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Abstract1

We prove a far-reaching strengthening of Szemerédi’s regularity lemma for intersection graphs of2

pseudo-segments. It shows that the vertex set of such graphs can be partitioned into a bounded3

number of parts of roughly the same size such that almost all of the bipartite graphs between pairs4

of parts are complete or empty. We use this to get an improved bound on disjoint edges in simple5

topological graphs, showing that every n-vertex simple topological graph with no k pairwise disjoint6

edges has at most n(log n)O(log k) edges.7
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1 Introduction8

Given a set of curves C in the plane, we say that C is a collection of pseudo-segments if any9

two members in C have at most one point in common, and no three members in C have a10

point in common. The intersection graph of a collection C of sets has vertex set C and two11

sets in C are adjacent if and only if they a have nonempty intersection.12

A partition of a set is an equipartition if each pair of parts in the partition differ in size13

by at most one. Szemerédi’s celebrated regularity lemma roughly says that the vertex set14

of any graph has an equipartition such that the bipartite graph between almost all pairs of15

parts is random-like. Our main result is a strengthening of Szemerédi’s regularity lemma for16

intersection graphs of pseudo-segments. It replaces the condition that the bipartite graphs17

between almost all pairs of parts is random-like to being complete or empty.18

▶ Theorem 1. For each ε > 0 there is K = K(ε) such that for every finite collection C of19

pseudo-segments in the plane, there is an equipartition of C into K parts C1, . . . , CK such20

that for all but at most εK2 pairs Ci, Cj of parts, either every curve in Ci crosses every curve21

in Cj, or every curve in Ci is disjoint from every curve in Cj.22

Pach and Solymosi [17] proved the special case of Theorem 1 where C is a collection of23

segments in the plane, and this result was later extended to semi-algebraic graphs [2] and24

hypergraphs [5] of bounded description complexity. However, the techniques used to prove25
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XX:2 A structure theorem for pseudo-segments and its applications

these results heavily rely on the algebraic structure. In fact, while it follows from the Milnor-26

Thom theorem that there are only 2O(n log n) graphs on n vertices which are semialgebraic27

of bounded description complexity (see [18, 2, 20]) there are many more (namely 2Ω(n4/3))28

graphs on n vertices which are intersection graphs of pseudo-segments [6].29

Next, we discuss an application of Theorem 1 in graph drawing.30

Disjoint edges in simple topological graphs. A topological graph is a graph drawn31

in the plane such that its vertices are represented by points and its edges are represented32

by nonself-intersecting arcs connecting the corresponding points. The edges are allowed to33

intersect, but they may not intersect vertices apart from their endpoints. Furthermore, no34

two edges are tangent, i.e., if two edges share an interior point, then they must properly cross35

at that point in common. A topological graph is simple if every pair of its edges intersect at36

most once. Two edges of a topological graph cross if their interiors share a point, and are37

disjoint if they neither share a common vertex nor cross.38

Determining the maximum number of edges in a simple topological graph with no k39

pairwise disjoint edges seems to be a difficult task. When k = 2, a linear upper bound is40

known [16, 3, 10, 11]. When k ≥ 3, Pach and Tóth [19] showed that every n-vertex simple41

topological graph with no k pairwise disjoint edges has at most O(n log4k−8 n) edges. They42

conjectured that for every fixed k, the number of edges in such graphs is at most Ok(n). Our43

next result substantially improves the upper bound for large k.44

▶ Theorem 2. If G = (V, E) is an n-vertex simple topological graph with no k pairwise45

disjoint edges, then |E(G)| ≤ n(log n)O(log k).46

The proof of Theorem 2 follows the arguments in [19, 21], and is by double induction on47

n and k. We consider the cases when there are many or few disjoint pairs of edges in G. In48

the former case, we apply a variant of Theorem 1 and induction on k. In the latter case, we49

apply a bisection width result due to Pach and Tóth [19] and induction on n. See [7] for more50

details. In [9], Fox and Sudakov showed that every dense n-vertex simple topological graph51

contains Ω(log1+δ n) pairwise disjoint edges, where δ ≈ 1/40. As an immediate Corollary to52

Theorem 2, we improve this bound to nearly polynomial under a much weaker assumption.53

▶ Corollary 3. Let ε > 0, and let G = (V, E) be an n-vertex simple topological graph with at54

least 2n1+ε edges. Then G has nΩ(ε/ log log n) pairwise disjoint edges.55

For complete n-vertex simple topological graphs, Aichholzer et al. [1] showed that one can56

always find Ω(n1/2) pairwise disjoint edges.57

The proofs of the above theorems heavily rely on the following bipartite Ramsey-type58

result for intersection graphs of pseudo-segments. As shown in [7], the main result in this59

paper, Theorem 1, is equivalent to the following.60

▶ Theorem 4. Let R be a set of n red curves, and B be a set of n blue curves in the plane61

such that R ∪ B is a collection of pseudo-segments. Then there are subsets R′ ⊂ R and62

B′ ⊂ B, where |R′|, |B′| ≥ Ω(n), such that either every curve in R′ crosses every curves in63

B′, or every curve in R′ is disjoint from every curve in B′.64

The rest of this paper is devoted to proving Theorem 4. In the next section, we recall that65

any finite collection of pseudo-segments in the plane contains a linear-sized subset with the66

property that only a small fraction of pairs in the subset are crossing, or nearly all of them67

cross. In Section 3, we prove Theorem 4 in the special case where one of the families is double68

grounded. Building on these results, in Section 4, we establish our bipartite Ramsey-type69
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theorem (Theorem 4) for any two families of pseudo-segments with the property that for70

each family, only a small fraction of pairs are crossing, or nearly all of them cross. Finally, in71

Section 5, we prove Theorem 4 in its full generality.72

2 Tools73

We say that a graph G is ε-homogeneous if the edge density in G is less than ε or greater74

than 1 − ε. For the proof of Theorem 4, we need the following result from [4].75

▶ Theorem 5 ([4]). There is an constant c′ > 0 such that the following holds. Let C be a76

collection of n pseudo-segments in the plane with at least εn2 crossing pairs. Then there are77

subsets C1, C2 ⊂ C, each of size c′εn, such that every curve in C1 crosses every curve in C2.78

Given a collection C of curves in the plane, let G(C) denote the intersection graph of79

C. In [8], Fox, Pach, and Tóth showed that pseudo-segments has the strong Erdős-Hajnal80

property, which implies the following.81

▶ Corollary 6 ([8]). The family of intersection graphs of pseudo-segments has the polynomial82

Rödl property. That is, there is an absolute constant c1 > 0 such that the following holds.83

Let ε > 0 and C be a collection of n pseudo-segments in the plane. Then there is a subset84

C′ ⊂ C of size εc1n whose intersection graph G(C′) is ε-homogeneous.85

We will frequently use the following simple lemma in this paper. See [7] for the proof.86

▶ Lemma 7. Let G = (V, E) be a graph on n vertices. If the edge density of G is at most ε,87

then any induced subgraph on δn vertices has edge density at most 2ε/δ2. Likewise, if the88

edge density of G is at least 1 − ε, then any induced subgraph on δn vertices has edge density89

at least 1 − 2ε/δ2.90

3 Proof of Theorem 4 – for double grounded red curves91

Given a collection of curves C in the plane, we say that C is double grounded if there are two92

distinct curves γ1 and γ2 such that for each curve α ∈ C, α has one endpoint on γ1 and the93

other on γ2, and the interior of α is disjoint from γ1 and γ2. Throughout this paper, for94

simplicity, we will always assume that both endpoints of each of our curves have distinct95

x-coordinates. We refer to the endpoint of a curve with the smaller (larger) x-coordinate as96

its left (right) endpoint. The aim of this section is to prove Theorem 4 in the special case97

where one of the color classes (the red one, say) consists of double grounded curves.98

A curve in the plane is called x-monotone if every vertical line intersects it in at most one99

point. We start by considering double grounded x-monotone curves, and at the end of this100

section, we will remove the x-monotone condition. We will need the following result, known101

as the cutting-lemma for x-monotone curves. See, for example, Proposition 2.11 in [14].102

▶ Lemma 8 (The Cutting Lemma). Let C be a collection of n double grounded x-monotone103

curves, whose grounds are disjoint vertical segments γ1 and γ2, and let r > 1 be a parameter.104

Then R2 \ (γ1 ∪ γ2) can be subdivided into t connected regions ∆1, . . . , ∆t, such that the105

interior of each ∆i is intersected by at most n/r curves from C, and we have t = O(r2).106

Throughout the paper, we will implicitly use the Jordan curve theorem.107

▶ Lemma 9. Let R be a set of n red double grounded x-monotone curves, whose grounds108

are disjoint vertical segments γ1 and γ2. Let B be a set of n blue curves (not necessarily109
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Figure 1 Case 1, α0 and α are disjoint.132

x-monotone) such that every blue curve in B is disjoint from grounds γ1 and γ2, and suppose110

that R ∪ B is a collection of pseudo-segments. Then there are subsets R′ ⊂ R and B′ ⊂ B111

such that |R′|, |B′| ≥ Ω(n), and either every curve in R′ crosses every curve in B′, or every112

curve in R′ is disjoint from every curve in B′.113

Proof. Let P be the set of left-endpoints of the curves in B. We apply Lemma 8 to R with114

parameter r = 4 to obtain a subdivision R2 \ (γ1 ∪ γ2) = ∆1 ∪ · · · ∪ ∆t, such that for each115

∆i, the interior of ∆i intersects at most n/4 members in R, and t ≤ c042 where c0 is an116

absolute constant from Lemma 8. By the pigeonhole principle, there is a region ∆i such that117

∆i contains at least n/c042 points from P . Let B0 ⊂ B be the set of blue curves whose left118

endpoints are in ∆i. Hence |B0| = Ω(n).119

Let Q be the right endpoints of the curves in B0. Using the same subdivision described120

above, there is a region ∆j such that ∆j contains at least |Q|/(c042) ≥ n/(c042)2 points from121

Q. Let B1 ⊂ B0 be the set of blue curves with their left endpoint in ∆i and right endpoint122

in ∆j . Let R1 ⊂ R consists of all red curves that do not intersect the interior of ∆i and ∆j .123

Lemma 8 implies that |R1| ≥ n − 2n
4 = n

2 , and |B1| = Ω(n). Recall that each blue curve in124

B1 does not intersect the grounds γ1 nor γ2. Fix an arbitrary curve α0 ∈ R1. The proof now125

falls into the following cases.126

Case 1. Suppose at least |R1|/2 curves in R1 are disjoint from α0. Let R2 ⊂ R1 be the set127

of red curves disjoint from α0. For each α ∈ R2, R2 \ (γ1 ∪ γ2 ∪ α0 ∪ α), consists of two128

connected components, one bounded and the other unbounded.129

Case 1.a. Suppose for at least |R2|/2 red curves α ∈ R2, both ∆i and ∆j lie in the same133

connected component of R2 \ (γ1 ∪γ2 ∪α0 ∪α). See Figure 1a. Let R3 ⊂ R2 be the collection134

of such red curves. Then for each α ∈ R3, each blue curve β ∈ B1 crosses α if and only if135

β crosses α0. Hence, there is a subset B2 ⊂ B1 of size at least Ω(n), such that either every136

blue curve in B2 crosses every red curve in R3, or every blue curve in B2 is disjoint from137

every red curve in R3. Moreover, |R3| = Ω(n) and we are done.138

Case 1.b. Suppose for at least |R2|/2 red curves α ∈ R2, regions ∆i and ∆j lie in different139

connected component of R2 \ (γ1 ∪γ2 ∪α0 ∪α). See Figure 1b. Similar to above, let R3 ⊂ R2140

be the collection of such red curves. By the pseudo-segment condition, for each α ∈ R3, each141

blue curve β ∈ B1 crosses α if and only if β is disjoint from α0. Hence, there is a subset142

B2 ⊂ B1 of size Ωr(n), such that either every blue curve in B2 crosses every red curve in R3,143

or every blue curve in B2 is disjoint from every red curve in R3. Moreover, |R3| = Ω(n) and144

we are done.145

Case 2. Suppose at least |R1|/2 curves in R1 cross α0. Let R2 ⊂ R1 be the set of red curves146

that crosses α0. For each α ∈ R2 \ {α0}, R2 \ (γ1 ∪ γ2 ∪ α0 ∪ α) consists of three connected147

components, two of which are bounded and the other unbounded.148
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Figure 2 Case 2, α0 and α cross.168

Case 2.a. Suppose for at least |R2|/3 red curves α ∈ R2, Both ∆i and ∆j lie in the same149

connected component of R2 \ (γ1 ∪γ2 ∪α0 ∪α). See Figure 2a. Let R3 ⊂ R2 be the collection150

of such red curves. By the pseudo-segment condition, for each α ∈ R3, each blue curve151

β ∈ B1 crosses α if and only if β crosses α0. Hence, there is a subset B2 ⊂ B1 of size at least152

Ω(n), such that either every blue curve in B2 crosses every red curve in R3, or every blue153

curve in B2 is disjoint from every red curve in R3. Moreover, |R3| = Ω(n).154

Case 2.b. Suppose for at least |R2|/3 red curves α ∈ R2, regions ∆i and ∆j lie in different155

bounded connected components of R2 \ (γ1 ∪ γ2 ∪ α0 ∪ α). Let R3 ⊂ R2 be the collection of156

such red curves. Then for each α ∈ R3, every blue curve β ∈ B1 crosses α. Since |R3| = Ω(n),157

we have |B1| = Ω(n).158

Case 2.c. Suppose for at least |R2|/3 red curves α ∈ R2, regions ∆i and ∆j lie in different159

connected components of R2 \ (γ1 ∪ γ2 ∪ α0 ∪ α), one of which is bounded and the other160

unbounded. See Figure 2b. Let R3 ⊂ R2 be the collection of such red curves. By the161

pseudo-segment condition, for each α ∈ R3, each blue curve β ∈ B1 crosses α if and only if162

β is disjoint from α0. Hence, there is a subset B2 ⊂ B1 of size Ω(n), such that either every163

blue curve in B2 crosses every red curve in R3, or every blue curve in B2 is disjoint from164

every red curve in R3. Moreover, |R3| = Ω(n), and we are done. ◀165

Recall that a pseudoline is an unbounded arc in R2, whose complement is disconnected.169

An arrangement of pseudolines is a set of pseudolines such that every pair meets exactly170

once, and no three members have a point in common. A classic result of Goodman [12] states171

that every arrangement of pseudolines is isomorphic to an arrangement of wiring diagram172

(bi-infinite x-monotone curves). Moreover, Goodman and Pollack showed the following.173

▶ Theorem 10 ([13]). Every arrangement of pseudolines can be continuously deformed174

(through isomorphic arrangements) to a wiring diagram.175

We also need the following simple lemma.176

▶ Lemma 11. Given a finite linearly ordered set whose elements are colored red or blue, we177

can select half of the red elements and half of the blue elements such that all of the selected178

elements of one color come before all of the selected elements of the other color.179

We are now ready to establish the main result of this section:180

▶ Theorem 12. Let R be a set of n red double grounded curves with grounds γ1 and γ2,181

where γ1 and γ2 cross each other. Let B be a set of n blue curves such that R ∪ B ∪ {γ1, γ2}182

is a collection of pseudo-segments. Then there are subsets R′ ⊂ R and B′ ⊂ B such that183

|R′|, |B′| ≥ Ω(n), and either every curve in R′ crosses every curve in B′, or every curve in184

R′ is disjoint from every curve in B′.185

SoCG 2024
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Proof. By passing to linear-sized subsets of R and B and subcurves of γ1 and γ2, we will186

reduce the problem to the setting of Lemma 9. Let us assume that γ1 and γ2 cross at point187

p. Hence, (γ1 \ γ2) ∪ (γ2 \ γ1) consists of four connected components. By the pigeonhole188

principle, there is a subset R1 ⊂ R of size n/4 such that every curve in R1 has an endpoint189

on one of the connected components of γ1 \ γ2, and all of the other endpoints lie on one of the190

connected components of γ2 \ γ1. Let γ′
i ⊂ γi, for i = 1, 2, be these connected components so191

that they have a common endpoint at p and their interiors are disjoint.192

For each α ∈ R1, the sequence of curves (γ′
1, γ′

2, α) appear either in clockwise or counter-193

clockwise order along the unique simple closed curve that lies in γ′
1 ∪ γ′

2 ∪ α. Without loss of194

generality, we can assume that there is a subset R2 ⊂ R1, where |R2| = Ω(n), such that for195

every curve α ∈ R2, the sequence (γ′
1, γ′

2, α) appears in clockwise order, since a symmetric196

argument would follow otherwise.197

We define the orientation of each curve α ∈ R2 as the sequence of turns, either left-198

left, left-right, right-left, or right-right, made by starting at p and moving along γ′
1 in the199

arrangement γ′
1 ∪ γ′

2 ∪ α, until we return back to p. More precisely, starting at p we move200

along γ′
1 until we reach the endpoint of α. We then turn either left or right to move along α201

towards γ′
2. Once we’ve reached γ′

2, we either turn left or right in order to move along γ′
2202

and reach p again. By the pigeonhole principle, there is a subset R3 ⊂ R2 of size at least203

Ω(n) such that all curves in R3 have the same orientation. Without loss of generality, we can204

assume that the orientation is left-left, since a symmetric argument would follow otherwise.205

Starting at p and moving along γ′
1 towards its other endpoint, let us consider the sequence206

of curves from R3 ∪ B intersecting γ′
1. Then, by Lemma 11, there are subsets R4 ⊂ R3207

and B1 ⊂ B, where |R4| ≥ |R3|/2 and |B1| ≥ |B|/2, such that either all of the curves in R4208

appear before all of the curves in B1 that intersect γ′
1 in this sequence, or all of the curves in209

R4 appear after all of the curves in B1 in this sequence. Note that B1 consists of the blue210

curves in B that are disjoint to γ′
1 and at least half of the curves in B that intersect γ′

1 found211

by the application of Lemma 11. Hence, there is a subcurve γ′′
1 ⊂ γ′

1 such that γ′′
1 is one of212

the grounds for R4, and is disjoint from every curve in B1. We apply the same argument to213

R4 ∪ B1 and γ′
2, and obtain subsets R5 ⊂ R4, B2 ⊂ B1, and a subcurve γ′′

2 ⊂ γ′
2, such that214

|R5|, |B2| = Ω(n), and R5 is double grounded with disjoint grounds γ′′
1 and γ′′

2 , and every215

curve in B2 is disjoint from γ′′
1 and γ′′

2 .216

For i ∈ {1, 2}, let pi be the endpoint of γ′′
i that lies closest to p along γ′

i. Starting at pi217

and moving along γ′′
i , let πi be the sequence of curves in R5 that appear on γ′′

i . Since every218

curve in R5 has the same left-left orientation, and appears clockwise order with respect to219

γ′
1 and γ′

2, two curves α, α′ ∈ R5 cross if and only if the order in which they appear in π1220

and π2 changes. Let γ′′
3 be a curve very close to γ′′

2 such that γ′′
3 has the same endpoints as221

γ′′
2 , and is disjoint from all curves in R5 ∪ B2. Hence, γ′′

2 ∪ γ′′
3 makes an empty lens in the222

arrangement R5 ∪ B2. We slightly extend each curve α ∈ R5 through this lens to γ′′
3 so that223

the resulting curve, α′ properly crosses γ′′
2 and has its new endpoint on γ′′

3 . Moreover, the224

extension will be made in such a way that the sequence π3 of curves in R5 appearing along225

γ′′
3 starting from p2 will appear in the opposite order of π1. Let R′

5 = {α′ : α ∈ R5}. Thus,226

every pair of curves in R′
5 will cross exactly once.227

For each curve α′ ∈ R′
5, we further extend α′ by moving both endpoints towards p along228

γ1 and γ2, so that we do not create any additional crossings within R′
5. Let α̂ be the resulting229

extension, where both endpoints of α̂ lie arbitrarily close to p. Set R̂5 = {α̂ : α′ ∈ R′
5}. See230

Figure 3. Furthermore, we can assume that p lies in the unbounded face of the arrangement231

R̂5, since otherwise we could project the arrangement R̂5 onto a sphere, and then project it232

back to the plane so that p lies in the unbounded face, without creating or removing any233
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Figure 3 The resulting extension R̂5.243

crossing. Therefore, R̂5 can be extended to a family of pseudolines. By Theorem 10, we can234

apply a continuous deformation of the plane so that R̂5 becomes a collection of unbounded235

x-monotone curves. Hence, after the deformation, the original set R5 becomes a collection236

of double grounded x-monotone curves, with grounds γ′′
1 , γ′′

2 , such that every curve in B2 is237

disjoint from the grounds γ′′
1 and γ′′

2 , the crossing pattern in the arrangement R5 ∪ B2 is the238

same as before. Moreover, γ′′
1 and γ′′

2 will be disjoint vertical segments. We apply Lemma 9239

to R5 and B2 and obtain subsets R6 ⊂ R5 and B3 ⊂ B2, each of size Ω(n), such that either240

every curve in R6 crosses every curve in B3, or every curve in R6 is disjoint from every curve241

in B3. This completes the proof. ◀242

By combining Theorem 12 with a variant of Szemerédi’s regularity lemma due to Kóm-244

los [15], we have the following (see [7] for more details).245

▶ Theorem 13. There is a constant c′ > 0 such that the following holds. Let R be a collection246

of n red double grounded curves with grounds γ1 and γ2, such that γ1 and γ2 cross. Let B be247

a collection of n blue curves such that R ∪ B ∪ {γ1, γ2} is a collection of pseudo-segments. If248

there are at least εn2 crossing pairs in R × B, then there are subsets R′ ⊂ R, B′ ⊂ B, where249

|R′|, |B′| ≥ εc′
n, such that every curve in R′ crosses every curve in B′.250

▶ Theorem 14. There is an absolute constant c′ > 0 such that the following holds. Let R be251

a collection of n red double grounded curves with grounds γ1 and γ2, such that γ1 and γ2 cross.252

Let B be a collection of n blue curves such that R ∪ B is a collection of pseudo-segments. If253

there are at least εn2 disjoint pairs in R × B, then there are subsets R′ ⊂ R, B′ ⊂ B, where254

|R′|, |B′| ≥ εc′
n, such that every curve in R′ is disjoint from every curve in B′.255

We will apply Theorems 12 and 13 in the next section.256

4 Proof of Theorem 4 – for ε-homogeneous families257

The aim of this section is to prove Theorem 4, the main result of this paper, in the special258

case where the edge density of the intersection graph of the red curves is nearly 0 or nearly259

1, and the same is true for the intersection graph of the blue curves. This will easily imply260

Theorem 4 in its full generality, as shown in the next section.261

4.1 Low versus low density262

By Corollary 6, we can reduce to the case that the intersection graphs G(R) and G(B) are263

both ε-homogeneous. Below, we first consider the cases when both G(R), G(B) has edge264

density less than ε.265

SoCG 2024



XX:8 A structure theorem for pseudo-segments and its applications

1
γ
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Figure 4 Partitioning of the red curve α = αu ∪ αℓ.294

▶ Theorem 15. There is an absolute constant ε1 > 0 such that the following holds. Let R266

be a set of n red curves and B be a set of n blue curves in the plane such that R ∪ B is a267

collection of pseudo-segments. If the edge densities of the intersection graphs G(R) and G(B)268

are both less than ε1, then there are subsets R′ ⊂ R and B′ ⊂ B, each of size Ω(n), such that269

every red curve in R′ crosses every blue curve in B′, or every red curve in R′ is disjoint270

from every blue curve in B′.271

The proof of Theorem 15 is a simple application of a separator theorem from [4] (see [7]).272

4.2 High versus low edge density273

In this subsection, we consider the case when the intersection graph G(R) has edge density at274

least 1 − ε, and G(B) has edge density less than ε. Since the edge density in the intersection275

graph G(R) is at least 1 − ε, we can further reduce to the case when there is a red curve γ1276

that crosses every member in R exactly once.277

▶ Lemma 16. For each integer t ≥ 1, there is a constant ε′
t > 0 such that the following holds.278

Let R be a set of n red curves in the plane, all crossed by a curve γ1 exactly once, and B be279

a set of n blue curves in the plane such that R ∪ B ∪ {γ1} is a collection of pseudo-segments.280

Suppose that the intersection graph G(B) has edge density less than ε′
t, and G(R) has edge281

density at least 1 − ε′
t. Then there are subsets R̂ ⊂ R, B̂ ⊂ B, each of size Ωε′

t
(n), such that282

either every red curve in R̂ crosses every blue curve in B̂, or every red curve in R̂ is disjoint283

from every blue curve in B̂, or each curve α ∈ R̂ has a partition into two connected parts284

α = α̂u ∪ α̂ℓ, such that for285

Û = {α̂u : α ∈ R̂, α = α̂u ∪ α̂ℓ} and L̂ = {α̂ℓ : α ∈ R̂, α = α̂u ∪ α̂ℓ},286

every curve in L̂ is disjoint to every curve in B̂, and the edge density of G(Û) is less than 2−t.287

Proof. Each curve α ∈ R is partitioned into two connected parts by γ1, say an upper and288

lower part. More precisely, we have the partition α = αu ∪ αℓ, where the parts αu and αℓ289

are defined, as follows. We start at the left endpoint of γ1 and move along γ1 until we reach290

α ∩ γ1. At this point, we turn left along α to obtain αu and right to obtain αℓ. See Figure 4.291

Let U (L) be the upper (lower) part of each curve in R, that is,292

U = {αu : α ∈ R, α = αℓ ∪ αu} and L = {αℓ : α ∈ R, α = αℓ ∪ αu}.293

In what follows, for every integer t ≥ 1, we will obtain subsets R(t) ⊂ R, B(t) ⊂ B, each295

of size Ωε′
t
(n), such that either every red curve in R(t) crosses every blue curve in B(t), or296

every red curve in R(t) is disjoint from every blue curve in B(t), or each curve α ∈ R(t) has a297

new partition into upper and lower parts α = α′
u ∪ α′

ℓ, such that the following holds.298
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1. We have α′
u ⊂ αu, that is, the upper part α′

u is a subcurve of the previous upper part αu.299

2. The lower part α′
ℓ of each curve in R(t) is disjoint from each blue curve in B(t).300

3. There is an equipartition R(t) = R(t)
1 ∪· · ·∪R(t)

2t into 2t parts such that for 1 ≤ i < j ≤ 2t−1,301

the upper part α′
u of each curve α ∈ R(t)

i is disjoint from the upper part β′
u of each curve302

β ∈ R(t)
j .303

Hence, the lemma follows from the statement above by setting B̂ = B(t), R̂ = R(t).304

We proceed by induction on t. The bulk of the argument below is actually for the base305

case t = 1, since we will just repeat the entire argument for the inductive step with parameter306

ε′
t. Let ε′

1 be a small positive constant that will be determined later such that ε′
1 < ε1, where307

ε1 is from Theorem 15. Thus, G(R) has edge density at least 1 − ε′
1 and G(B) has edge308

density less than ε′
1.309

Let δ > 0 also be a sufficiently small constant determined later, such that ε′
1 < δ < ε1.310

We apply Corollary 6 to L with parameter δ and obtain a subset L1 ⊂ L such that L1 is311

δ-homogeneous and |L1| = Ωδ(n). Let R1 ⊂ R be the red curves in R corresponding to the312

curves in L1, and let U1 ⊂ U be the curves in U that corresponds to the red curves in R1.313

Without loss of generality, we can assume that the intersection graph G(L1) has edge314

density less than δ. Indeed, otherwise if G(L1) has edge density greater than 1 − δ, by the315

pseudo-segment condition, the intersection graph G(U1) must have edge density less than δ316

and a symmetric argument would follow. In order to apply Theorem 15, we need two subsets317

of equal size. By averaging, there is a subset B′ ⊂ B with |B′| = |L1| such that the edge318

density of G(B′) is at most that of G(B). Since G(L1) has edge density less than δ and G(B′)319

has edge density less than ε′
1, by setting ε′

1 < δ < ε1, we can apply Theorem 15 to L1 and320

B′ and obtain subsets L2 ⊂ L1 and B1 ⊂ B′, each of size Ωδ(n), such that every curve in321

L2 crosses every blue curve in B1, or every curve in L2 is disjoint from every blue curve in322

B1. If we are in the former case, then we are done. Hence, we can assume that we are in323

the latter case. Let R2 ⊂ R1 be the red curves that corresponds to L2, and let U2 ⊂ U1 be324

the curves in U1 that corresponds to R2. We apply Corollary 6 to U2 with parameter δ and325

obtain a subset U3 ⊂ U2 such that U3 is δ-homogeneous and |U3| = Ωδ(n). Let R3 be the326

red curves in R corresponding to U3, and let L3 be the curves in L2 that corresponds to R3.327

Suppose that the intersection graph G(U3) has edge density less than δ. Since |B1| = δ0n,328

where δ0 = δ0(δ, ε1), by Lemma 7, the intersection graph G(B1) has edge density at most329

2ε′
1/δ2

0 . Thus, we set δ and ε′
1 sufficiently small so that δ < ε1 and 2ε′

1/δ2
0 < ε1. By averaging,330

we can find subsets of U3 and B1, each of size min(|U3|, |B1|) and with densities less than ε1,331

and apply Theorem 15 to these subsets and obtain subsets U4 ⊂ U3 and B2 ⊂ B1, each of332

size Ωδ(n), such that every curve in U4 crosses every blue curve in B2, or every curve in U4333

is disjoint from every blue curve in B2. In both cases, we are done since every curve in L3334

is disjoint from every curve in B2. Therefore, we can assume that G(U3) has edge density335

greater than 1 − δ.336

For each curve α ∈ U3, let N(α) denote the set of curves in U3 that intersects α, and let337

d(α) = |N(α)|. We label the curves β ∈ N(α) with integers 0 to d(α) − 1 according to their338

closest intersection point to the ground γ1 along α, that is, the label fα(β) of β ∈ N(α) is339

the number of curves in U3 that intersects the portion of α strictly between γ1 and α ∩ β.340

Since
∑

α∈U3

d(α) − 1 ≥ 2(1 − δ)
(|U3|

2
)

− |U3|, by Jensen’s inequality, we have341

∑
α∈U3

∑
β∈N(α)

fα(β) =
∑

α∈U3

(
d(α)

2

)
≥ |U3|

(∑
α∈U3

d(α)
|U3|
2

)
≥ |U3|3

4 .342
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Let the weight w(β) of a curve β ∈ U3 be the sum of its labels, that is, w(β) =
∑

α:β∈N(α)
fα(β).343

Hence, the weight w(β) is the total number of crossing points along curves α strictly between344

γ1 and β, where α crosses both γ1 and β. By averaging, there is a curve γ2 ∈ U3 whose345

weight is at least |U3|2/4.346

Using γ2, we partition each curve α ∈ U3 \ {γ2} that crosses γ2 into two connected parts,347

α = αw ∪ αm, where αm is the connected subcurve with endpoints on γ1 and γ2, and αw is348

the other connected part. Set349

W3 = {αw : α ∈ U3 \ {γ2}, α ∩ γ2 ̸= ∅} and M3 = {αm : α ∈ U3 \ {γ2}, α ∩ γ2 ̸= ∅}.350

Since γ2 has weight at least |U3|2/4, by the pigeonhole principle, there are at least |U3|2/8351

intersecting pairs in M3 × M3, or at least |U3|2/8 intersecting pairs in M3 × W3.352

Case 1. Suppose there are at least |U3|2/8 pairs in M3 ×W3 that cross. The set M3 is double353

grounded with grounds γ1 and γ2 that cross exactly once, and every curve in W3 is disjoint354

from γ1 and γ2. As |M3|, |W3| ≤ |U3|, the density of edges in the bipartite intersection graph355

of M3 and W3 is at least 1/8. By averaging, we can find subsets of M3 and W3 each of size356

min(|M3|, |W3|) such that the density of edges in the bipartite intersection graph of these357

subsets is at least 1/8. By setting δ > 0 sufficiently small, we can apply Theorem 13 to these358

subsets of M3 and W3 and obtain subsets M4 ⊂ M3 and W ′
4 ⊂ W3, each of size Ωδ(n), such359

that each curve in M4 crosses each curve in W ′
4. Moreover, by the pseudo-segment condition,360

each curve in M4 ∪ W ′
4 corresponds to a unique curve in U3. Let U4 ⊂ U3 be the curves that361

corresponds to M4 and let U ′
4 ⊂ U3 be the curves that corresponds to W ′

4. Hence, we set362

W4 = {αm : α ∈ U4, α = αw ∪ αm} and M′
4 = {αm : α ∈ U ′

4, α = αw ∪ αm}.363

See Figure 5a. We apply Theorem 12 to arbitrary subsets of M4 and B2, each of size364

min(|M4|, |B2|), and obtain subsets M5 ⊂ M4 and B3 ⊂ B2, each of size Ωδ(n), such that365

either every red curve in M5 crosses every blue curve in B3, or every red curve in M5 is366

disjoint from every blue curve in B3. In the former case, we are done. Hence, we can assume367

that we are in the latter case.368

We again apply Theorem 12 to arbitrary subsets of M′
4 and B3, each of size min(|M′

4|, |B3|),369

to obtain subsets M′
5 ⊂ M′

4 and B4 ⊂ B3, each of size Ωδ(n), such that either every red370

curve in M′
5 crosses every blue curve in B4, or every red curve in M′

5 is disjoint from every371

blue curve in B4. Again, if we are in the former case, we are done. Hence, we can assume372

that we are in the latter case. Let373

W5 = {αw : α = αw ∪ αm, αm ∈ M5} and W ′
5 = {αw : α = αw ∪ αm, αm ∈ M′

5},374

and recall that every element in M5 crosses every element in W ′
5. By the pseudo-segment375

condition, every element in W5 is disjoint from every element in W ′
5.376

Let R5 be the red curves in R that corresponds to W5, and let R′
5 be the red curves in377

R that corresponds to W ′
5. We have |R5|, |R′

5| = Ωδ(n), and moreover, we can assume that378

|R5| = |R′
5|. For each curve α ∈ R5 ∪ R′

5, and its original partition α = αu ∪ αℓ defined by379

γ1, we have a new partition α = α′
u ∪ α′

ℓ defined by γ2, where α′
u = αw and α′

ℓ = αm ∪ αℓ.380

By setting R(1) = R5 ∪ R′
5, and B(1) = B4, where each curve α ∈ R(1) is equipped with the381

partition α = α′
u ∪ α′

ℓ, we satisfy the base case of the statement.382
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1
γ

2
γ

M’4
W’4

M4

4W

p

(a) Case 1.388

1
γ

2
γ

M4

4W

M’4

W’4

p

(b) Case 2.389

Figure 5 In both cases, W4 is disjoint to W ′
4.390

Case 2. The argument is essentially the same as Case 1. Suppose we have at least |U3|2/8383

crossing pairs in M3 × M3. Then by Theorem 5, there are subsets M4, M′
4 ⊂ M3, each384

of size Ωδ(n), such that every curve in M4 crosses every curve in M′
4. Let U4 ⊂ U be the385

curves that corresponds to M4 and let U ′
4 ⊂ U be the curves that corresponds to M′

4. Set386

W4 = {αw : α ∈ U4, α = αw ∪ αm} and W ′
4 = {αw : α ∈ U ′

4, α = αw ∪ αm}.387

See Figure 5b. Hence, by the pseudo-segment condition, every curve in W4 is disjoint from391

every curve in W ′
4. By taking arbitrary subsets of M4 and B2 of size min(|M4|, |B2|), we392

can apply Theorem 12 to these subsets and obtain subsets M5 ⊂ M4 and B3 ⊂ B2, each of393

size Ωδ(n), such that either every red curve in M5 crosses every blue curve in B3, or every394

red curve in M5 is disjoint from every blue curve in B3. In the former case, we are done.395

Hence, we can assume that we are in the latter case.396

Again, we take an arbitrary subset of M′
4 and B3 of size min(|M′

4|, |B3|) and apply397

Theorem 12 to M′
4 and B3, to obtain subsets M′

5 ⊂ M′
4 and B4 ⊂ B3, each of size Ωδ(n),398

such that either every red curve in M′
5 crosses every blue curve in B4, or every red curve in399

M′
5 is disjoint from every blue curve in B4. Again, if we are in the former case, we are done.400

Hence, we can assume that we are in the latter case. Set R5 be the red curves in R that401

corresponds to M5, and let R′
5 be the red curves in R that corresponds to M′

5.402

We have |R5|, |R′
5| = Ωδ(n), and moreover, we can assume that |R5| = |R′

5|. For each403

curve α ∈ R5 ∪ R′
5, and its original partition α = αu ∪ αℓ defined by γ1, we have a new404

partition α = α′
u ∪ α′

ℓ defined by γ2, where α′
u = αw and α′

ℓ = αm ∪ αℓ. By setting405

R(1) = R5 ∪ R′
5, and B(1) = B4, where each curve α ∈ R(1) is equipped with the partition406

α = α′
u ∪ α′

ℓ, we satsify the base case of the statement.407

For the inductive step, suppose we have obtained constants ε′
t−1 < · · · < ε′

1 such that408

the statement follows. Let ε′
t be a small constant that will be determined later such that409

ε′
t < ε′

t−1. Let R be a set of n red curves in the plane, all crossed by a curve γ1 exactly410

once, and B be a set of n blue curves in the plane such that R ∪ B ∪ {γ1} is a collection of411

pseudo-segments. Moreover, G(R) has edge density at least 1 − ε′
t and G(B) has edge density412

less than ε′
t. We set δ′ < 0 to be a small constant such that ε′

t < δ′ < εt−1. We repeat the413

entire argument above, replacing ε′
1 with ε′

t and δ with δ′, to obtain subsets R5, R′
5 ⊂ R414

and B4 ⊂ B, each of size Ωδ′(n), such that each α ∈ R5 ∪ R′
5 is equipped with the partition415

α = α′
u ∪ α′

ℓ, and α′
ℓ is disjoint to every blue curve in B4. Moreover, for α ∈ R5 and β ∈ R′

5,416

where α = α′
u ∪ α′

ℓ and β = β′
u ∪ β′

ℓ, α′
u is disjoint to β′

u.417

Since |R5|, |B4| ≥ δ1n, where δ1 depends only on δ′, by Theorem 7, G(R5) has edge418

density at least 1 − 2ε′
t/δ2

1 and G(B4) has edge density less than 2ε′
t/δ2

1 . By setting ε′
t419

sufficiently small, G(R5) has edge density at least 1 − ε′
t−1, and G(B4) has edge density less420
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than ε′
t−1. By averaging, we can find subsets of R5 and B4, each of size min(|R5|, |B4|) and421

with densities at least 1 − ε′
t−1 and less than ε′

t−1 respectively, and apply induction to these422

subsets parameter t′ = t − 1, and obtain subsets R(t−1) ⊂ R5, B(t−1) ⊂ B4, each of size423

Ωε′
t−1

(n), with the desired properties. If every red curve in R(t−1) is disjoint from every blue424

curve in B(t−1), or if every red curve in R(t−1) crosses every blue curve in B(t−1), then we425

are done. Hence, we can assume that each curve α ∈ R(t−1) has a partition α = α′′
u ∪ α′′

ℓ426

such that α′′
u is a subcurve of α′

u, α′′
ℓ is disjoint from every blue curve in B(t−1), and there is427

an equipartition R(t−1) = R(t−1)
1 ∪ · · · ∪ R(t−1)

2t−1 , such that for 1 ≤ i < j ≤ 2t−1, the upper428

part α′′
u of each curve α ∈ R(t−1)

i is disjoint the upper part β′′
u of each curve β ∈ R(t−1)

j .429

Finally, since |R′
5|, |B(t−1)| ≥ δ2n, where δ2 depends only on δ′, by Theorem 7, G(R′

5)430

has edge density at least 1 − 2ε′
t/δ2

2 and G(B(t−1)) has edge density less than 2ε′
t/δ2

2 . By431

setting ε′
t sufficiently small, G(R′

5) has edge density at least 1 − ε′
t−1, and G(B(t−1)) has432

edge density less than ε′
t−1. By averaging, we can find subsets of R′

5 and B(t−1), each of433

size min(|R′
5|, |B(t−1)|) and with densities at least 1 − ε′

t−1 and less than ε′
t−1 respectively,434

and apply induction to these subsets parameter t′ = t − 1, and obtain subsets S(t−1) ⊂ R′
5,435

B(t) ⊂ B(t−1), each of size Ωε′
t−1

(n), with the desired properties. If every red curve in S(t−1)
436

is disjoint from every blue curve in B(t), or if every red curve in S(t−1) crosses every blue437

curve in B(t), then we are done. Hence, we can assume that each curve α ∈ S(t−1) has438

a partition α = α′′
u ∪ α′′

ℓ such that α′′
u is a subcurve of α′

u, α′′
ℓ is disjoint from every blue439

curve in B(t−1), and there is an equipartition S(t−1) = S(t−1)
1 ∪ · · · ∪ S(t−1)

2t−1 , such that for440

1 ≤ i < j ≤ 2t−1, the upper part α′′
u of each curve α ∈ S(t−1)

i is disjoint the upper part β′′
u of441

each curve β ∈ S(t−1)
j . We then (arbitrarily) remove curves from each part in R(t−1)

i and442

S(t−1)
j such that the resulting parts all have the same size and for443

R(t) = R(t−1)
1 ∪ · · · ∪ R(t−1)

2t−1 ∪ S(t−1)
1 ∪ · · · ∪ S(t−1)

2t−1 ,444

we have |R(t)| = Ωε′
t−1

(n). Then R(t) and B(t) has the desired properties. ◀445

We now prove the following.446

▶ Theorem 17. There is an absolute constant ε3 > 0 such that the following holds. Let R447

be a set of n red curves in the plane and B be a set of n blue curves in the plane such that448

R ∪ B is a collection of pseudo-segments, and the intersection graph G(B) has edge density449

less than ε3, and G(R) has edge density at least 1 − ε3. Then there are subsets R′ ⊂ R,450

B′ ⊂ B, each of size Ω(n), such that either every red curve in R crosses every blue curve in451

B, or every red curve in R is disjoint from every blue curve in B.452

Proof. Let t be a fixed large integer such that 2−t < ε1, where ε1 is defined in Theorem453

15. Let ε3 be a small constant determined later such that ε3 < ε′
t, where ε′

t is defined in454

Lemma 16. Recall that ε′
t < ε1. Since G(R) has edge density at least 1 − ε3, there is a curve455

γ1 ∈ R such that γ1 crosses at least n/2 red curves in R. Let R0 ⊂ R be the red curves that456

crosses γ1. By Lemma 7, G(R0) has edge density at least 1 − 8ε3. By averaging, we can find457

a subset B′ ⊂ B of size |R0| whose edge density is less than ε3. By setting ε3 sufficiently458

small so that 8ε3 < ε′
t, we can apply Lemma 16 to R0 and B′ with parameter t, and obtain459

subsets R̂ ⊂ R0, B̂ ⊂ B, each of size Ωε′
t
(n), with the desired properties. If every red curve460

in R̂ crosses every blue curve in B̂, or every red curve in R̂ is disjoint from every blue curve461

in B̂, then we are done. Therefore, we can assume that each curve α ∈ R̂ has a partition462

into two parts α = α′
u ∪ α′

ℓ with the properties described in Lemma 16. Set463
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U = {α′
u : α ∈ R̂, α = α′

u ∪ α′
ℓ} and L = {α′

ℓ : α ∈ R̂, α = α′
u ∪ α′

ℓ}.464

Hence, every curve in L is disjoint from every curve in B̂, and G(U) has edge density at465

most 2−t < ε1. Since |B̂| ≥ δn, where δ depends only on ε′
t, by Lemma 7, G(B̂) has edge466

density at most 2ε3/δ2. By setting ε3 sufficiently small so that 2ε3/δ2
0 < ε1, G(B̂) has edge467

density at most ε1. By averaging, we can find subsets of U and B̂, each of size min(|U|, |B̂|)468

and with densities at most ε1, and apply Theorem 15 to these subsets to obtain subsets469

U ′ ⊂ U and B′ ⊂ B̂, each of size Ωε3(n), such that every curve in U ′ is disjoint from every470

curve in B′, or every curve in U ′ crosses every curve in B′. By setting R′ to be the red curves471

in R corresponding to U ′, every red curve in R′ is disjoint from every blue curve in B′, or472

every red curve in R′ crosses every blue curve in B′, and each subset has size Ωε3(n). ◀473

4.3 High versus high edge density474

Finally, we consider the case when the intersection graphs G(R) and G(B) both have edge475

densities at least 1 − ε. By copying the proof of Theorem 17, except using Theorem 17 (high476

versus low density) instead of Theorem 15 (low versus low density), we obtain the following.477

▶ Theorem 18. There is an absolute constant ε4 > 0 such that the following holds. Let R478

be a set of n red curves in the plane and B be a set of n blue curves in the plane such that479

R ∪ B is a collection of pseudo-segments, and the intersection graphs G(B) and G(R) both480

have edge density at least 1 − ε4. Then there are subsets R′ ⊂ R, B′ ⊂ B, each of size Ω(n),481

such that either every red curve in R crosses every blue curve in B, or every red curve in R482

is disjoint from every blue curve in B.483

5 Proof of Theorem 4484

Let R be a set of n red curves in the plane, and B be a set of n blue curves in the plane485

such that R ∪ B is a collection of pseudo-segments. Let ε be a sufficiently small constant486

such that ε < ε4 < ε3 < ε1, where ε1 is from Theorem 15, ε3 is from Theorem 17, and ε4487

is from Theorem 18. We apply Corollary 6 to both R and B and obtain subsets R1 ⊂ R488

and B1 ⊂ B such that both G(R1) and G(B1) are ε-homogeneous. Moreover, we can assume489

that |R1| = |B1|. If both G(R1) and G(B1) have edge densities less than ε, then, since ε is490

sufficiently small, we can apply Theorem 15 to obtain subsets R2 ⊂ R1 and B2 ⊂ B1, each491

of size Ωε(n), such that either every red curve in R2 is disjoint from every blue curve in B2,492

or every red curve in R2 crosses every blue curve in B2. If one of the graphs of G(R1) and493

G(B1) has edge density less than ε, and the other has edge density greater than 1 − ε, then494

we apply Theorem 17 to R1 and B1 to obtain subsets R2 ⊂ R1 and B2 ⊂ B1, each of size495

Ωε(n), such that either every red curve in R2 is disjoint from every blue curve in B2, or every496

red curve in R2 crosses every blue curve in B2. Finally, if both G(R1) and G(B1) have edge497

densities at least 1 − ε, then, since ε is sufficiently small, we can apply Theorem 18 to obtain498

subsets R2 ⊂ R1 and B2 ⊂ B1, each of size Ωε(n), such that either every red curve in R2 is499

disjoint from every blue curve in B2, or every red curve in R2 crosses every blue curve in B2.500
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