long time ago by Bialostocki and Nielsen [5], and it is not
hard to verify the case k = 4 either. Stromquist kindly informed us that he was able to
give a computer assisted proof for k ≤ 6.

In the present note, we study Stromquist’s conjecture. To simplify the presentation,
we introduce some notation. For k ≥ 3, let d = (d1, d2, . . . , dk) be a k-tuple with d1 ≥
d2 ≥ · · · ≥ dk > 0 and

∑k
i=1 di = 1. In a two-colouring of the circle S of unit perimeter,

we call a k-tuple (p1, p2, . . . , pk) of points from S monochromatic if the colour of every
point pi is the same. The main problem we study is whether for a given d it is true that
in every two-colouring of S we can find a monochromatic k-tuple in which the distances
of consecutive points, measured along the arcs, are exactly d1, . . . , dk in some order. We
call a k-tuple d with this property a Ramsey k-tuple, or simply Ramsey.
A permuted copy of a k-gon inscribed in S is another k-gon inscribed in S with the

same side lengths, but in a possibly different order. If the side lengths of the k-gon,
measured along the arcs, are d1, . . . , dk, we also call a monochromatic permuted copy
of the k-gon a monochromatic permuted copy, or simply a monochromatic copy, of the
k-tuple d = (d1, d2, . . . , dk).

Using this terminology, Stromquist’s conjecture is equivalent to that if k ≥ 3, and

di = 2k−i

2k−1
for every 1 ≤ i ≤ k, then d = (d1, . . . , dk) is Ramsey. Our main result is

proving the converse of the conjecture. That is, we prove that other k tuples are not
Ramsey.

Theorem 1.2. If d = (d1, . . . , dk) is Ramsey, then di =
2k−i

2k−1
.

We call the k-tuple d = (d1, . . . , dk) with di =
2k−i

2k−1
the (k, 2)-power. To prove Theo-

rem 1.2, for every k-tuple d that is not the (k, 2)-power, we construct a two-colouring of
S that does not contain a monochromatic copy of d. We call a colouring uniform if there
is a t ∈ N, for which the colouring consists of 2t arcs of equal length, each containing its
clockwise endpoint but not containing its counterclockwise endpoint, coloured alternating
red and blue. In fact, we show that for any other tuple d there exists a uniform colouring
that does not contain a monochromatic copy of d. Theorem 1.2 is an immediate corollary
of the following lemma, proved in Section 2.

Lemma 1.3. Let ct be a uniform colouring of S obtained by dividing it into 2t equal
circular arcs, and colouring them alternating the two colours. If for every t ∈ N the

uniform colouring ct contains a monochromatic copy of d = (d1, . . . , dk), then di =
2k−i

2k−1
.

Our proof proceeds by establishing a connection to a conjecture of Fraenkel about
Beatty sequences, and solving a special case of it, which may be of independent interest.

A Beatty sequence is a sequence of the form {⌊αn + β⌋}∞n=0 for some α, β ∈ R. The
term Beatty sequence was first used by Connell [6], after a problem proposed by Beatty
[4]. Let α = (α1, . . . , αk) with 0 < α1 ≤ · · · ≤ αk and β = (β1, . . . , βk) be two k-
tuples of real numbers. We say that the pair (α, β) partitions N, if the Beatty sequences
{⌊αin+ βi⌋}∞n=0 partition N.
Finding a characterisation of those pairs (α, β) which partition N is a well-studied

problem, which has connections to a combinatorial game, called Wythoff’s game, see for
example [6, 7, 8, 9, 10, 16]. For k = 2, the characterisation is well understood [9, 12].
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Fraenkel [9] noted that for k ≥ 3 and for α = (α1, . . . , αk) with αi = 2k−1
2k−i for every

1 ≤ i ≤ k, there is a β such that (α, β) partitions N. According to Erdős and Graham,1

Fraenkel made the following conjecture.

Conjecture 1.4 (Fraenkel’s conjecture). For k ≥ 3 let α = (α1, . . . , αk) with 0 < α1 <

· · · < αk. If the pair (α, β) partitions N, then αi =
2k−1
2i−1 for 1 ≤ i ≤ k.

Conjecture 1.4 is confirmed for k ≤ 7 [2, 3, 11, 17, 15], and is open for k ≥ 8. To prove
Theorem 1.2, we prove Fraenkel’s conjecture in a special case.

Theorem 1.5. For k ≥ 3 let α = (α1, . . . , αk), β = (β1, . . . , βk) with 0 < α1 < · · · < αk

and βi = αi

2
for every 1 ≤ i ≤ k. If (α, β) partitions N, then αi = 2k−1

2k−i for every
1 ≤ i ≤ k.

The proof of Theorem 1.5 relies on the notion of so-called balanced sequences, which
are sequences over a finite alphabet such that in any two subsequences of consecutive
elements of the same length the number of appearances of any given letter differs by at
most one.

In most of our proofs about Ramsey k-tuples, we work with a discrete version of the
problem. We can do so because if there is an i for which di∑

j dj
is irrational, then it is

easy to show that d is not Ramsey. Indeed, we can two-colour the points of S with no
monochromatic pair of points at a given irrational distance apart.

If every di is rational, then writing di =
pi
qi

for every 1 ≤ i ≤ k, for N = lcm(q1, . . . , qk)

the problem is equivalent to deciding if in any two-colouring of the vertices of a regular N -
gon inscribed in S, we can find a monochromatic copy of d. In other words, the problem
is equivalent to deciding if in every two-colouring of ZN we can find a monochromatic
k-tuple in which the differences of cyclically consecutive elements are N · d1, . . . , N · dk in
some order.

Considering Stromquist’s conjecture, we could only confirm it for k ≤ 7 by a computer
search, see Section 6. That is, we showed that if k ≤ 7, then in every two-colouring
of S there is a monochromatic copy of the (k, 2)-power. For general k, we could not
answer the more specific question whether every uniform two-colouring of S contains a
monochromatic copy of the (k, 2)-power, however, we confirmed this for very large values
of k by a computer search. This more specific question is related to another problem from
number theory, which has connections to vector balancing and combinatorial discrepancy;
see Conjecture 3.1.

In Section 4 we study what happens when instead of a copy of d, we only want to
find a copy ε-close to it. Two k-tuples (p1, . . . , pk) and (p′1, . . . , p

′
k) in S are ε-close if

|p1 − p′1|, . . . , |pk − p′k| ≤ ε. A k-tuple of points p = (p1, . . . , pk) in S is an ε-close copy
of d if it is ε-close to a copy of d. We call a k-tuple nearly-Ramsey, if for every ε > 0 in
every two-colouring of S there is a monochromatic ε-close copy of d.

We show the following.

Theorem 1.6. If d1 =
1
2
, or d is (4

7
, 2
7
, 1
7
), (5

8
, 1
4
, 1
8
), (3

4
, 1
6
, 1
12
), ( 7

12
, 1
4
, 1
6
), then (d1, d2, d3)

is nearly-Ramsey.

We also conjecture that these are the only nearly-Ramsey triples.

1This appears at [7, page 19] but the there cited paper [9] of Fraenkel only states a weaker conjecture,
asserting that there are i, j with i ̸= j such that the ratio αi/αj is an integer.
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2. Ramsey tuples are (k, 2)-powers

In this section, we prove Theorem 1.2. As a preparation, we start by discussing the
connection between Fraenkel’s conjecture and balanced sequences. Let A be a finite set
and consider a sequence S = {si}∞i=0 whose elements are from A. We say that S is
a balanced sequence over A if for any a ∈ A the number of a’s in any two contiguous
subsequences of the same length differs by at most 1.

If a ∈ A, we define its indicator sequence {δai }∞i=0 as δai = 1 if si = a and δai = 0

otherwise. If S is balanced, then for any a ∈ A the limit ra := lim 1
n

n∑
0

δai exists. We

have 0 ≤ ra ≤ 1, and call ra the density2 of a. If S is periodic, then ra is the proportion
of the number of a-s in any period. For example, the periodic sequence with period
(a, b, a, c, a, b, a) is balanced and the densities are (4

7
, 2
7
, 1
7
).

Question 2.1. For which sets R = {r1, . . . , rk}, does there exist a balanced sequence over
a k element set, such that the densities of the elements are exactly the elements of R?

Altman, Gaujal and Hordijk [2] made the following conjecture.

Conjecture 2.2. [2, Conjecture 2.25] For a set of distinct reals {r1, . . . , rk} with k ≥ 3
and r1 > · · · > rk > 0 a balanced sequence with densities r1, . . . , rk exists if and only if
r = (r1, . . . , rk) is the (k, 2)-power.

This conjecture is stronger than Conjecture 1.4. Indeed, assume that the Beatty se-
quences {⌊αin + βi⌋}∞n=0 with i = 1, . . . , k partition N, and for each j ∈ N let sj = i
if j ∈ {⌊αin + βi⌋}∞n=0. It is straightforward to show that the sequence S = {sj}∞j=0 is

balanced with densities 1
α1
, . . . , 1

αk
, see Figure 2 for an example. Hence, Conjecture 2.2

implies Conjecture 1.4.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 12 2 2 2 2 2 23 3 3 3 3 3

Figure 2. Arithmetic sequences for α1 = 7
4
, α2 = 7

2
, α3 = 7

1
, and the

corresponding balanced sequence with densities 4
7
, 2

7
, 1

7
.

The following special case of Conjecture 2.2 was proven in [2].

Lemma 2.3. [2, Proposition 2.28] Let k ≥ 3 and S be a balanced sequence over {a1, . . . , ak}
with densities r1 > · · · > rk > 0. If for every 1 ≤ i ≤ k there exist two consecutive ai in
S with no aj between them for any j > i, then (r1, . . . , rk) is the (k, 2)-power.

Using Lemma 2.3, we prove Theorem 1.5.

Proof of Theorem 1.5. For every j ∈ N let sj = i if j ∈ {⌊αin + αi

2
⌋}∞n=0. Then the

sequence S = {sj}∞j=0 is balanced, and it has densities 1
α1
, . . . , 1

αk
. Thus, it is sufficient

to show that Lemma 2.3 can be applied for S. That is, we need to show that for each i
there exist two consecutive i-s in S with no smaller j between them.
Graham [10] showed that if k ≥ 3 and (α, β) partitions N, then each αi is rational.

Let p be the smallest common multiple of the numerators of α1, . . . , αk in their simplified
form, and for each i write αi =

p
qi

for some positive integer qi. Then ⌊αi(n+ qi) +
αi

2
⌋ =

p+ ⌊αin+ αi

2
⌋, thus S is periodic with a period of length p.

2Note that in [2] the authors call ra the rate of a, but in [3] the authors call 1/ra the rate of a. To
avoid confusion, we use the term ‘density.’
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We will consider two cases based on whether there exists an i and an n such that
αin+ αi

2
is an integer.

Case 1. First, assume that no such i and n exists. As ⌊x + 1⌋ = ⌈x⌉ holds for any
noninteger x, we have ⌊αin+

αi

2
+1⌋ = ⌈αin+

αi

2
⌉ for any i and n. Using this observation

we show that the period s0, . . . , sp−1 is symmetric.
If for some m < p we have m = ⌊αin+ αi

2
⌋, then p− 1−m = αiqi − ⌊αin+ αi

2
+ 1⌋ =

αiqi − ⌈αin+ αi

2
⌉ = αiqi + ⌊−αin− αi

2
⌋ = ⌊αi(qi − n− 1) + αi

2
⌋, hence sm = i = sp−1−m.

This shows that the period s0, · · · , sp−1 is symmetric.
Let sti = i be the first appearance of i in S. We will show that sp−1−ti and sp+ti are

two consecutive i-s with no j > i between them. The expression αin + αi

2
is monotone

increasing in αi, hence the first element of {⌊αin+
αi

2
⌋}∞n=0 is smaller than the first element

of {⌊αjn+
αj

2
⌋}∞n=0 for any i < j. This implies that ti < tj for i < j, that is, no j appears

before the first i. Since S is periodic and the period is symmetric, we have sp−1−ti = i,
sp+ti = i, and between them no j appears for any i < j (see Table 1). Thus, Lemma 2.3
can be applied and the theorem follows.

s0 s1 . . . sti . . . sp−1−ti . . . sp−1 sp . . . sp+ti

< i = i . . . = i < i < i = i
Part 1 Part 2 Part 3

Table 1. Part 1 and Part 3 are the same, and Part 2 is also the same in
reverse order.

Case 2. Assume that m = αin+
αi

2
is an integer for some i and n. In this case we will

show that (α, β) cannot partition N (where βi =
αi

2
). We start by showing that if and

integer m appears in one of the sequences, then so does m+ 1.
Assume that m = αj0n0 +

αj0

2
is an integer. If (α, β) partitions N, the open interval

(m,m+1) contains no αin+ αi

2
value for any i and n. Pick an integer a so that ap > m.

Since (α, β) partitions N, there must be a unique j1 and n1 such that αj1n1 +
αj1

2
falls

into [ap − 1 −m, ap −m). We claim that αj1n1 +
αj1

2
= ap − 1 −m. Indeed, otherwise

ap− (αj1n1 +
αj1

2
) = αj1(aqj1 − n1 − 1) +

αj1

2
falls into (m,m+ 1) a contradiction.

Therefore m+ 1 = ap− αj1n1 −
αj1

2
= αj1(aqj1 − n1 − 1) +

αj1

2
, that is, whenever m is

of the form αin+ αi

2
, then m+ 1 also appears in one of the sequences. This immediately

implies that each integer bigger that m is of the form αin + αi

2
for some i and n. Using

the periodicity of S we also have this for natural numbers smaller than m. This is a
contradiction, as 0 cannot be of the form αin+ αi

2
. □

Proof of Lemma 1.3. Assume that for every t the colouring ct contains a monochromatic
copy of d. By symmetry, we may assume that this copy is red. Going around the
points corresponding to this monochromatic copy in some cyclic order, we must jump
over each blue interval, see Figure 3. An arc of distance di with red endpoints jumps
over ⌊tdi⌉ blue intervals, where ⌊x⌉ is the rounding of x to the nearest integer.3 Thus,

we must have
∑k

i=1⌊tdi⌉ = t for every t ∈ N. This implies that for every t > 0 we have∑k
i=1 (⌊tdi⌉ − ⌊(t− 1)di⌉) = t− (t− 1) = 1.
On the other hand, ⌊tdi⌉− ⌊(t− 1)di⌉ is either 0 or 1 for each 1 ≤ i ≤ k. For a fixed i,

we have ⌊tdi⌉ − ⌊(t− 1)di⌉ = 1 exactly when t− 1 is in the sequence {⌊(n+ 1
2
) 1
di
⌋}∞n=0 =

3Note that tdi cannot be a half-integer, as an arc of length di would not be monochromatic, so we
need not worry about how to round half-integers.
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Figure 3. If we follow the red k-gon, we jump over each blue interval
exactly once.

{⌊n 1
di
+ 1

2di
⌋}∞n=0. Thus, the sequences {⌊n 1

di
+ 1

2di
⌋}∞n=0 must partition N, and Theorem 1.5

implies that di =
2i−1

2k−1
. □

3. (k, 2)-powers in uniform colourings

We conjecture that for every t, the uniform colouring of ct from Lemma 1.3 contains
a red copy of the (k, 2)-power for every k. We have seen in the proof of Lemma 1.3 that
in this case we do not run into a contradiction by counting the blue intervals that we
would jump over with arcs of length d1, . . . , dk. However, this is only a necessary and not
a sufficient condition, as the jumps are not independent of each other. Indeed, if a jump
starts from a ‘bad’ part of a red interval, it might end up inside a blue one. Hence, we
need to find a suitable staring position and a good ordering of the di-s to find a red copy.
More precisely, we can consider the problem as follows.

Let N = 2t(2k−1) and colour the vertices of a regular N -gon such that 2k−1 reds are
followed by 2k − 1 blues in an alternating manner, so that vertices 0, . . . , 2k − 2 are red,
2k−1, . . . , 2 ·2k−2 are blue, 2 ·2k−1, . . . , 3 ·2k−2 are red etc. If there is a monochromatic
copy of the (k, 2)-power, there is also a red copy. For each vertex of the red copy of the
(k, 2)-power, consider its index modulo 2k+1−2. Each of these needs to be at most 2k−1
as they are all red. Moreover, the differences among the consecutive vertices need to be
2t (mod 2k+1 − 2), 4t (mod 2k+1 − 2), . . . , 2kt (mod 2k+1 − 2), in some order. To have
such a k-tuple of indices modulo 2k+1 − 2 is a necessary and sufficient condition for the
existence of a red copy.

By computer, we verified this up to k = 100. We phrase a problem in a more natural
and general form. Interpret the numbers 2it (mod 2k+1−2) that are larger than 2k−1 as
2k+1 − 2− 2it, and denote these k numbers by v1, . . . , vk. With this, the numbers vi will
determine how one vertex moves compared to the preceding vertex in the 0, . . . , 2k − 1
interval. Note that none of these numbers can be equal to 2k − 1. Thus, −2k + 1 <
v1, . . . , vk < 2k − 1, and

∑k
i=1 vk = 0, since the k-gon with these side-distances exists.

We get the following even nicer question if we divide by 2k − 1.

Conjecture 3.1. If a sequence of reals −1 < x1, . . . , xk < 1 satisfies

xi+1 =


2xi, if 2|xi| < 1

2xi − 2, if 2xi > 1

2xi + 2, if 2xi < −1

for i = 1, . . . , k, where xk+1 = x1, then there is a permutation π of {1, . . . , k} such that

0 ≤
∑j

i=1 xπ(i) < 1 for every j.
6



This conjecture is similar to Steinitz’s theorem [13], and to other vector balancing
problems. Indeed, it can be proved for any xi’s satisfying the conditions of the conjecture,
that

∑k
i=1 xi = 0. We note that if the xi’s are any sequence satisfying

∑k
i=1 xi = 0 and

|xi| < 1/2 for every i, then one can easily find a permutation for which 0 ≤
∑j

i=1 xπ(i) < 1
for every j. But without this bound, we have to exploit that xi+1 = 2xi, as otherwise there
would be counterexamples, e.g., 0.6, 0.6, 0.6,−0.9,−0.9. Could it be that the conjecture
is true because we always have many i’s such that |xi| < 1/2, and these can be used
somehow to take care of the other xi’s?

4. Robust version

Theorem 1.6 states that additionally (5
8
, 1
4
, 1
8
), (3

4
, 1
6
, 1
12
), ( 7

12
, 1
4
, 1
6
) and any triple with

d1 =
1
2
are also nearly-Ramsey, that is, in every two-colouring of S there is a monochro-

matic ε-close copy of d for every ε. We conjecture that there are no other nearly-Ramsey
triples.

Conjecture 4.1. (d1, d2, d3) is nearly-Ramsey if and only if it is (4
7
, 2
7
, 1
7
), (5

8
, 1
4
, 1
8
),

(3
4
, 1
6
, 1
12
), ( 7

12
, 1
4
, 1
6
) or a triple with d1 =

1
2
.

We prove Theorem 1.6 and provide some supporting evidence for Conjecture 4.1. We
recolour a point p ∈ S with black if there is a red and a blue point in every neighbourhood
of p. If a colouring of S is not monochromatic, then there is at least one black point. If
we can find an ε-close copy of d such that it only has red and black points (or blue and
black), then we can also find a 2ε-close copy of it with only red (or only blue) points, by
slightly moving the black points of the corresponding triple in S.

Proof of Theorem 1.6. We show that for every ε > 0 every red-blue colouring contains a
monochromatic ε-close copy of any triple listed in the statement. We may assume that
the colouring is not monochromatic, otherwise the statement is trivial. Thus, we may
assume the existence of a black point.

Case 1: d1 = 1
2
Let p be a black point, p′ be the point diametrically opposite to p,

and q and q′ be two other diametrically opposite points, such that any three of the four
points p, p′, q, q′ form a copy of (d1, d2, d3). By the pigeonhole principle, without loss of
generality, we may assume that at most one of p′, q, q′ is blue. But then the other three
points form a copy of (d1, d2, d3) without a blue point.
Case 2: d = (5

8
, 1
4
, 1
8
) We may pick a regular 8-gon inscribed in S with vertices

v1, v2, . . . , v8 in this cyclic order such that v1 is black. Without loss of generality, we may
assume that v2 is blue. Then v4 and v7 must be red, otherwise we are done by considering
(v1, v2, v4) or (v1, v2, v7). Then by similar a similar argument, v3, v5 and v6 must be blue.
But then (v3, v5, v6) forms a blue copy of (5

8
, 1
4
, 1
8
).

Case 3: d = (3
4
, 1
6
, 1
12
) We may pick a regular 12-gon inscribed in S with vertices

v1, v2, . . . , v12 in this cyclic order such that v1 is black. Without loss of generality, we
may assume that v2 is blue. Then v4 and v11 must be red, otherwise we are done by
considering (v1, v2, v4) or (v1, v2, v11). Then by a similar argument, v3 and v10 must be
blue. By considering (v2, v3, v5) and (v2, v3, v12), we obtain that v5 and v12 must be red.
Similarly, v7 and v9 must be blue. But then (v7, v9, v10) forms a blue copy of (3

4
, 1
6
, 1
12
).

Case 4: d = ( 7
12
, 1
4
, 1
6
) We may pick a regular 12-gon inscribed in S with vertices

v1, v2, . . . , v12 in this cyclic order such that v1 is black. Without loss of generality, we
may assume that v3 is blue. Then v6 and v10 must be red, otherwise we are done by
considering (v1, v3, v6) or (v1, v6, v10). Then by a similar argument, v4 and v8 must be

7



blue. Considering (v1, v8, v11) and (v3, v5, v8) we obtain that v11 and v5 mist be red.
Similarly, v7 and v9 must be blue. But then (v4, v7, v9) forms a blue copy of ( 7

12
, 1
4
, 1
6
). □

Let d = (d1, d2, d3) be a triple that Conjecture 4.1 asserts to be not nearly-Ramsey.
We believe that for any such d, there is a uniform colouring ct as in Lemma 1.3 that
contains no monochromatic ε-close copies of d. We call t ∈ N suitable if ct contains no
monochromatic copies of d, and strongly-suitable, if ct contains no monochromatic ε-close
copies of d. In ct the black points are exactly the endpoints of the intervals. Thus, t is
strongly-suitable if and only if it is suitable and ct avoids copies of d where one point is
the clockwise endpoint of a red interval and another one is the endpoint of blue interval.
As the distance of two such endpoints (along the circumference) is an odd multiple of 1

2t
,

we obtain the following observation.

Observation 4.2. A suitable t is strongly-suitable if and only if none of 2td1, 2td2, 2td3
is an odd integer.

If one of d1, d2, d3 is irrational, then at most one of them is rational. If d1, d2, d3 are
all irrational, then any suitable t is also strongly-suitable, thus such (d1, d2, d3) is not
nearly-Ramsey. If only one of them, say d1 is rational, then we write d1 = p1

q1
such that

p1, q1 are integers and gcd(p1, q1) = 1. If q1 = 2, then (d1, d2, d3) is not nearly-Ramsey,
and for any other value of q1 there is a t such that 2td1 /∈ Z.
If d1, d2, d3 are all rational, we write di =

pi
qi
such that pi, qi are integers and gcd(pi, qi) =

1 for i = 1, 2, 3. To prove Conjecture 4.1, it is thus sufficient to find a suitable t in
T := {t : q1, q2, q3 ∤ 2t}. We can prove that there is such t if q1, q2, q3 are all odd, as well
as in several other cases, but here we omit these proofs. A more careful analysis could
be sufficient to obtain a proof for the remaining cases.

5. Majority version

Counterexample to the majority version. One might assume that if in a two-
colouring one colour class is denser than the other, then that colour class will contain a
(k, 2)-power. However, this is false; we show a counterexample for any k ≥ 6.

Let k ≥ 6 and fix an ε with 2k−1

2k−1
− 1

2
< ε < 1

80
. Divide S into 10 intervals of lengths

1
16
−ε, 1

8
+ε, 1

8
−ε, 1

16
+ε, 1

8
−ε, 1

16
+ε, 1

8
−ε, 1

16
+ε, 1

8
−ε, 1

8
+ε in this order, and colour them

alternating red and blue, starting with red (see Figure 4). Then the set of red points is
1
8
− 10ε denser than the set of blue points.

Claim 5.1. The colouring defined above does not contain a red copy of a (k, 2)-power for
any k ≥ 6.

Proof. Denote i-th interval from the description of the colouring by Ei. Suppose we have

found points p1, . . . , pk in the red intervals with distances di =
2k−1−i

2k−1
. To avoid confusion,

we will refer to the parts of the circle between consecutive pi-s as arcs. Note that each
blue interval must be contained in one of these arcs.

Using that 2k−1

2k−1
< 1

2
+ ε, we can see that any arc of length d1 =

2k−1

2k−1
starting from E5

ends in E10. Similarly, any arc of length d1 starting from E7 ends in E2 and any starting
from E1 ends in E6. Hence, if there was a red copy of the (k, 2)-power, the endpoints of
the arc with length d1 must be in E3 and E9. Therefore, the arc of length d1 contains
either E4, . . . , E8 or E10, E1, E2.

The line connecting the endpoints of the arc of length d1 divides S into two parts.
In the part that contains E2, there are two blue intervals, E10 and E2, of length

1
8
+ ε.

The arc of length d2 cannot contain both E10 and E2, as d2 = 2k−2

2k−1
< 5

16
+ ε. But
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d3 =
2k−3

2k−1
< 1

8
+ ε, so shorter arcs cannot contain any of E10 and E2, thus, they must be

contained in the arc of length d1.
On the other side, there are three blue intervals of length 1

16
+ ε, with reds of length

1
8
− ε between them. The arc of length d2 can only cover one of the blue intervals, as

d2 =
2k−2

2k−1
< 1

4
+ ε. Then, each of the remaining two blue intervals of length 1

16
+ ε must

be covered by an arc of length di for i ≥ 3, which is not possible, since d4 =
2k−4

2k−1
< 1

16
+ε.
□

E1

E2

E3E4

E5

E6

E7

E8 E9

E10

1
8
− ε1

16
+ ε

1
8
− ε

1
16

+ ε

1
8
− ε

1
16

+ ε 1
8
− ε

1
8
+ ε

1
16

− ε

1
8
+ ε

Figure 4. A counterexample for the majority version. The black dots are
the vertices of a regular 16-gon, depicted only to ease the comparison of
distances in the figure.

The following problem remains open.

Problem 5.2. Does there exist an ε > 0 such that every subset of S of density at least
(1− ε) contains a monochromatic copy of the (k, 2)-power for all k?

6. Computational efforts

Stromquist confirmed his conjecture by a computer search for k ≤ 6. Using a SAT
solver, we confirmed it for k ≤ 7.

Lemma 6.1. Conjecture 1.1 is true for k ≤ 7.

Proof. Let Pk denote the set of all permuted copies of the (k, 2)-power in a fixed regular
(2k − 1)-gon inscribed in S. For each vertex p of the (2k − 1)-gon, let xp be a boolean
variable. We think of xp as the indicator variable of p being red. For each k, the problem
is equivalent to solving the sat-formula( ∧

Q∈Pk

∨
p∈Q

xp

)
∧
( ∧
Q∈Pk

∨
p∈Q

¬xp

)
.
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The first half of the formula expresses that there are no monochromatic blue k-gons,
and the second half expresses that there are no red ones. If the formula is unsatisfiable
for each k, then the conjecture holds. The SAT solver Glucose3 solved the k = 7 case
in approximately one hour. The formulas for k ≤ 7 in the DIMACS CNF format can be
found at [1]. □

We also run the k = 8 case for approximately 100 days, but the solver did not come to
a conclusion. Note that the complexity of the problem increases very rapidly as k grows.
For too large k, checking whether a single colouring is a counterexample, takes too long.
We mention that if Conjecture 1.1 holds, then it would be also interesting to determine

the minimal number of monochromatic permuted copies in a two-colouring of a regular
2k − 1-gon. A small step in this direction is the following.

Proposition 6.2. For any d with k ≥ 3 and any two-colouring of a regular 2k − 1-gon
the number of monochromatic permuted copies of d is even.

Proof. Suppose that there are t blue vertices in the colouring, and denote them by
p1, p2, . . . , pt. Let Ai denote the set of those copies of d that contain pi. Then, the
number of red monochromatic copies of d is

(2k − 1) · (k − 1)!−
∣∣ ⋃
i∈[t]

Ai

∣∣ = (2k − 1) · (k − 1)!−
∑

1≤i1≤···≤iℓ≤t

∣∣(−1)ℓ+1Ai1 ∩ · · · ∩ Aiℓ

∣∣ .
In the right-hand side of the expression above, each term |Ai1 ∩ · · · ∩Aiℓ | is a product

of factorials depending on the differences of the ij values. Therefore, each term is even,
except if ℓ = k and (pi1 , . . . , piℓ) is a blue copy of d. Hence, the parity of red and blue
monochromatic permuted copies is the same. □

6.1. Algorithm for checking colourings. Suppose we are given a colouring of the
vertices of a regular n-gon, and we want to decide whether there is monochromatic k-gon
with side lengths d1, . . . , dk. We can trivially answer this in O(n · k!) time, as there are
at most n · (k − 1)! possible k-gons that have to be checked, and for each we have to go
through at most k points. For (k, 2)-powers this gives a O(2kk!) running time.
Interestingly, sometimes we can do better. Suppose we are given distances d1, . . . , dk,

such that the subsets of them have pairwise different sums. For example this holds for
(k, 2)-powers. In these cases we can use a standard dynamic programming strategy to
speed up the calculation. We explain here how to check for red monochromatic copies,
same works for the blue ones.

We take all (i, j) pairs with 1 ≤ i, j ≤ n, and for each we calculate if there is a
monochromatic red path from i to j going counterclockwise using distinct side lengths
from d1, . . . , dk. We do these calculations in a clever order, so that we can use the
previously computed values.

To achieve this, first note that if a number ℓ can be written as a sum of some di-s, using
each di at most once, then this sum is unique. Let bℓ denote the number of elements in
this unique sum, and let bℓ be 0 if there is no such sum. We calculate bℓ in advance for
each ℓ ∈ 1, . . . , n and we store these values. We also store for each ℓ the subset which
gives this sum; let Sℓ denote this set.
Order the (i, j) pairs in (non-strictly) increasing order based on bj−i, where subtraction

is modulo n. Using the precomputed bℓ values, the ordering can be generated in O(n2)
time. Then, consider the pairs one by one in this order.

If bj−i = 0, then there is no path using distinct lengths from d1, . . . , dk.
If bj−i = 1, then we simply check the colour of i and j.

10



If bj−i > 1, then it is enough to check that j is red and whether there is a d ∈ Sj−i

so that there is a monochromatic red path from i to j − d. These values are all known
because bj−i−d = bj−i − 1 < bj−i. Since |Sj−i| ≤ k, for each (i, j) pair we can decide in at
most k steps whether there is a monochromatic path from i to j. Hence, the algorithm
runs in O(n2k) steps.

For the powers of two, this gives running time O(22kk), which is faster than O(2k · k!).

7. Concluding Remarks

We mention another related problem.

Question 7.1. Given a zero-measure/meagre set B ⊂ [0, 1], is it true that we can always
find pairwise disjoint intervals I1, I2, . . . ⊂ [0, 1] such that the length of In is 2−n and both
endpoints of each interval are not in B?

We could answer this question affirmatively only in the case when the lengths of the
In’s decrease much slower, assuming that their total length is still 1. Indeed, assume that
1 −

∑
i<n |In| > n · |In| for all n > 0. Then after fixing the first n − 1 intervals, at least

one of the intervals in the complement is longer than |In|, thus we can find a position for
In such that it is disjoint from I1, . . . , In−1 and its endpoints are not in B. This condition
holds, for example, if |In| = 1

S
1

(n+3)2
, where S =

∑∞
n=1

1
(n+3)2

On the other hand, if the

lengths are 2−n, then, apart from I1, we always have only a zero-measure/meagre set of
options to place the next interval, if we want to leave enough room for all later intervals.
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