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1 Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, Germany
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Abstract. Let G be a multigraph with n vertices and e > 4n edges,
drawn in the plane such that any two parallel edges form a simple closed
curve with at least one vertex in its interior. Pach and Tóth [5] extended
the Crossing Lemma of Ajtai et al. [1] and Leighton [3] by showing that if
no two adjacent edges cross and every pair of nonadjacent edges cross at
most once, then the number of edge crossings in G is at least αe3/n2, for
a suitable constant α > 0. The situation turns out to be quite different if
nonparallel edges are allowed to cross any number of times. It is proved
that in this case the number of crossings in G is at least αe2.5/n1.5. The
order of magnitude of this bound cannot be improved.

1 Introduction

In this paper, multigraphs may have parallel edges but no loops. A topological
graph (or multigraph) is a graph (multigraph) G drawn in the plane with the
property that every vertex is represented by a point and every edge uv is repre-
sented by a curve (continuous arc) connecting the two points corresponding to
the vertices u and v. We assume, for simplicity, that the points and curves are in
“general position”, that is, (a) no edge passes through any vertex different from
its endpoints; (b) any pair of edges intersect in at most finitely many points; (c)
if two edges share an interior point, then they properly cross at this point; and
(d) no 3 edges cross at the same point. Throughout this paper, every multigraph
G is a topological multigraph, that is, G is considered with a fixed drawing that
is given from the context. In notation and terminology, we then do not distin-
guish between the vertices (edges) and the points (curves) representing them.
The number of crossing points in the considered drawing of G is called its cross-
ing number, denoted by cr(G). (I.e., cr(G) is defined for topological multigraphs
rather than abstract multigraphs.)

The classic “crossing lemma” of Ajtai, Chvátal, Newborn, Szemerédi [1] and
Leighton [3] gives an asymptotically best-possible lower bound on the crossing
number in any n-vertex e-edge topological graph without loops or parallel edges,
provided e > 4n.



Theorem A (Crossing Lemma, Ajtai et al. [1] and Leighton [3]) There
is an absolute constant α > 0, such that for any n-vertex e-edge topological graph
G we have

cr(G) ≥ α e
3

n2
, provided e > 4n.

In general, the Crossing Lemma does not hold for topological multigraphs
with parallel edges, as for every n and e there are n-vertex e-edge topological
multigraphs G with cr(G) = 0. Székely proved the following variant for multi-
graphs by restricting the edge multiplicity, that is the maximum number of
pairwise parallel edges, in G to be at most m.

Theorem B (Székely [6]) There is an absolute constant α > 0 such that for
any m ≥ 1 and any n-vertex e-edge multigraph G with edge multiplicity at most m
we have

cr(G) ≥ α e3

mn2
, provided e > 4mn.

Most recently, Pach and Tóth [5] extended the Crossing Lemma to so-called
branching multigraphs. We say that a topological multigraph is

– separated if any pair of parallel edges form a simple closed curve with at least
one vertex in its interior and at least one vertex in its exterior,

– single-crossing if any pair of edges cross at most once (that is, edges sharing
k endpoints, k ∈ {0, 1, 2}, may have at most k + 1 points in common), and

– locally starlike if no two adjacent edges cross (that is, edges sharing k end-
points, k ∈ {1, 2}, may not cross).

A topological multigraph is branching if it is separated, single-crossing and locally
starlike. Note that the edge multiplicity of a branching multigraph may be as
high as n− 2.

Theorem C (Pach and Tóth [5]) There is an absolute constant α > 0 such
that for any n-vertex e-edge branching multigraph G we have

cr(G) ≥ α e
3

n2
, provided e > 4n.

In this paper we generalize Theorem C by showing that the Crossing Lemma
holds for all topological multigraphs that are separated and locally starlike, but
not necessarily single-crossing. We also prove a Crossing Lemma variant for
separated (and not necessarily locally starlike) multigraphs, where however the

term α e3

n2 must be replaced by α e2.5

n1.5 . Both results are best-possible up to the
value of constant α.

Theorem 1. There is an absolute constant α > 0 such that for any n-vertex
e-edge topological multigraph G with e > 4n we have

(i) cr(G) ≥ α e3

n2 , if G is separated and locally starlike.



(ii) cr(G) ≥ α e2.5

n1.5 , if G is separated.

Moreover, both bounds are best-possible up to the constant α.

We prove Theorem 1 in Section 3. Our arguments hold in a more general
setting, which we present in Section 2. In Section 4 we use this general setting
to deduce other known Crossing Lemma variants, including Theorem B. We
conclude the paper with some open questions in Section 5.

2 A Generalized Crossing Lemma

In this section we consider general drawing styles and propose a generalized
Crossing Lemma, which will subsume all Crossing Lemma variants mentioned
here. A drawing style D is a predicate over the collection of all topological
drawings, i.e., for each topological drawing of a multigraph G we specify whether
G is in drawing style D or not. We say that G is a multigraph in drawing style
D when G is a topological multigraph whose drawing is in drawing style D.

In order to prove our generalized Crossing Lemma, we follow the line of
arguments of Pach and Tóth [5] for branching multigraphs. Their main tool
is a bisection theorem for branching drawings, which easily generalizes to all
separated drawings. We generalize their definition as follows.

Definition 1 (D-bisection width). For a drawing style D the D-bisection
width bD(G) of a multigraph G in drawing style D is the smallest number of
edges whose removal splits G into two multigraphs, G1 and G2, in drawing style
D with no edge connecting them such that |V (G1)|, |V (G2)| ≥ n/5.

Given a topological multigraph G, we call any operation of the following form
a vertex split : (1) Replace a vertex v of G by two vertices v1 and v2 and (2) by
locally modifying the edges in a small neighborhood of v, connect each edge in
G incident to v to either v1 or v2 in such a way that no new crossing is created.

We say that a drawing style is monotone and split-compatible if removing
edges and performing vertex splits both retains the drawing style, that is, D is
monotone and split-compatible if for every multigraph G in drawing style D for
any edge removal, as well as, any vertex split, the resulting multigraph with its
inherited drawing from G is again in drawing style D.

Note that we require a monotone drawing style to be retained only while
removing edges, but not necessarily while removing vertices. For example, the
branching drawing style is in general not maintained after removing a vertex,
since a closed curve formed by a pair of parallel edges might become empty.

We are now ready to state our main result.

Theorem 2 (generalized Crossing Lemma). Suppose D is a monotone and
split-compatible drawing style, and that there are constants k1, k2, k3 > 0 and
b > 1 such that each of the following holds for every n′-vertex e′-edge multigraph
G′ in drawing style D:



(P1) If cr(G′) = 0, then the edge count satisfies e′ ≤ k1 · n′.
(P2) The D-bisection width satisfies bD(G′) ≤ k2

√
cr(G′) +∆(G′) · e′ + n′.

(P3) The edge count satisfies e′ ≤ k3n′b.

Then there exists an absolute constant α > 0 such that for any n-vertex e-edge
multigraph G in drawing style D we have

cr(G) ≥ α e
x(b)+2

nx(b)+1
, provided e > (k1 + 1)n,

where x(b) := 1/(b− 1) and α = αb ·k−22 ·k
−x(b)
3 for some constant αb depending

only on b.

Lemma 1. If there exist for arbitrarily large n multigraphs in drawing style D
with n vertices and e = Θ(nb) edges such that any two edges cross at most a
constant number of times, then the bound in Theorem 2 is asymptotically tight.

Proof. Consider such an n-vertex e-edge multigraph in drawing style D. Clearly,
there are at most O(e2) = O(n2b) crossings, while Theorem 2 gives with x(b) =
1/(b− 1) that there are at least

Ω

(
ex(b)+2

nx(b)+1

)
= Ω

(
ex(b)+2

nb·x(b)

)
= Ω

(
nb·x(b)+2b

nb·x(b)

)
= Ω

(
n2b
)

crossings.

2.1 Proof of Theorem 2

We define an absolute constant

α :=
1

22x(b)+14
· 1

k22
· 1

k
x(b)
3

(1)

Now let G̃ be a fixed multigraph in drawing style D with ñ vertices and
ẽ > (k1 + 1)ñ edges. Let G′ be an edge-maximal subgraph of G̃ on vertex
set V (G̃) such that the inherited drawing of G′ has no crossings. Since D is
monotone, G′ is in drawing style D. Hence, by (P1), for the number e′ of edges
in G′ we have e′ ≤ k1 · n′ = k1 · ñ. Since G′ is edge-maximal crossing-free, each
edge in E(G̃)− E(G′) has at least one crossing with an edge in E(G′). Thus

cr(G̃) ≥ ẽ− e′ ≥ ẽ− k1ñ > ñ. (2)

In case ẽ ≤ δñ for δ := α−1/(x(b)+2), we get

cr(G̃)
(2)
> ñ ≥ α · ẽ

x(b)+2

ñx(b)+1
,

as desired. To prove Theorem 2, suppose for the sake of contradiction, that
ẽ > δñ and that the number of crossings in G̃ satisfies

cr(G̃) < α · ẽ
x(b)+2

ñx(b)+1
.



Let d denote the average degree of the vertices of G̃, that is, d = 2ẽ/ñ. For
every vertex v ∈ V (G̃) whose degree, deg(v, G̃), is larger than d, we perform
ddeg(v, G̃)/de − 1 vertex splits so as to split v into ddeg(v, G̃)/de vertices, each
of degree at most d. At the end of the procedure, we obtain a multigraph G with
e = ẽ edges, n < 2ñ vertices, and maximum degree ∆(G) ≤ d = 2ẽ/ñ < 4e/n.
Moreover, as D is split-compatible, G is in drawing style D. For the number of
crossings in G, we have

cr(G) = cr(G′) < α · ẽ
x(b)+2

ñx(b)+1
< 2x(b)+1α · e

x(b)+2

nx(b)+1
. (3)

Moreover, recall that

e > δñ > δ
n

2
for δ =

1

α1/(x(b)+2)
. (4)

We break G into smaller parts, according to the following procedure. At each
step the parts form a partition of the entire vertex set V (G).

Decomposition Algorithm

Step 0.
. Let G0 = G,G0

1 = G,M0 = 1,m0 = 1.

Suppose that we have already executed Step i, and that the
resulting graph in drawing style D, Gi, consists of Mi parts,
Gi

1, G
i
2, . . . , G

i
Mi

, each having at most (4/5)in vertices. Assume

without loss of generality that the first mi parts of Gi have at
least (4/5)i+1n vertices and the remaining Mi −mi have fewer.
Letting n(Gi

j) denote the number of vertices of the part Gi
j , we

have

(4/5)i+1n(G) ≤ n(Gi
j) ≤ (4/5)in(G), 1 ≤ j ≤ mi. (5)

Hence,
mi ≤ (5/4)i+1. (6)

Step i+ 1.
. If

(4/5)i <
1

(2k3)x(b)
· ex(b)

nx(b)+1
, (7)

then stop.
. Else, for j = 1, 2, . . . ,mi, delete bD(Gi

j) edges from Gi
j , as

guaranteed by (P2), such that Gi
j falls into two parts, each of

which is in drawing style D and contains at most (4/5)n(Gi
j)

vertices. Let Gi+1 denote the resulting graph on the original set
of n vertices.

Clearly, each part of Gi+1 has at most (4/5)i+1n vertices.



Suppose that the Decomposition Algorithm terminates in Step k + 1. If
k > 0, then

(4/5)k <
1

(2k3)x(b)
· ex(b)

nx(b)+1
≤ (4/5)k−1. (8)

First, we give an upper bound on the total number of edges deleted from G.
Using the fact that, for any nonnegative numbers a1, . . . , am,

m∑
j=1

√
aj ≤

√√√√m

m∑
j=1

aj , (9)

we obtain that, for any 0 ≤ i ≤ k,

mi∑
j=1

√
cr(Gi

j)
(9)

≤

√√√√mi

mi∑
j=1

cr(Gi
j)

(6)

≤
√

(5/4)i+1
√

cr(G)

(3)
<
√

(5/4)i+1

√
2x(b)+1α · e

x(b)+2

nx(b)+1
. (10)

Letting e(Gi
j) and ∆(Gi

j) denote the number of edges and maximum degree in

part Gi
j , respectively, we obtain similarly

mi∑
j=1

√
∆(Gi

j) · e(Gi
j) + n(Gi

j)
(9)

≤

√√√√√mi

mi∑
j=1

∆(Gi
j) · e(Gi

j) + n(Gi
j)


(6)

≤
√

(5/4)i+1
√
∆(G) · e+ n ≤

√
(5/4)i+1

√
4e

n
e+ n

<
√

(5/4)i+1

√
5e2

n
<
√

(5/4)i+1
3e√
n
, (11)

where we used in the last line the fact that n < e.
Using a partial sum of a geometric series we get

k∑
i=0

(
√

5/4)i+1 =
(
√

5/4)k+2 − 1√
5/4− 1

− 1 <
(
√

5/4)3√
5/4− 1

· (
√

5/4)k−1 < 12 · (
√

5/4)k−1

(12)
Thus, by (P2), the total number of edges deleted during the decomposition
procedure is

k∑
i=0

mi∑
j=1

bD(Gi
j) ≤ k2

k∑
i=0

mi∑
j=1

√
cr(Gi

j) +∆(Gi
j) · e(Gi

j) + n(Gi
j)

≤ k2

 k∑
i=0

mi∑
j=1

√
cr(Gi

j) +

k∑
i=0

mi∑
j=1

√
∆(Gi

j) · e(Gi
j) + n(Gi

j)





(10),(11)

≤ k2

(
k∑

i=0

√
(5/4)i+1

)(√
2x(b)+1α · e

x(b)+2

nx(b)+1
+

3e√
n

)
(12)
< k2 · 12

√
(5/4)k−1

(√
2x(b)+1α · e

x(b)+2

nx(b)+1
+

3e√
n

)
(8)
< k2 · 12

√
(2k3)x(b) · n

x(b)+1

ex(b)

(√
2x(b)+1α · e

x(b)+2

nx(b)+1
+

3e√
n

)

< k2 · 36 ·
√
k
x(b)
3

(
2x(b)
√
αe+

√
2x(b)nx(b)

ex(b)−2

)
(4)
< k2 · 36 ·

√
k
x(b)
3

(
2x(b)
√
α+

√
1

δx(b)

)
e

(4)
= k2 · 36 ·

√
k
x(b)
3

(
2x(b)
√
α+

√
α

x(b)
x(b)+2

)
e < k2 ·

√
k
x(b)
3 · 2x(b)+6

√
αe

(1)
=

e

2
.

(13)

By (13) the Decomposition Algorithm removes less than half of the edges
of G if k > 0. Hence, the number of edges of the graph Gk obtained in the final
step of this procedure satisfies

e(Gk) >
e

2
. (14)

(Note that this inequality trivially holds if the algorithm terminates in the very
first step, i.e., when k = 0.)

Next we shall give an upper bound on e(Gk) that contradicts (14). The
number of vertices of each part Gk

j of Gk satisfies

n(Gk
j ) ≤ (4/5)kn

(8)
<

(
1

(2k3)x(b)
· ex(b)

nx(b)+1

)
n =

(
e

2 · k3 · n

)x(b)

, 1 ≤ j ≤Mk.

Hence

n(Gk
j )b−1 <

(
e

2 · k3 · n

)x(b)(b−1)

=
e

2 · k3 · n
,

since x(b) = 1/(b− 1) and hence x(b)(b− 1) = 1.
By (P3), we have

e(Gk
j ) ≤ k3 · n(Gk

j )b < k3 · n(Gk
j ) · e

2 · k3 · n
= n(Gk

j ) · e
2n
.

Therefore, for the total number of edges of Gk we have

e(Gk) =

Mk∑
j=1

e(Gk
j ) <

e

2n

Mk∑
j=1

n(Gk
j ) =

e

2
,

contradicting (14). This completes the proof of Theorem 2. ut



3 Separated Multigraphs

We derive our Crossing Lemma variants for separated multigraphs (Theorem 1)
from the generalized Crossing Lemma (Theorem 2) presented in Section 2. Let
us denote the separated drawing style by Dsep and the separated and locally
starlike drawing style by Dloc−star. In order to apply Theorem 2, we shall find
for D = Dsep, Dloc−star (1) the largest number of edges in a crossing-free n-
vertex multigraph in drawing style D, (2) an upper bound on the D-bisection
width of multigraphs in drawing style D, and (3) an upper bound on the number
of edges in any n-vertex multigraph in drawing style D.

As for crossing-free multigraphs Dsep and Dloc−star are equivalent to the
branching drawing style, we can rely on the the following Lemma of Pach and
Tóth.

Lemma 2 (Pach and Tóth [5]). Any n-vertex crossing-free branching multi-
graph, n ≥ 3, has at most 3n− 6 edges.

Corollary 1. Any n-vertex crossing-free multigraph in drawing style Dsep or
Dloc−star, n ≥ 3, has at most 3n− 6 edges.

Also we can derive the bounds on the D-bisection width from the correspond-
ing bound for the branching drawing style due to Pach and Tóth.

Lemma 3 (Pach and Tóth [5]). For any multigraph G in the branching draw-
ing style D with n vertices of degrees d1, d2, . . . , dn, and with cr(G) crossings,
the D-bisection width of G satisfies

bD(G) ≤ 22

√√√√cr(G) +

n∑
i=1

d2i + n.

Lemma 4. For D = Dsep, Dloc−star any multigraph G in the drawing style D
with n vertices, e edges, maximum degree ∆(G), and with cr(G) crossings, the
D-bisection width of G satisfies

bD(G) ≤ 44
√

cr(G) +∆(G) · e+ n.

Proof. Let G be a multigraph in drawing style D. Suppose there is a simple
closed curve γ formed by parts of only two edges e1 and e2, which does not have
a vertex in its interior or no vertex in its exterior. This can happen between
two consecutive crossings of e1 and e2, or for D 6= Dloc−star between a common
endpoint and a crossing of e1 and e2. Say e1 has at most as many crossings along
γ as e2. We then reroute the part of e2 on γ very closely along the part of e1
along γ so as to reduce the number of crossings between e1 and e2. Note that
the resulting multigraph is again in drawing style D and has at most as many
crossings as G.

Hence, we can redraw G to obtain a multigraph G′ in drawing style D with
cr(G′) ≤ cr(G), such that introducing a new vertex at each crossing of G′ creates



a crossing-free multigraph that is separated, i.e., in drawing style D. Now, using
precisely the same proof as the proof of its special case Lemma 3 in [5], we can
show that

bD(G′) ≤ 22

√√√√cr(G′) +

n∑
i=1

d2i + n,

where d1, . . . , dn denote the degrees of vertices in G′. Thus with

n∑
i=1

d2i ≤ ∆(G)

n∑
i=1

di ≤ 2∆(G) · e

the result follows.

Finally, let us bound the number of edges in crossing-free multigraphs. Again,
we can reuse the result of Pach and Tóth for the branching drawing style.

Lemma 5 (Pach and Tóth [5]). For any n-vertex e-edge, n ≥ 3, multigraph
of maximum degree ∆(G) in the branching drawing style we have ∆(G) ≤ 2n−4
and e ≤ n(n− 2), and both bounds are best-possible.

Lemma 6. For any n-vertex e-edge multigraph in drawing style D of maximum
degree ∆(G) we have

(i) ∆(G) ≤ (n− 1)(n− 2) and e ≤
(
n
2

)
(n− 2) if D = Dsep,

(ii) ∆(G) ≤ 2n− 4 and e ≤ n(n− 2) if G if D = Dloc−star.

Moreover, each bound is best-possible.

Proof. Let G be a fixed n-vertex, n ≥ 3, e-edge crossing-free multigraph in
drawing style D.

(i) LetD = Dsep. Clearly, every set of parallel edges contains at most n−2 edges,
since every lens has to contain a vertex different from the two endpoints of
these edges. This gives ∆(G) ≤ (n−1)(n−2) and e ≤ n∆(G)/2 =

(
n
2

)
(n−2).

To see that these bounds are tight, consider n points in the plane with no
four points on a circle. Then it is easy to draw between any two points
n − 2 edges as circular arcs such that the resulting multigraph (which has(
n
2

)
(n− 2) edges) is in separating drawing style.

(ii) Let D = Dloc−star. Consider any fixed vertex v in G and remove all edges not
incident to v. The resulting multigraph is branching and hence by Lemma 5
v has at most 2n−4 incident edges. Thus ∆(G) ≤ 2n−4 and e ≤ n∆(G)/2 =
n(n− 2). By Lemma 5, these bounds are tight, even for the more restrictive
branching drawing style.

Hence, by Corollary 1 and Lemmas 4 and 6,
We are now ready to prove that drawing styles Dloc−star and Dsep fulfill the

requirements of the generalized Crossing Lemma (Theorem 2), which lets us
prove Theorem 1.



Proof (Proof of Theorem 1). Let D = Dloc−star for (i) and D = Dsep for (ii).
Clearly, these drawing styles are monotone, i.e., maintained when removing
edges, as well as split-compatible. So it remains to determine the constants
k1, k2, k3 > 0 and b > 1 such that (P1), (P2), and (P3) hold for D.

(P1) holds with k1 = 3 for D = Dloc−star, Dsep by Corollary 1. (P2) holds
with k2 = 44 for D = Dsep by Lemma 4, which implies the same for D =
Dloc−star. (P3) holds with k3 = 1 and b = 3 for D = Dsep by Lemma 6(i), and
with k3 = 1 and b = 2 for D = Dloc−star by Lemma 6(ii).

For b = 2 we have x(b) = 1/(b − 1) = 1. Thus Theorem 2 for D = Dloc−star
gives an absolute constant α > 0 such that for every n-vertex e-edge separated
and locally starlike multigraph we have cr(G) ≥ αex(b)+2/nx(b)+1 = αe3/n2,
provided e > (k1 + 1)n = 4n. Moreover, by Lemma 6(ii) there are separated
multigraphs with n vertices and Θ(n2) edges, any two of which cross at most
once. Hence, the term e3/n2 is best-possible by Lemma 1.

For b = 3 we have x(b) = 1/(b − 1) = 0.5. Thus Theorem 2 for D = Dsep

gives an absolute constant α > 0 such that for every n-vertex e-edge separated
multigraph we have cr(G) ≥ αex(b)+2/nx(b)+1 = αe2.5/n1.5, provided e > (k1 +
1)n = 4n. Moreover, by Lemma 6(i) there are separated multigraphs with n
vertices and Θ(n3) edges, any two of which cross at most twice. Hence, the term
e2.5/n1.5 is best-possible by Lemma 1.

4 Other Crossing Lemma Variants

We use the generalized Crossing Lemma (Theorem 2) to reprove existing variants
of the Crossing Lemma due to Székely and Pach, Spencer, Tóth, respectively.

4.1 Low Multiplicity

Here we consider for fixed m ≥ 1 the drawing style Dm which is characterized
by the absence of m + 1 pairwise parallel edges. In particular, any n-vertex
multigraph G in drawing style Dm has at most m

(
n
2

)
edges, i.e., (P3) holds for

Dm with b = 2 and k3 = m. Moreover, if G is crossing-free on n vertices and e
edges, then e ≤ 3mn, i.e., (P1) holds for Dm with k1 = 3m.

Finally, we claim that (P2) holds for Dm with k2 being independent of m.
To this end, let G be any n-vertex e-edge multigraph in drawing style Dm. As
already noted by Székely [6], we can reroute all but one edge in each bundle
in such a way that in the resulting multigraph G′ every lens is empty, no two
adjacent edges cross, and cr(G′) ≤ cr(G). (Simply route every edge very closely
to its parallel copy with the least crossings.) Clearly, G′ has drawing style Dm.

Now, we place a new vertex in each lens of G′, giving a multigraph G′′ with
n′′ ≤ n+ e vertices and e′′ = e edges, which is in the separated drawing style D.
By Lemma 4, there is an absolute constant k such that

bD(G′′) ≤ k
√

cr(G′′) +∆(G′′) · e′′ + n′′.



As bDm
(G) ≤ bD(G′′), cr(G′′) = cr(G′) ≤ cr(G),∆(G′′) = ∆(G), and∆(G)+1 ≤

2∆(G) we conclude that

bDm(G) ≤ 2k
√

cr(G) +∆(G) · e+ n.

In other words, (P2) holds for drawing style Dm with an absolute constant
k2 = 2k that is independent of m.

Note that for b = 2, we have x(b) = 1. We conclude with Theorem 2 and (1)
that there is an absolute constant α′ such that for every m and every n-vertex
e-edge multigraph G in drawing style Dm we have

cr(G) ≥ α′ · 1

kx3 (b)
· e

x(b)+2

nx(b)+1
= α′ · e3

mn2
, provided e > (3m+ 1)n,

which is the statement of Theorem B.

4.2 High Girth

Theorem D (Pach, Spencer, Tóth [4]) For any r ≥ 1 there is an absolute
constant αr > 0 such that for any n-vertex e-edge graph G of girth larger than
2r we have

cr(G) ≥ αr ·
er+2

nr+1
, provided e > 4n.

Here we consider for fixed r ≥ 1 the drawing style Dr which is characterized
by the absence of cycles of length at most 2r. In particular, any multigraph G
in drawing style Dr has neither loops nor multiple edges. Hence (P1) holds for
drawing style Dr with k1 = 3. Secondly, drawing style Dr is more restrictive
than the branching drawing style and thus also (P2) holds for Dr. Moreover,
any n-vertex graph in drawing style Dr has O(n1+1/r) edges [2], i.e., (P3) holds
for Dr with b = 1+1/r. Finally, Dr is obviously a monotone and split-compatible
drawing style.

Thus with x(b) = 1/(b− 1) = r, Theorem 2 immediately gives

cr(G) ≥ αr ·
er+2

nr+1
, provided e > 4n

for any n-vertex e-edge multigraph in drawing style Dr, which is the statement
of Theorem D.

5 Conclusions

Let G be a topological multigraph with n vertices and e > 4n edges. We have
shown that cr(G) ≥ αe3/n2 if G is separated and locally starlike, which gen-
eralizes the result for branching multigraphs [5], which are additionally single-
crossing. Moreover, if G is only separated, then the lower bound drops to cr(G) ≥



αe2.5/n1.5, which is tight up to the constant factor, too. It remains open to de-
termine a best-possible Crossing Lemma for separated and single-crossing multi-
graphs. This would follow from our generalized Crossing Lemma (Theorem 2),
where the missing ingredient is the determination of the smallest b such that
every separated and single-crossing multigraph G on n vertices has O(nb) edges.
It is easy to see that the maximum degree ∆(G) may be as high as (n−1)(n−2),
but we suspect that any such G has O(n2) edges.
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