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A related problem involves the same kind of input|a set P of m points and a set C ofn urves, but now we assume that no point of P lies on any urve of C. Let A(C) denotethe arrangement of the urves of C, i.e., the deomposition of the plane into onnetedopen ells of dimensions 0; 1; and 2 indued by drawing the elements of C. These ells arealled verties, edges, and faes of the arrangement, respetively. The total number of theseells is said to be the ombinatorial omplexity of the arrangement. See [23, 48℄ for detailsonerning arrangements. The ombinatorial omplexity of a single fae is de�ned as thenumber of lower dimensional ells (i.e., verties and edges) belonging to its boundary. Thepoints of P then mark ertain faes in the arrangement A(C) of the urves, and the goalis to establish an upper bound on K(P;C), the ombined ombinatorial omplexity of themarked faes. This problem is often referred to in the literature as theMany-Faes Problem.One an extend the above questions to d-dimensional spaes, for d > 2. Here wean either ontinue to onsider inidenes between points and urves, or inidenes betweenpoints and surfaes of any larger dimension k; 1 < k < d. In the speial ase when k = d�1;we may also wish to study the natural generalization of the `many-faes problem' desribedin the previous paragraph: to estimate the total ombinatorial omplexity of m marked(d-dimensional) ells in the arrangement of n given surfaes.All of the above problems have many algorithmi variants. Perhaps the simplest questionof this type is Hoproft's problem: Given m points and n lines in the plane, how fast anone determine whether there exists any point that lies on any line? One an onsider moregeneral problems, like ounting the number of inidenes or reporting all of them, doingthe same for a olletion of urves rather than lines, omputing m marked faes in anarrangement of n urves, and so on.It turned out that two exitingmetri problems (involving interpoint distanes) proposedby Erd}os in 1946 are strongly related to problems involving inidenes.1. Repeated Distanes Problem: Given a set P of n points in the plane, what is themaximum number of pairs that are at distane exatly 1 from eah other? To seethe onnetion, let C be the set of unit irles entered at the points of P . Thentwo points p; q 2 P are at distane 1 apart if and only if the irle entered at ppasses through q and vie versa. Hene, I(P;C) is twie the number of unit distanesdetermined by P .2. Distint Distanes Problem: Given a set P of n points in the plane, at least how manydistint distanes must there always exist between its point pairs? Later we will showthe onnetion between this problem and the problem of inidenes between P andan appropriate set of irles of di�erent radii.Some other appliations of the inidene problem and the many-faes problem will bereviewed at the end of this paper. They inlude the analysis of the maximum numberof isoseles triangles, or triangles with a �xed area or perimeter, whose verties belongto a planar point set; estimating the maximum number of mutually ongruent simpliesdetermined by a point set in higher dimensions; et.Historial perspetive and overview. The �rst derivation of the tight upper boundI(P;L) = O(m2=3n2=3 +m+ n)2



was given by Szemer�edi and Trotter in their 1983 seminal paper [54℄. They proved Erd}os'onjeture, who found the mathing lower bound (whih was redisovered many years laterby Edelsbrunner andWelzl [27℄). A slightly di�erent lower bound onstrution was exhibitedby Elekes [28℄ (see Setion 2).The original proof of Szemer�edi and Trotter is rather involved, and yields a ratherastronomial onstant of proportionality hidden in the O-notation. A onsiderably simplerproof was found by Clarkson et al. [21℄ in 1990, using extremal graph theory ombined witha geometri partitioning tehnique based on random sampling (see Setion 3). Their paperontains many extensions and generalizations of the Szemer�edi-Trotter theorem. Manyfurther extensions an be found in subsequent papers by Edelsbrunner et al. [24, 25℄, byAgarwal and Aronov [1℄, by Aronov et al. [11℄, and by Pah and Sharir [43℄.The next breakthrough ourred in 1997. In a surprising paper, Sz�ekely [53℄ gave anembarrassingly short proof of the upper bound on I(P;L) using a simple lower boundof Ajtai et al. [8℄ and of Leighton [36℄ on the rossing number of a graph G, i.e., theminimum number of edge rossings in the best drawing of G in the plane, where the edgesare represented by Jordan ars. In the literature this result is often referred to as the`Crossing Lemma.' Sz�ekely's method an easily be extended to several other variants of theproblem, but appears to be less general than the previous tehnique of Clarkson et al. [21℄.Sz�ekely's paper has triggered an intensive re-examination of the problem. In partiular,several attempts were made to improve the existing upper bound on the number of ini-denes between m points and n irles of arbitrary radii in the plane [44℄. This was thesimplest instane where Sz�ekely's proof tehnique failed. By ombining Sz�ekely's methodwith a seemingly unrelated tehnique of Tamaki and Tokuyama [55℄ for utting irles into`pseudo-segments', Aronov and Sharir [14℄ managed to obtain an improved bound for thisvariant of the problem. Their work has then been followed by Agarwal et al. [2℄, who stud-ied the omplexity of many faes in arrangements of irles and pseudo-segments, and byAgarwal et al. [5℄, who extended this result to arrangements of pseudo-irles (see Setion5). Aronov et al. [12℄ generalized the problem to higher dimensions, while Sharir and Welzl[49℄ studied inidenes between points and lines in three dimensions (see Setion 6).The related problems involving distanes in a point set have also witnessed onsiderableprogress reently. As for the Repeated Distanes Problem in the plane, the best knownupper bound on the number of times the same distane an our among n points is O(n4=3),whih was obtained nearly 20 years ago by Spener et al. [52℄. This is far from the bestknown lower bound of Erd}os, whih is slightly super-linear (see [42℄). The best known upperbound for the 3-dimensional ase, due to Clarkson et al. [21℄, is roughly O(n3=2), while theorresponding lower bound of Erd}os is 
(n4=3 log log n) (see [41℄). Several variants of theproblem have been studied in [30℄.More progress has been made on the ompanion problem of Distint Distanes. In theplanar ase, L. Moser [40℄, Chung [17℄, and Chung et al. [20℄ proved that the number ofdistint distanes determined by n points in the plane is at least 
(n2=3), 
(n5=7). andn4=5 divided by a polylogarithmi fator, respetively. Sz�ekely [53℄ managed to get rid ofthe polylogarithmi fator, while Solymosi and T�oth [50℄ improved this bound to 
(n6=7).This was a real breakthrough. Their analysis was subsequently re�ned by Tardos [56℄ andthen by Katz and Tardos [35℄, who obtained the urrent reord of 
(n(48�14e)=(55�16e)�"),for any " > 0, whih is 
(n0:8641). This is getting lose to the best known upper bound3
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Figure 1: Elekes' onstrution.of O(n=plog n), due to Erd}os [29℄, but there is still a onsiderable gap (see Setion 7). Inthree dimensions, a reent result of Aronov et al. [13℄ yields a lower bound of 
(n77=141�"),for any " > 0, whih is 
(n0:546). This is still far from the best known upper bound ofO(n2=3). A better lower bound in a speial ase has reently been given by Solymosi andVu [51℄.For other surveys on related subjets, onsult [16℄, Chapter 4 of [38℄, [41℄, and [42℄.2 Lower BoundsWe desribe a simple onstrution due to Elekes [28℄ of a set P of m points and a set L ofn lines, so that I(P;L) = 
(m2=3n2=3 +m + n). We �x two integer parameters �; �. Wetake P to be the set of all lattie points in f1; 2; : : : ; �g�f1; 2; : : : ; 2��g. The set L onsistsof all lines of the form y = ax + b, where a is an integer in the range 1; : : : ; �, and b is aninteger in the range 1; : : : ; ��. Clearly, eah line in L passes through exatly � points of P .See Figure 1.We have m = jP j = 2�2�, n = jLj = ��2, andI(P;L) = �jLj = �2�2 = 
(m2=3n2=3):Given any sizes m;n so that n1=2 � m � n2, we an �nd �; � that give rise to sets P;Lwhose sizes are within a onstant fator of m and n, respetively. If m lies outside thisrange then m2=3n2=3 is dominated by m+ n, and then it is trivial to onstrut sets P;L ofrespetive sizes m;n so that I(P;L) = 
(m+ n). We have thus shown thatI(P;L) = 
(m2=3n2=3 +m+ n):We note that this onstrution is easy to generalize to inidenes involving other urves.For example, we an take P to be the grid f1; 2; : : : ; �g�f1; 2; : : : ; 3�2�g, and de�ne C to be4



the set of all parabolas of the form y = ax2 + bx+ , where a 2 f1; : : : ; �g, b 2 f1; : : : ; ��g, 2 f1; : : : ; �2�g. Now we have m = jP j = 3�3�, n = jCj = �3�3, andI(P;C) = �jCj = �4�3 = 
(m1=2n5=6):Note that in the onstrution we have m = O(n). When m is larger, we use the preedingonstrution for points and lines, whih an be easily transformed into a onstrution forpoints and parabolas, to obtain the overall lower bound for points and parabolas:I(P;C) = � 
(m2=3n2=3 +m); if m � n
(m1=2n5=6 + n); if m � n.These onstrutions an be generalized to inidenes involving graphs of polynomials ofhigher degrees.From inidenes to many faes. Let P be a set of m points and L a set of n lines inthe plane, and put I = I(P;L). Fix a suÆiently small parameter " > 0, and replae eahline ` 2 L by two lines `+; `�, obtained by translating ` parallel to itself by distane " inthe two possible diretions. We obtain a new olletion L0 of 2n lines. If " is suÆientlysmall then eah point p 2 P that is inident to k � 2 lines of L beomes a point that lies ina small fae of A(L0) that has 2k edges; note also that the irle of radius " entered at pis tangent to all these edges. Moreover, these faes are distint for di�erent points p, when" is suÆiently small.We have thus shown that K(P;L0) � 2I(P;L) � 2m (where the last term aounts forpoints that lie on just one line of L). In partiular, in view of the preeding onstrution,we have, for jP j = m, jLj = n,K(P;L) = 
(m2=3n2=3 +m+ n):An interesting onsequene of this onstrution is as follows. Take m = n and sets P;Lthat satisfy I(P;L) = �(n4=3). Let C be the olletion of the 2n lines of L0 and of the nirles of radius " entered at the points of P . By applying an inversion, we an turn allthe urves in C into irles. We thus obtain a set C 0 of 3n irles with �(n4=3) tangentpairs. If we replae eah of the irles entered at the points of P by irles with a slightlylarger radius, we obtain a olletion of 3n irles with �(n4=3) empty lenses, namely faesof degree 2 in their arrangement. Empty lenses play an important role in the analysis ofinidenes between points and irles; see Setion 5.Lower bounds for inidenes with unit irles. As noted, this problem is equivalentto the problem of Repeated Distanes. Erd}os [29℄ has shown that, for the verties of ann1=2 � n1=2 grid, there exists a distane that ours 
(n1+= log log n) times, for an appro-priate absolute onstant  > 0. The details of this analysis, based on number-theoretionsiderations, an be found in the monographs [38℄ and [42℄.Lower bounds for inidenes with arbitrary irles. As we will see later, we are stillfar from a sharp bound on the number of inidenes between points and irles, espeiallywhen the number of points is small relative to the number of irles.5



By taking sets P of m points and L of n lines with I(P;L) = �(m2=3n2=3+m+n), andby applying inversion to the plane, we obtain a set C of n irles and a set P 0 of m pointswith I(P 0; C) = �(m2=3n2=3 +m+ n). Hene the maximum number of inidenes betweenm points and n irles is 
(m2=3n2=3+m+n). However, we an slightly inrease this lowerbound, as follows.Let P be the set of verties of the m1=2 �m1=2 integer lattie. As shown by Erd}os [29℄,there are t = �(m=plogm) distint distanes between pairs of points of P . Draw a setC of mt irles, entered at the points of P and having as radii the t possible inter-pointdistanes. Clearly, the number of inidenes I(P;C) is exatly m(m� 1). If the bound onI(P;C) were O(m2=3n2=3 +m+ n), then we would havem(m� 1) = I(P;C) = O(m2=3(mt)2=3 +mt) = O(m2=((logm)1=3);a ontradition. This shows that, under the most optimisti onjeture, the maximumvalue of I(P;C) should be larger than the orresponding bound for lines by at least somepolylogarithmi fator.3 Upper Bounds for Inidenes via the Partition TehniqueThe approah presented in this setion is due to Clarkson et al. [21℄. It predated Sz�ekely'smethod, but it seems to be more exible, and suitable for generalizations. It an also beused for the re�nement of some proofs based on Sz�ekely's method.We exemplify this tehnique by establishing an upper bound for the number of point-lineinidenes. Let P be a set of m points and L a set of n lines in the plane. First, we give aweaker bound on I(P;L), as follows. Consider the bipartite graph H � P �L whose edgesrepresent all inident pairs (p; `), for p 2 P , ` 2 L. Clearly, H does not ontain K2;2 as asubgraph. By the K}ovari-S�os-Tur�an Theorem in extremal graph theory (see [42℄), we haveI(P;L) = O(mn1=2 + n): (1)To improve this bound, we partition the plane into subregions, apply this bound withineah subregion separately, and sum up the bounds. We �x a parameter r; 1 � r � n, whosevalue will be determined shortly, and onstrut a so-alled (1=r)-utting of the arrangementA(L) of the lines of L. This is a deomposition of the plane into O(r2) vertial trapezoidswith pairwise disjoint interiors, suh that eah trapezoid is rossed by at most n=r lines ofL. The existene of suh a utting has been established by Chazelle and Friedman [18℄,following earlier and somewhat weaker results of Clarkson and Shor [22℄. See [38℄ and [48℄for more details.For eah ell � of the utting, let P� denote the set of points of P that lie in the interiorof � , and let L� denote the set of lines that ross � . Put m� = jP� j and n� = jL� j � n=r.Using (1), we haveI(P� ; L� ) = O(m�n1=2� + n� ) = O�m� �nr �1=2 + nr� :Summing this over all O(r2) ells � , we obtain a total ofX� I(P� ; L� ) = O�m�nr �1=2 + nr�6



inidenes. This does not quite omplete the ount, beause we also need to onsider pointsthat lie on the boundary of the ells of the utting. A point p that lies in the relativeinterior of an edge e of the utting lies on the boundary of at most two ells, and any linethat passes through p, with the possible exeption of the single line that ontains e, rossesboth ells. Hene, we may simply assign p to one of these ells, and its inidenes (exeptfor at most one) will be ounted within the subproblem assoiated with that ell. Considerthen a point p whih is a vertex of the utting, and let ` be a line inident to p. Then` either rosses or bounds some adjaent ell � . Sine a line an ross the boundary of aell in at most two points, we an harge the inidene (p; `) to the pair (`; �), use the fatthat no ell is rossed by more than n=r lines, and onlude that the number of inidenesinvolving verties of the utting is at most O(nr).We have thus shown that I(P;L) = O�m�nr �1=2 + nr� :Choose r = m2=3=n1=3. This hoie makes sense provided that 1 � r � n. If r < 1, thenm < n1=2 and (1) implies that I(P;L) = O(n). Similarly, if r > n then m > n2 and (1)implies that I(P;L) = O(m). If r lies in the desired range, we get I(P;L) = O(m2=3n2=3).Putting all these bounds together, we obtain the boundI(P;L) = O(m2=3n2=3 +m+ n);as required.Remark. An equivalent statement is that, for a set P of m points in the plane, and forany integer k � m, the number of lines that ontain at least k points of P is at mostO�m2k3 + mk � :Disussion. The utting-based method is quite powerful, and an be extended in variousways. The rux of the tehnique is to derive somehow a weaker (but easier) bound on thenumber of inidenes, onstrut a (1=r)-utting of the set of urves, obtain the orrespondingdeomposition of the problem into O(r2) subproblems, apply the weaker bound within eahsubproblem, and sum up the bounds to obtain the overall bound. The work by Clarkson etal. [21℄ ontains many suh extensions.Let us demonstrate this method to obtain an upper bound for the number of inidenesbetween a set P of m points and a set C of n arbitrary irles in the plane. Here theforbidden subgraph property is that the inidene graph H � P �C does not ontain K3;2as a subgraph, and thus (see [42℄)I(P;C) = O(mn2=3 + n):We onstrut a (1=r)-utting for C, apply this weak bound within eah ell � of the utting,and handle inidenes that our on the ell boundaries exatly as above, to obtainI(P;C) =X� I(P� ; C� ) = O�m�nr �2=3 + nr� :7



With an appropriate hoie of r, this beomesI(P;C) = O(m3=5n4=5 +m+ n):However, as we shall see later, in Setion 5, this bound an be onsiderably improved.The ase of a set C of n unit irles is handled similarly, observing that in this ase theintersetion graph H does not ontain K2;3. This yields the same upper bound I(P;C) =O(mn1=2 + n), as in (1). The analysis then ontinues exatly as in the ase of lines, andyields the bound I(P;C) = O(m2=3n2=3 +m+ n):We an apply this bound to the Repeated Distanes Problem, realling that the numberof pairs of points in an n-element set of points in the plane that lie at distane exatly 1from eah other, is half the number of inidenes between the points and the unit irlesentered at them. Substituting m = n in the above bound, we thus obtain that the numberof repeated distanes is at most O(n4=3). This bound is far from the best known lowerbound, mentioned in Setion 2, and no improvements has been obtained sine its originalderivation in [52℄ in 1984.As a matter of fat, this approah an be extended to any olletion C of urves thathave \d degrees of freedom", in the sense that any d points in the plane determine at mostt = O(1) urves from the family that pass through all of them, and any pair of urvesinterset in only O(1) points. The inidene graph does not ontain Kd;t+1 as a subgraph,whih implies that I(P;C) = O(mn1�1=d + n):Combining this bound with a utting-based deomposition yields the boundI(P;C) = O(md=(2d�1)n(2d�2)=(2d�1) +m+ n):Note that this bound extrapolates the previous bounds for the ases of lines (d = 2), unitirles (d = 2), and arbitrary irles (d = 3). See [44℄ for a slight generalization of thisresult, using Sz�ekely's method, outlined in the following setion.4 Inidenes via Crossing Numbers|Sz�ekely's MethodA graph G is said to be drawn in the plane if its verties are mapped to distint points in theplane, and eah of its edges is represented by a Jordan ar onneting the orresponding pairof points. It is assumed that no edge passes through any vertex other than its endpoints,and that when two edges meet at a ommon interior point, they properly ross eah otherthere, i.e., eah urve passes from one side of the other urve to the other side. Suh a pointis alled a rossing. In the literature, a graph drawn in the plane with the above propertiesis often alled a topologial graph. If, in addition, the edges are represented by straight-linesegments, then the drawing is said to be a geometri graph.As we have indiated before, Sz�ekely disovered that the analysis outlined in the previoussetion an be substantially simpli�ed, applying the following so-alled Crossing Lemma forgraphs drawn in the plane. 8



Figure 2: Sz�ekely's graph for points and lines in the plane.Lemma 4.1 (Leighton [36℄, Ajtai et al. [8℄) Let G be a simple graph drawn in the planewith V verties and E edges. If E > 4V then there are 
(E3=V 2) rossing pairs of edges.To establish the lemma, denote by r(G) the minimum number of rossing pairs ofedges in any `legal' drawing of G. Sine G ontains too many edges, it is not planar, andtherefore r(G) � 1. In fat, using Euler's formula, a simple ounting argument shows thatr(G) � E � 3V +6 > E � 3V . We next apply this inequality to a random sample G0 of G,whih is an indued subgraph obtained by hoosing eah vertex of G independently withsome probability p. By applying expetations, we obtain E[r(G0)℄ � E[E0℄�3E[V 0℄, whereE0; V 0 are the numbers of edges and verties in G0, respetively. This an be rewritten asr(G)p4 � Ep2 � 3V p, and hoosing p = 4V=E ompletes the proof of Lemma 4.1.We remark that the onstant of proportionality in the asserted bound has been improvedby Pah and T�oth [46℄. They proved that r(G) � E3=(33:75V 2) whenever E � 7:5V . Infat, the slightly weaker inequality r(G) � E3=(33:75V 2) � 0:9V holds without any extraassumption. We also note that it is ruial that the graph G be simple (i.e., any two vertiesbe onneted by at most one edge), for otherwise no rossing an be guaranteed, regardlessof how large E is.Let P be a set of m points and L a set of n lines in the plane. We assoiate withP and L the following plane drawing of a graph G. The verties of (this drawing of) Gare the points of P . For eah line ` 2 L, we onnet eah pair of points of P \ ` thatare onseutive along ` by an edge of G, drawn as the straight segment between thesepoints (whih is ontained in `). See Figure 2 for an illustration. Clearly, G is a simplegraph, and, assuming that eah line of L ontains at least one point of P , we have V = mand E = I(P;L) � n (the number of edges along a line is smaller by 1 than the numberof inidenes with that line). Hene, either E < 4V , and then I(P;L) < 4m + n, orr(G) � E3=(V 2) = (I(P;L) � n)3=(m2). However, we have, trivially, r(G) � �n2�,implying that I(P;L) � (=2)1=3m2=3n2=3 + n � 2:57m2=3n2=3 + n.Extensions: Many faes and unit irles. The simple idea behind Sz�ekely's proofis quite powerful, and an be applied to many variants of the problem, as long as the9



p
qFigure 3: Sz�ekely's graph for points and unit irles in the plane: The maximum edgemultipliity is two|see the edges onneting p and q.orresponding graph G is simple, or, alternatively, has a bounded edge multipliity. Forexample, onsider the ase of inidenes between a set P of m points and a set C of nunit irles. Draw the graph G exatly as in the ase of lines, but only along irles thatontain more than two points of P , to avoid loops and multiple edges along the same irle.We have V = m and E � I(P;C) � 2n. In this ase, G need not be simple, but themaximum edge multipliity is at most two; see Figure 3. Hene, by deleting at most halfof the edges of G we make it into a simple graph. Moreover, r(G) � n(n � 1), so we getI(P;C) = O(m2=3n2=3 +m+ n), again with a rather small onstant of proportionality.We an also apply this tehnique to obtain an upper bound on the omplexity of manyfaes in an arrangement of lines. Let P be a set of m points and L a set of n lines in theplane, so that no point lies on any line and eah point lies in a distint fae of A(L). Thegraph G is now onstruted in the following slightly di�erent manner. Its verties are thepoints of P . For eah ` 2 L, we onsider all faes of A(L) that are marked by points of P ,are bounded by ` and lie on a �xed side of `. For eah pair f1; f2 of suh faes that areonseutive along ` (the portion of ` between �f1 and �f2 does not meet any other markedfae on the same side), we onnet the orresponding marking points p1; p2 by an edge, anddraw it as a polygonal path p1q1q2p2, where q1 2 ` \ �f1 and q2 2 ` \ �f2. We atuallyshift the edge slightly away from ` so as to avoid its overlapping with edges drawn for faeson the other side of `. The points q1; q2 an be hosen in suh a way that a pair of edgesmeet eah other only at intersetion points of pairs of lines of L. See Figure 4. Here wehave V = m, E � K(P;L) � 2n, and r(G) � 2n(n � 1) (eah pair of lines an give riseto at most four pairs of rossing edges, near the same intersetion point). Again, G is notsimple, but the maximum edge multipliity is at most two, beause, if two faes f1; f2 areonneted along a line `, then ` is a ommon external tangent to both faes. Sine f1 andf2 are disjoint onvex sets, they an have at most two external ommon tangents. Hene,arguing as above, we obtain K(P;L) = O(m2=3n2=3 +m + n). We remark that the sameupper bound an also be obtained via the partition tehnique, as shown by Clarkson etal. [21℄. Moreover, in view of the disussion in Setion 2, this bound is tight.10
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Figure 4: Sz�ekely's graph for fae-marking points and lines in the plane. The maximumedge multipliity is two|see, e.g., the edges onneting p and q.However, Sz�ekely's tehnique does not always apply. The simplest example where itfails is when we want to establish an upper bound on the number of inidenes betweenpoints and irles of arbitrary radii. If we follow the same approah as for equal irles, andonstrut a graph analogously, we may now reate edges with arbitrarily large multipliities,as is illustrated in Figure 5.Another ase where the tehnique fails is when we wish to bound the total omplexityof many faes in an arrangement of line segments. If we try to onstrut the graph in thesame way as we did for full lines, the faes may not be onvex any more, and we an reateedges of high multipliity; see Figure 6.5 Improvements by Cutting into Pseudo-segmentsConsider the ase of inidenes between points and irles of arbitrary radii. One way tooverome the tehnial problem in applying Sz�ekely's tehnique in this ase is to ut thegiven irles into subars so that any two of them interset at most one. We refer to suha olletion of subars as a olletion of pseudo-segments.The �rst step in this diretion has been taken by Tamaki and Tokuyama [55℄, who haveshown that any olletion C of n pseudo-irles, namely, losed Jordan urves, eah pairof whih interset at most twie, an be ut into O(n5=3) subars that form a family ofpseudo-segments. The union of two ars that belong to distint pseudo-irles and onnetthe same pair of points is alled a lens. Let �(C) denote the minimum number of pointsthat an be removed from the urves of C, so that any two members of the resulting familyof subars have at most one point in ommon. Clearly, every lens must ontain at leastone of these utting points, so Tamaki and Tokuyama's problem asks in fat for an upperbound on the number of points needed to \stab" all lenses. Equivalently, this problem an11
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Figure 5: Sz�ekely's graph need not be simple for points and arbitrary irles in the plane.
p qr

Figure 6: Sz�ekely's graph need not be simple for marked faes and segments in the plane:An arbitrarily large number of segments bounds all three faes marked by the points p; q; r,so the edges (p; r) and (r; q) in Sz�ekely's graph have arbitrarily large multipliity.
12



Figure 7: The boundaries of the shaded regions are nonoverlapping lenses in an arrangementof pseudo-irles.be reformulated, as follows.Consider a hypergraph H whose vertex set onsists of the edges of the arrangementA(C), i.e., the ars between two onseutive rossings. Assign to eah lens a hyperedgeonsisting of all ars that belong to the lens. We are interested in �nding the transversalnumber (or the size of the smallest \hitting set") of H, i.e., the smallest number of vertiesof H that an be piked with the property that every hyperedge ontains at least one ofthem. Based on Lov�asz' analysis [37℄ (see also [42℄) of the greedy algorithm for boundingthe transversal number from above (i.e., for onstruting a hitting set), this quantity isnot muh bigger than the size of the largest mathing in H, i.e., the maximum numberof pairwise disjoint hyperedges. This is the same as the largest number of pairwise non-overlapping lenses, that is, the largest number of lenses, no two of whih share a ommonedge of the arrangement A(C) (see Figure 7). Viewing suh a family as a graph G, whoseedges onnet pairs of urves that form a lens in the family, Tamaki and Tokuyama provedthat G does not ontain K3;3 as a subgraph, and this leads to the asserted bound on thenumber of uts.In order to establish an upper bound on the number of inidenes between a set of mpoints P and a set of n irles (or pseudo-irles) C, let us onstrut a modi�ed version G0of Sz�ekely's graph: its verties are the points of P , and its edges onnet adjaent pairs ofpoints along the new pseudo-segment ars. That is, we do not onnet a pair of points thatare adjaent along an original urve, if the ar that onnets them has been ut by somepoint of the hitting set. Moreover, as in the original analysis of Sz�ekely, we do not onnetpoints along pseudo-irles that are inident to only one or two points of P , to avoid loopsand trivial multipliities.Clearly, the graph G0 is simple, and the number E0 of its edges is at least I(P;C) ��(C)�2n. The rossing number of G0 is, as before, at most the number of rossings betweenthe original urves in C, whih is at most n(n � 1). Using the Crossing Lemma (Lemma4.1), we thus obtain I(P;C) = O(m2=3n2=3 + �(C) +m+ n):Hene, applying the Tamaki-Tokuyama bound on �(C), we an onlude thatI(P;C) = O(m2=3n2=3 + n5=3 +m):13



An interesting property of this bound is that it is tight when m � n3=2. In this ase,the bound beomes I(P;C) = O(m2=3n2=3 +m), mathing the lower bound for inidenesbetween points and lines, whih also serves as a lower bound for the number of inidenesbetween points and irles or parabolas. However, for smaller values of m, the term O(n5=3)dominates, and the dependene on m disappears. This an be reti�ed by ombining thisbound with a utting-based problem deomposition, similar to the one used in the preedingsetion, and we shall do so shortly.Before proeeding, though, we note that Tamaki and Tokuyama's bound is not tight.The best known lower bound is 
(n4=3), whih follows from the lower bound onstrution forinidenes between points and lines. (That is, we have already seen that this onstrutionan be modi�ed so as to yield a olletion C of n irles with �(n4=3) empty lenses. Clearly,eah suh lens requires a separate ut, so �(C) = 
(n4=3).) Reent work by Alon et al. [10℄,Aronov and Sharir [14℄, and Agarwal et al. [5℄ has led to improved bounds. Spei�ally,it was shown in [5℄ that �(C) = O(n8=5), for families C of pseudo-parabolas (graphs ofontinuous everywhere de�ned funtions, eah pair of whih interset at most twie), and,more generally, for families of x-monotone pseudo-irles (losed Jordan urves with thesame property, so that the two portions of their boundaries onneting their leftmost andrightmost points are graphs of two ontinuous funtions, de�ned on a ommon interval).In ertain speial ases, inluding the ases of irles and of vertial parabolas (i.e.,parabolas of the form y = ax2 + bx+ ), one an do better, and show that�(C) = O(n3=2�(n));where �(n) = (log n)O(�2(n));and where �(n) is the extremely slowly growing inverse Akermann's funtion. This boundwas established in [5℄, and it improves a slightly weaker bound obtained by Aronov etal. [14℄. The tehnique used for deriving this result is interesting in its own right, and raisesseveral deep open problems, whih we omit in this survey.With the aid of this improved bound on �(C), the modi�ation of Sz�ekely's methodreviewed above yields, for a set C of n irles and a set P of m points,I(P;C) = O(m2=3n2=3 + n3=2�(n) +m):As already noted, this bound is tight when it is dominated by the �rst or last terms, whihhappens when m is roughly larger than n5=4. For smaller values of m, we deompose theproblem into subproblems, using the following so-alled \dual" partitioning tehnique. Wemap eah irle (x � a)2 + (y � b)2 = �2 in C to the \dual" point (a; b; �2 � a2 � b2) in3-spae, and map eah point (�; �) of P to the \dual" plane z = �2�x� 2�y + (�2 + �2).As is easily veri�ed, eah inidene between a point of P and a irle of C is mapped toan inidene between the dual plane and point. We now �x a parameter r, and onstruta (1=r)-utting of the arrangement of the dual planes, whih partitions R3 into O(r3) ells(whih is a tight bound in the ase of planes), eah rossed by at most m=r dual planes andontaining at most n=r3 dual points (the latter property, whih is not an intrinsi propertyof the utting, an be enfored by further partitioning ells that ontain more than n=r3points). We apply, for eah ell � of the utting, the preeding bound for the set P� ofpoints of P whose dual planes ross � , and for the set C� of irles whose dual points lie14



in � . (Some speial handling of irles whose dual points lie on boundaries of ells of theutting is needed, as in Setion 3, but we omit the treatment of this speial ase.) Thisyields the boundI(P;C) = O(r3) � O��mr �2=3 � nr3�2=3 + � nr3�3=2 �� nr3�+ mr � =O m2=3n2=3r1=3 + n3=2r3=2 �� nr3�+mr2! :Assume that m lies between n1=3 and n5=4; it is not hard to handle the omplementaryases. Choosing r = n5=11=m4=11 in the last bound, we obtainI(P;C) = O(m2=3n2=3 +m6=11n9=11�(m3=n) +m+ n):6 Inidenes in Higher DimensionsIt is natural to extend the study of inidenes to instanes involving points and urves orsurfaes in higher dimensions. The ase of inidenes between points and (hyper)surfaes(mainly hyperplanes) has been studied earlier. Edelsbrunner et al. [25℄ onsidered inidenesbetween points and planes in three dimensions. It is important to note that, withoutimposing some restritions either on the set P of points or on the set H of planes, onean easily obtain jP j � jHj inidenes, simply by plaing all the points of P on a line, andmaking all the planes of H pass through that line. Some natural restritions are to requirethat no three points be ollinear, or that no three planes be ollinear, or that the pointsbe verties of the arrangement A(H), and so on. Di�erent assumptions lead to di�erentbounds. For example, Agarwal and Aronov [1℄ obtained an asymptotially tight bound�(m2=3nd=3+nd�1) for the number of inidenes between m verties of the arrangement ofn hyperplanes in d dimensions (see also [25℄), as well as for the number of faets boundingmdistint ells in suh an arrangement. Edelsbrunner and Sharir [26℄ onsidered the problemof inidenes between points and hyperplanes in four dimensions, under the assumptionthat all points lie on the upper envelope of the hyperplanes. They obtained the boundO(m2=3n2=3 +m + n) for the number of suh inidenes, and applied the result to obtainthe same upper bound on the number of bihromati minimal distane pairs between a setof m blue points and a set of n red points in three dimensions.The ase of inidenes between points and urves in higher dimensions has been studiedonly reently. There are only two papers that address this problem. One of them, by Sharirand Welzl [49℄, studies inidenes between points and lines in 3-spae. The other, by Aronovet al. [12℄, is onerned with inidenes between points and irles in higher dimensions.Both works were motivated by problems asked by Elekes. We briey review these result inthe following two subsetions.6.1 Points and lines in three dimensionsLet P be a set of m points and L a set of n lines in 3-spae. Without making some assump-tions on P and L, the problem is trivial, for the following reason. Projet P and L onto some15



generi plane. Inidenes between points of P and lines of L are bijetively mapped to ini-denes between the projeted points and lines, so we have I(P;L) = O(m2=3n2=3 +m+ n).Moreover, this bound is tight, as is shown by the planar lower bound onstrution. (As amatter of fat, this redution holds in any dimension d � 3.)There are several ways in whih the problem an be made interesting. First, supposethat the points of P are joints in the arrangement A(L), namely, eah point is inident to atleast three non-oplanar lines of L. In this ase, one has I(P;L) = O(n5=3) [49℄. Note thatthis bound is independent of m. In fat, it is known that the number of joints is at mostO(n23=14 log31=14 n), whih is O(n1:643) [47℄ (the best lower bound, based on lines forming aube grid, is only 
(n3=2)).For general point sets P , one an use a new measure of inidenes, whih aims to ignoreinidenes between a point and many inident oplanar lines. Spei�ally, we de�ne theplane over �L(p) of a point p to be the minimum number of planes that pass through p sothat their union ontains all lines of L inident to p, and de�ne I(P;L) =Pp2P �L(p). Itis shown in [49℄ that I(P;L) = O(m4=7n5=7 +m+ n);whih is smaller than the planar bound of Szemer�edi and Trotter.Another way in whih we an make the problem \truly 3-dimensional" is to require thatall lines in L be equally inlined, meaning that eah of them forms a �xed angle (say, 45Æ)with the z-diretion. In this ase, every point of P that is inident to at least three lines ofL is a joint, but this speial ase admits better upper bounds. Spei�ally, we haveI(P;L) = O(minnm3=4n1=2�(m);m4=7n5=7o+m+ n):The best known lower bound is I(P;L) = 
(m2=3n1=2):Let us briey sketh the proof of the upper bound. For eah p 2 P let Cp denote the(double) one whose apex is p, whose symmetry axis is the vertial line through p, andwhose opening angle is 45Æ. Fix some generi horizontal plane �0, and map eah p 2 Pto the irle Cp \ �0. Eah line ` 2 L is mapped to the point ` \ �0, oupled with theprojetion `� of ` onto �0. Note that an inidene between a point p 2 P and a line ` 2 Lis mapped to the on�guration in whih the irle dual to p is inident to the point dualto ` and the projetion of ` passes through the enter of the irle; see Figure 8. Hene, ifa line ` is inident to several points p1; : : : ; pk 2 P , then the dual irles p�1; : : : ; p�k are alltangent to eah other at the ommon point `\ �0. Viewing these tangenies as a olletionof degenerate lenses, we an bound the overall number of these tangenies, whih is equalto I(P;L), by O(n3=2�(n)). By a slightly more areful analysis, again based on utting, onean obtain the bound stated above.6.2 Points and irles in three and higher dimensionsLet C be a set of n irles and P a set ofm points in 3-spae. Unlike in the ase of lines, thereis no obvious redution of the problem to a planar one, beause the projetion of C ontosome generi plane yields a olletion of ellipses, rather than irles, whih an ross eah16
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Figure 8: Transforming inidenes between points and equally inlined lines to tangeniesbetween irles in the plane.other at four points per pair. However, using a more re�ned analysis, Aronov et al. [12℄ haveobtained the same asymptoti bound of I(P;C) = O(m2=3n2=3+m6=11n9=11�(m3=n)+m+n)for I(P;C). The same bound applies in any dimension d � 3.7 AppliationsThe problem of bounding the number of inidenes between various geometri objets iselegant and fasinating, and it has been mostly studied for its own sake. However, it islosely related to a variety of questions in ombinatorial and omputational geometry. Inthis setion, we briey review some of these onnetions and appliations.7.1 Algorithmi issuesThere are two types of algorithmi problems related to inidenes. The �rst group inludesproblems where we wish to atually determine the number of inidenes between ertainobjets, e.g., between given sets of points and urves, or we wish to ompute (desribe) aolletion of marked faes in an arrangement of urves or surfaes. The seond group on-tains ompletely di�erent questions whose solution requires tools and tehniques developedfor the analysis of inidene problems.In the simplest problem of the �rst kind, known as Hoproft's problem, we are givena set P of m points and a set L of n lines in the plane, and we ask whether there existsat least one inidene between P and L. The best running time known for this problem isO(m2=3n2=3 �2O(log�(m+n))) [39℄ (see [33℄ for a mathing lower bound). Similar running timebounds hold for the problems of ounting or reporting all the inidenes in I(P;L). Thesolutions are based on onstruting uttings of an appropriate size and thereby obtaininga deomposition of the problem into subproblems, eah of whih an be solved by a morebrute-fore approah. In other words, the solution an be viewed as an implementation ofthe utting-based analysis of the ombinatorial bound for I(P;L), as presented in Setion 3.The ase of inidenes between a set P ofm points and a set C of n irles in the plane ismore interesting, beause the analysis that leads to the urrent best upper bound on I(P;C)17



is not easy to implement. In partiular, suppose that we have already ut the irles of C intoroughly O(n3=2) pseudo-segments (an interesting and non-trivial algorithmi task in itself),and we now wish to ompute the inidenes between these pseudo-segments and the pointsof P . Sz�ekely's tehnique is non-algorithmi, so instead we would like to apply the utting-based approah to these pseudo-segments and points. However, this approah, for the aseof lines, after deomposing the problem into subproblems, proeeds by duality. Spei�ally,it maps the points in a subproblem to dual lines, onstruts the arrangement of thesedual lines, and loates in the arrangement the points dual to the lines in the subproblem.When dealing with the ase of pseudo-segments, there is no obvious inidene-preservingduality that maps them to points and maps the points to pseudo-lines. Nevertheless, suha duality has been reently de�ned by Agarwal and Sharir [7℄ (re�ning an older and lesseÆient duality given by Goodman [34℄), whih an be implemented eÆiently and thusyields an eÆient algorithm for omputing I(P;C), whose running time is omparable withthe bound on I(P;C) given above. A similar approah an be used to ompute many faesin arrangements of pseudo-irles; see [2℄ and [7℄.The utting-based approah has by now beome a standard tool in the design of eÆientgeometri algorithms in a variety of appliations in range searhing, geometri optimization,ray shooting, and many others. It is beyond the sope of this survey to disuss theseappliations, and the reader is referred, e.g., to the survey of Agarwal and Erikson [3℄ andto the referenes therein.7.2 Distint distanesThe above tehniques an be applied to obtain some nontrivial results onerning Erd}os'Distint Distanes problem [29℄ formulated in the Introdution: what is the minimumnumber of distint distanes determined by n points in the plane? As we have indiatedafter presenting the proof of the Crossing Lemma (Lemma 4.1), Sz�ekely's idea an also beapplied in several situations where the underlying graph is not simple, i.e., two verties anbe onneted by more than one edge. However, for the method to work it is important tohave an upper bound for the multipliity of the edges. Sz�ekely [53℄ formulated the followingnatural generalization of Lemma 4.1.Lemma. Let G be a multigraph drawn in the plane with V verties, E edges, and withmaximal edge-multipliity M . Then there are 
� E3MV 2��O(M2V ) rossing pairs of edges.Sz�ekely applied this statement to the Distint Distanes problem, and improved by apolylogarithmi fator the best previously known lower bound of Chung et al. [20℄ on theminimum number of distint distanes determined by n points in the plane. His new boundwas 
(n4=5). However, Solymosi and T�oth [50℄ have realized that, ombining Sz�ekely'smethod with the Szemer�edi-Trotter theorem for the number of inidenes between m pointsand n lines in the plane, this lower bound an be substantially improved. They managedto raise the bound to 
(n6=7). Later, Tardos and Katz have further improved this result,using the same general approah, but improving upon a key algebrai step of the analysis.In their latest paper [35℄, they ombined their methods to prove that the minimum numberof distint distanes determined by n points in the plane is 
(n(48�14e)=(55�16e)�"), for any" > 0, whih is 
(n0:8641). This is the best known result so far. A lose inspetion of thegeneral Solymosi-T�oth approah shows that, without any additional geometri idea, it annever lead to a lower bound better than 
(n8=9).18



7.3 Equal-area, equal-perimeter, and isoeles trianglesLet P be a set of n points in the plane. We wish to bound the number of triangles spannedby the points of P that have a given area, say 1. To do so, we note that if we �x two pointsa; b 2 P , any third point p 2 P for whih Area(�abp) = 1 lies on a �xed line `ab parallelto ab. Pairs (a; b) for whih the line `ab ontains fewer than n1=3 points of P generate atmost O(n7=3) unit area triangles. For the other pairs, we observe that the number of linesontaining more than n1=3 points of P is at most O(n2=(n1=3)3) = O(n), whih, as alreadymentioned, is an immediate onsequene of the Szemer�edi-Trotter theorem. The numberof inidenes between these lines and the points of P is at most O(n4=3). We next observethat any line ` an be equal to `ab for at most n pairs a; b, beause, given ` and a, there anbe at most two points b for whih ` = `ab. It follows that the lines ontaining more thann1=3 points of P an be assoiated with at most O(n � n4=3) = O(n7=3) unit area triangles.Hene, overall, P determines at most O(n7=3) unit area triangles.Next, onsider the problem of estimating the number of unit perimeter triangles deter-mined by P . Here we note that if we �x a; b 2 P , with jabj < 1, any third point p 2 P forwhih Perimeter(�abp) = 1 lies on an ellipse whose foi are a and b and whose major axisis 1 � jabj. Clearly, any two distint pairs of points of P give rise to distint ellipses, andthe number of unit perimeter triangles determined by P is equal to one third of the numberof inidenes between these O(n2) ellipses and the points of P . The set of these ellipses hasfour degrees of freedom, in the sense of Pah and Sharir [44℄ (see also Setion 3), and henethe number of inidenes between them and the points of P , and onsequently the numberof unit perimeter triangles determined by P , is at mostO(n4=7(n2)6=7) = O(n16=7):Finally, onsider the problem of estimating the number of isoseles triangles determinedby P . Reently, Pah and Tardos [45℄ proved that the number of isoseles triangles induedby triples of an n-element point set in the plane is O(n(11�3�)=(5��)) (where the onstantof proportionality depends on �), provided that 0 < � < 10�3e24�7e . In partiular, the numberof isoeles triangles is O(n2:136). The proof proeeds through two steps, interesting in theirown right.(i) Let P be a set of n distint points and let C be a set of ` distint irles in the plane,withm � ` distint enters. Then, for any 0 < � < 1=e, the number I of inidenes betweenthe points in P and the irles of C isO �n+ `+ n 23 ` 23 + n 47m 1+�7 ` 5��7 + n 12+4�21+3�m 3+5�21+3� ` 15�3�21+3� + n 8+2�14+�m 2+2�14+� ` 10�2�14+� � ;where the onstant of proportionality depends on �.(ii) As a orollary, we obtain the following statement. Let P be a set of n distint pointsand let C be a set of ` distint irles in the plane suh that they have at most n distintenters. Then, for any 0 < � < 1=e, the number of inidenes between the points in P andthe irles in C is O �n 5+3�7+� ` 5��7+� + n� :In view of a reent result of Katz and Tardos [35℄, both statements extend to all 0 <� < 10�3e24�7e , whih easily implies the above bound on the number of isoseles triangles.19



7.4 Congruent simpliesBounding the number of inidenes between points and irles in higher dimensions anbe applied to the following interesting question asked by Erd}os and Purdy [31, 32℄ anddisussed by Agarwal and Sharir [6℄. Determine the largest number of simplies ongruentto a �xed simplex �, whih an be spanned by an n-element point set P � Rk?Here we onsider only the ase when P � R4 and � = abd is a 3-simplex. Fix threepoints p; q; r 2 P suh that the triangle pqr is ongruent to the fae ab of �. Then anyfourth point v 2 P for whih pqrv is ongruent to � must lie on a irle whose plane isorthogonal to the triangle pqr, whose radius is equal to the height of � from d, and whoseenter is at the foot of that height. Hene, bounding the number of ongruent simplies anbe redued to the problem of bounding the number of inidenes between irles and pointsin 4-spae. (The atual redution is slightly more involved, beause the same irle anarise for more than one triangle pqr; see [6℄ for details.) Using the bound of [12℄, mentionedin Setion 6, one an dedue that the number of ongruent 3-simplies determined by npoints in 4-spae is O(n20=9+"), for any " > 0.Referenes[1℄ P.K. Agarwal and B. Aronov, Counting faets and inidenes, Disrete Comput. Geom.7 (1992) 359{369.[2℄ P. Agarwal, B. Aronov and M. Sharir, On the omplexity of many faes in arrangementsof pseudo-segments and of irles, to appear in Disrete and Computational Geometry|The Goodman-Pollak Festshrift. Also in Pro. 42nd IEEE Symp. on Foundations ofComputer Siene (2001), 74{83.[3℄ P.K. Agarwal and J. Erikson, Geometri range searhing and its relatives, in: Advanesin Disrete and Computational Geometry (B. Chazelle, J. E. Goodman and R. Pollak,eds.), AMS Press, Providene, RI, 1998, pp. 1{56.[4℄ P. Agarwal, A. Efrat and M. Sharir, Vertial deomposition of shallow levels in 3-dimensional arrangements and its appliations, SIAM J. Comput. 29 (2000), 912{953.[5℄ (P.K. Agarwal,) E. Nevo, J. Pah, R. Pinhasi, M. Sharir and S. Smorodinsky, Lenses inarrangements of pseudoirles and their appliations, Pro. 18th ACM Symp. on Com-putational Geometry (2002), 123{132.[6℄ P. Agarwal and M. Sharir, On the number of ongruent simplies in a point set, DisreteComput. Geom. 28 (2002), 123{150.[7℄ P. Agarwal and M. Sharir, Pseudoline arrangements: Duality, algorithms and applia-tions, Pro. 13th ACM-SIAM Symp. on Disrete Algorithms (2002), 781{790.[8℄ M. Ajtai, V. Chv�atal, M. Newborn and E. Szemer�edi, Crossing-free subgraphs, Ann.Disrete Math 12 (1982), 9{12.[9℄ T. Akutsu, H. Tamaki and T. Tokuyama, Distribution of distanes and triangles in apoint set and algorithms for omputing the largest ommon point set, Disrete Comput.Geom. 20 (1998), 307{331. 20
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