
Crossing number of toroidal graphsJ�anos Pah� and G�eza T�othyR�enyi Institute, Hungarian Aademy of SienesAbstratIt is shown that if a graph of n verties an be drawn on the torus without edge rossingsand the maximum degree of its verties is at most d, then its planar rossing numberannot exeed dn, where  is a onstant. This bound, onjetured by Brass, annotbe improved, apart from the value of the onstant. We strengthen and generalize thisresult to the ase when the graph has a rossing-free drawing on an orientable surfaeof higher genus and there is no restrition on the degrees of the verties.1 IntrodutionLet Sg be the ompat orientable surfae with no boundary, of genus g. Given a simplegraph G, a drawing of G on Sg is a representation of G suh that the verties of G arerepresented by points of Sg and the edges are represented simple (i.e., non-sel�nterseting)ontinuous ars in Sg, onneting the orresponding point pairs and not passing throughany other vertex. The rossing number of G on Sg, rg(G), is de�ned as the minimumnumber of edge rossings over all drawings of G in Sg. For r0(G), the \usual" planarrossing number, we simply write r(G).Let G be a graph of n verties and e edges, and suppose that it an be drawn on thetorus without rossing, that is, G satis�es r1(G) = 0. How large an r(G) be? Clearly, wehave r(G) < �e2�, and this order of magnitude an be attained, as shown by the followingexample. Take �ve verties and onnet any pair of them by e20 vertex-disjoint paths oflengths two. In any drawing of this graph in the plane, every subdivision of K5 gives riseto a rossing. Therefore, the number of rossings must be at least e2400 .Peter Brass suggested that this estimate an be substantially improved if we impose anupper bound on the degree of the verties.�Supported by NSF grant CCR-00-98246 and grants from NSA, PSC-CUNY, Hungarian Researh Foun-dation, and BSFySupported by OTKA-T-038397 and OTKA-T-046246.1



Theorem 1. Let G be a graph of n verties with maximum degree d, and suppose that Ghas a rossing-free drawing on the torus. Then we have r(G) � dn, where  is a onstant.For d � 3, the bound in Theorem 1 annot be improved, apart from the value of theonstant . Consider the following example. Let d � 4, G = Ck � Ck, where k = pn=d isa large integer and Ck denotes a yle of length k. Obviously, this graph an be drawn onthe torus without rossings. On the other hand, by a result of Salazar and Ugalde [SU04℄,its planar rossing number is larger than (45 � ")k2, for any " > 0, provided that k is largeenough. Substitute every edge e of G by bd4 new verties, eah onneted to both endpointsof e. The resulting graph G0 has at most n verties, eah of degree at most d. It an bedrawn on the torus with no rossing, and its planar rossing number is at least�45 � "� k2 � d216 > 121nd:To see this, it is enough to observe that there is an optimal drawing of G0 in the planewith the property that any two paths of length two onneting the same pair of vertiesross preisely the same edges. The same onstrution an be slightly modi�ed to showthat r(G) an also grow linearly in n if the maximum degree d is equal to three.Theorem 1 an be strengthened as follows.Theorem 2. Let G be a graph of n verties of maximum degree d that has a rossing-freedrawing on Sg, the orientable surfae of genus g. Then we have r(G) � d;gn, where d;gis a onstant depending on d and g.We an drop the ondition on the maximum degree and obtain a more general statement.Theorem 3. Let G be a graph of n verties with degrees d1; d2; : : : ; dn, and suppose that Ghas a rossing-free drawing on Sg. Then we haver(G) � g nXi=1 d2i ;where g is a onstant depending on g.To simplify the presentation and to emphasize the main idea of the proof, in Setion 2�rst we settle the planar ase (Theorem 1). In Setion 3, we redue Theorem 3 to a similarupper bound on the rossing number of G in Sg�1 (Theorem 3.1). This latter result isestablished in Setion 4.2 The planar ase: Proof of Theorem 1We an assume that d � 3. It is suÆient to prove that r(G) � d(n � 1) holds for anytwo-onneted graph G satisfying the onditions. Indeed, if G is disonneted or has a ut2



vertex, then it an be obtained as the union of two graphs G1 and G2 with n1 and n2verties that have at most one vertex in ommon, so that we have n1 + n2 = n or n + 1.Arguing for G1 and G2 separately, we obtain by indution thatr(G) = r(G1) + r(G2) � d(n1 � 1) + d(n2 � 1) � d(n� 1);as required.Let G be a two-onneted graph with maximum degree d and r1(G) = 0. Fix a rossing-free drawing of G on the torus. We an assume that the boundary of eah fae is onneted.Indeed, if one of the faes ontains a yle not ontratible within the fae, then uttingthe torus along this yle we do not damage any edge of G. Therefore, G is a planar graphand there is nothing to prove.If our drawing is not a triangulation, then by adding O(n) extra verties and edges wean turn it into one so that the maximum degree of the verties inreases by at most four.We have to apply the following easy observation.Lemma 2.1. Let G be a two-onneted graph with n verties of degree at most d (d � 3).Suppose that G has a rossing-free drawing on the orientable surfae of genus g suh thatthe boundary of eah fae is onneted. Any suh drawing an be extended to a triangulationof the surfae with at most 19n+ 36(g � 1) verties of maximum degree at most 3d.Proof. First onsider a yle f = x1x2 : : : xn(f) bounding a single fae in the drawing ofG. Note that some verties xi 2 V (G) and even some edges may appear along this yleseveral times. Take a simple losed urve 0 = p1p2 : : : pn(f) inside the fae, running verylose to f and passing through the (new) points pi in this yli order. In the ring betweenf and 0, onnet eah vertex xi to pi and pi+1 (where pn(f)+1 := p1).Divide 0 into m0 := dn(f)d�1 e onneted piees, eah onsisting of at most d� 1 verties,suh that the last vertex of eah piee �i is the �rst vertex of �i+1, where 1 � i � m0 and�m0+1 := �1. Plae a simple losed urve 1 = q1q2 : : : qm0 in the interior of 0. In the ringbetween 0 and 1, onnet eah qi to all points in �i. (If m0 = 1 or 2, then 1 degeneratesinto a point or a single edge.) If 1 has more than three verties, repeat the same proedurefor 1 in the plae of 0, and ontinue as long as the interior of the fae is not ompletelytriangulated. We addedn(f) +m0 +m1 + : : : < n(f) + n(f) + n(f)2 + n(f)4 + : : : < 3n(f)new verties, and their maximum degree is at most d + 3. The degree of every originalvertex of f inreased by at most twie the number of times it appeared in f .If we triangulate every fae of G in the above manner, the resulting drawing G0 de�nesa triangulation of the surfae with fewer than n+Pf 3nf � n+ 6jE(G)j verties, eah of3



degree at most d0 := 3d. By Euler's formula, we have n+ 6jE(G)j � n+ 18(n� 2 + 2g), asrequired. 2In the sequel, slightly abusing the notation, we write G for the triangulation G0 and dfor its maximum degree d0.If G has no nonontratible yle, i.e., no yle represented on the torus by a losedurve not ontratible to a point, then we are done, beause G is a planar drawing sothat r(G) = 0. Otherwise, hoose a nonontratible yle C with the minimum numberof verties, �x an orientation of C, and let k := jV (C)j. Let El (and Er) denote the setof edges not belonging to C that are inident to at least one vertex of C and in a smallneighborhood of this vertex lie on the left-hand side (respetively right-hand side) of C.Note that the sets El and Er are disjoint, but this fat is not neessary for the proof.Replae C by two opies, Cr and Cl, lying on its right-hand side and left-hand side.Connet eah edge of Er (respetively El) to the orresponding vertex of Cr (respetivelyCl). Cut the torus along C, and attah a disk to eah side of the ut.The resulting spherial (planar) drawing G1 represents a graph, slightly di�erent fromG. To transform it into a drawing of G, we have to remove Cl and (re)onnet the edges ofEl to the orresponding verties of Cr. In what follows, we desribe how to do this withoutreating too many rossings.Let Ĝ1 denote the dual graph of G1, that is, plae a vertex of Ĝ1 in eah fae of G1, andfor any e 2 E(G1) onnet the two verties assigned to the faes meeting at e by an edgeê 2 E(Ĝ1). Let r and l denote the verties of Ĝ1 lying in the faes bounded by Cr and Cl.
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Figure 1: C is the shortest nonontratible yle.Lemma 2.2. In Ĝ1, there are k vertex-disjoint paths between the verties r and l.4



Proof. By Menger's theorem, the maximum number p of (internally) vertex-disjoint pathsonneting r and l in Ĝ1 is equal to the minimum number of verties whose deletion separatesr from l. Choose p suh separating verties, and denote the orresponding triangular faesof G by f1; : : : ; fp. The interior of the union of these faes must ontain a nonontratiblelosed urve that does not pass through any vertex of G. Let Æ be suh a urve whosenumber of intersetion points with the edges of G is minimum. Choose an orientationof Æ. Let e1; : : : ; eq denote the irular sequene of edges of G interseted by Æ. By theminimality of Æ, we have q � p, beause the interior of eah triangle fi ontains at mostone maximal onneted piee of Æ. Let vi be the right endpoint of ei with respet to theorientation of Æ. Notie that vi is adjaent to or idential with vi+1, for every 1 � i � q(where vq+1 := v1). Therefore, the irular sequene of verties v1; : : : ; vq indues a yle inG that an be ontinuously deformed to Æ. Thus, we have a nonontratible yle of lengthq � p in G, whih implies that k, the length of the shortest suh yle, is at most p, asrequired. 2
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Figure 2: Pulling the edges in El through the orridor B.By Lemma 2.1, the graph Ĝ has at most 2jV (G)j � 26n verties. Aording to Lemma2.2, there is a path onneting r and l in Ĝ with fewer than 26nk internal verties. Theorresponding faes of G1 form a \orridor" B between Cr and Cl. Delete now the verties ofCl from G1. Pull every edge in El through B, and onnet eah of them to the orrespondingvertex of Cr. See Figures 1 and 2. Notie that during this proedure one an avoid reatingany rossing between edges belonging to El.We give an upper bound on the number of rossings in the resulting planar drawing of5



G. Using that jCj = k and jErj � dk, we an onlude that by pulling eah edge through theorridor B, we reate at most 26nk rossings per edge. Thus, the total number of rossingsannot exeed dk � 26nk = 26dn, whih ompletes the proof of Theorem 1. 23 Reduing Theorem 3 to Theorem 3.1Given a graph G, let n(G) and �(G) denote the number of verties of G and the sum of thesquares of their degrees.Theorem 3 provides an upper bound for the rossing number of a graph G that an bedrawn on Sg without rossing. Next we show that this bound an be dedued by repeatedappliation of the following result. In eah step, we redue the genus of the surfae by one.Theorem 3.1. Let G be a two-onneted graph with rg(G) = 0. Then we have rg�1(G) ��g�(G), for some onstant �g � 1.Proof of Theorem 3 using Theorem 3.1. As in the proof of Theorem 1, we an assumethat G is two-onneted. Consider a rossing-free drawing of G0 := G on Sg. Aording toTheorem 3.1, G0 an be drawn on Sg�1 with at most �(G) rossings. Plae a new vertexat eah rossing, and apply Theorem 3.1 to the resulting graph G1. Proeeding like this,we obtain a series of graphs G2; G3; : : : ; Gg, drawn on Sg�2; Sg�3; : : : ; S0, respetively, withno rossing.We laim that for any i, 0 � i � g,�(Gi) � (17)i0� Yg�i<j�g �j1A�(G)holds. This is obviously true for i = 0. Let 0 < i � g, and assume that the laim hasalready been veri�ed for i� 1. Notie that, apart from the original verties of Gi�1, everyother vertex of Gi has degree four. Thus, applying Theorem 3.1 to the graph Gi�1 that hada rossing-free drawing on Sg�i+1, we obtain�(Gi) � �(Gi�1) + 16rg�i(Gi�1) � �(Gi�1) + 16�g�i+1�(Gi�1)� (1 + 16�g�i+1)(17)i�10� Yg�i+1<j�g �j1A�(G) � (17)i0� Yg�i<j�g �j1A�(G);whih proves the laim.It follows from the onstrution that Gg is a planar graph, and we haven(Gg)� n(G) < �(Gg) � 17g 0� gYj=1 �j1A�(G):6



Replaing the n(Gg)�n(G) \new" verties of Gg by proper rossings, we obtain a drawingof G in the plane with at most 17g �Qgj=1 �j��(G) rossings. This ompletes the proof ofTheorem 3. 2.4 Reduing the genus by one: Proof of Theorem 3.1It remains to prove Theorem 3.1.All nonrossing losed urves C on Sg belong to one of the following three ategories:1. C is ontratible (to a point);2. C is nonontratible and twosided, i.e., it separates Sg into two onneted omponents;3. C is nonontratible and onesided.Let us ut the surfae Sg along C, and attah a disk along eah side of the ut. If C isontratible, we obtain two surfaes: one homeomorphi to Sg and the other homeomorphito the sphere S0. If C is nonontratible and twosided, then we obtain two surfaes home-omorphi to Sa and Sb, for some a; b > 0 with a + b = g. Finally, if C is nonontratibleand onesided, then we get only one surfae, Sg�1 [MT01℄.First we need an auxiliary statement, interesting on its own right.Theorem 4.1. Let G be a graph with a rossing-free drawing on Sg. If G has no nonon-tratible onesided yle, then G is a planar graph.Proof. We follow the approah of Cairns and Nikolayevsky [CN00℄, developed to handlea similar problem on generalized thrakles. Let S be a very small losed neighborhood ofthe union of all edges of the drawing of G on Sg. Then S is a ompat onneted surfaewhose boundary onsists of a �nite number of losed urves. Attahing a disk to eahof these losed urves, we obtain a surfae S0 with no boundary. We show that S0 is asphere. To verify this laim, onsider two losed urves, �0 and �0, on S0. They an beontinuously deformed into losed walks, �1 and �1, along the edges of G. Let � and � bethe orresponding losed walks along the edges of G in the original drawing on Sg. By theassumption, � divides Sg into two parts, therefore, � rosses � an even number of times.Sine the original drawing of G on Sg was rossing-free, every rossing between � and �ours at a vertex of G. Using the fat that in the new drawing of G on S0, the yli orderof the edges inident to a vertex is the same as the yli order of the orresponding edgesin the original drawing, we an onlude that �1 and �1 ross an even number of times. Itis not hard to argue that then the same was true for �0 and �0. Thus, S0 is a surfae withno boundary in whih any two losed urves ross an even number of times. This implies7



that S0 is a sphere. Consequently, we have a rossing-free drawing of G on the sphere, thatis, G is a planar graph. 2Proof of Theorem 3.1. As in the previous setion, let �(G) denote the the sum of thesquared degrees of the verties of G. A grid of size k � k is the ross produt Pk � Pk oftwo paths of length k. The verties of Pk � Pk with degrees less than four are said to formthe boundary of the grid. The proof of Theorem 3.1 is based on the same idea as that ofTheorem 1, but some important details have to be modi�ed.Suppose that G is a two-onneted graph of n verties, drawn on Sg without rossing.We an also assume that G has no rossing-free drawing on Sg�1, otherwise Theorem 3.1 istrue by indution. In partiular, it follows that every fae of the drawing of G on Sg has aonneted boundary.Replae eah vertex v of degree d(v) > 4 by a grid of size d(v) � d(v) and onnet theedges inident to v to distint verties on the boundary of the grid, preserving their yliorder. The resulting rossing-free drawing of G0 has at most �(G) verties, eah of degreeat most four. Every fae has a onneted boundary, so that we an apply Lemma 2.1 toturn G0 into a triangulation G00 with at most 19�(G) + 36(g � 1) verties, eah of degreeat most twelve. Restriting G0 and G00 to any grid substituting for a vertex in G, the onlydi�erene between them is that eah quadrilateral fae in G0 is subdivided by one of itsdiagonals into two triangles in G00. Color all edges along the boundaries of the grids blue,and all other grid and diagonal edges of G00 that lie in the interior of some grid red.If G00 has no nonontratible onesided yle, then we are done by Theorem 4.1. Oth-erwise, pik suh a yle C with the smallest number k of verties. Without inreasing itslength too muh, we an replae all red edges of C by blue edges. Indeed, the �rst vertexand the last vertex of any maximal red path in C must belong to the boundary of the samegrid. Replae eah suh path by the shortest blue path onneting its �rst and last vertiesalong the boundary of the grid ontaining them. The resulting yle C 0 is nonontratible,onesided, and its length is at most 2k. It has no red edges, and we an assume without lossof generality that it does not interset itself. Fix an orientation of C 0.Let El (and Er) denote the set of edges not belonging to C 0 that are inident to atleast one vertex of C 0 and in a small neighborhood of this vertex lie on the left-hand side(respetively right-hand side) of C 0.Replae C 0 by two opies, C 0r and C 0l , lying on its right-hand side and left-hand side.Connet eah edge of Er and El) to the orresponding vertex of C 0r and C 0l . Cut Sg alongC, and attah a disk to eah side of the ut. The resulting surfae is Sg�1, and it ontainsa rossing-free drawing G1 of a graph slightly di�erent from G00. To obtain a drawing ofG00 from G1, we have to remove Cl and (re)onnet the edges of El to the orrespondingverties of Cr without reating too many rossings.Let Ĝ1 be the dual drawing of G1 on Sg�1. Let r (respetively l) be the vertex of8



Ĝ1 lying in the fae bounded by Cr (respetively Cl). Color blue eah vertex of Ĝ1 thatorresponds to a fae lying inside a grid in G00.Repeating the proof of Lemma 2.2, we obtainLemma 4.2. In Ĝ1, there are k vertex-disjoint paths between the verties r and l. 2By Euler's formula, Ĝ1 has at most2jV (G1)j+ 4(g � 2) � 2 (19�(G) + 36(g � 1)) + 4(g � 2) < 40(�(G) + 2g)verties. Thus, by Lemma 4.2, there is a path P (rl) between r and l, of length at most40(�(G) + 2g)=k. Replaing all blue verties of P (rl) by others, we obtain a new path P 0(rl),not muh longer than P (rl). First observe that r and l, the two endpoints of P (rl), are notblue. Let uv1v2 : : : vjv be an interval along P suh that all vi's are blue (1 � i � j), but uand v are not. Then the faes orresponding to u and v must be adjaent to the boundaryof some grid in G1. These two faes are onneted by two hains of faes following the outerboundary of the grid. Replae v1; v2; : : : ; vj by the sequene of verties orresponding tothe shorter of these two hains. Sine the degree of every vertex in G1 is at most twelve,the length of this hain is at most 12j. Repeating this proedure for eah maximal blueinterval of P (rl), we obtain a new path P 0(rl), whose length is at most 480(�(G) + 2g)=k.The orresponding faes of G1 form a \orridor" B between Cr and Cl. Now delete r,l, and the verties of Cl. In the same way as in the proof of Theorem 1, \pull" all edgesof El through B, and onnet them to the orresponding verties of Cr. This step an bearried out without reating any rossing between the edges in El.Now we ount the number of rossings in the resulting drawing. Sine jCj = 2k, jElj �20k. Pulling them through the orridor B, we reate at most 480(�(G) + 2g)=k rossingsper edge, that is, altogether at most X := 9600(�(G) + 2g) rossings.Deleting the extra verties and edges from G1 and ollapsing eah grid into a vertex, weobtain a drawing of G on Sg�1, in whih the number of rossings annot exeed X. Thisonludes the proof of Theorem 3.1. 2Referenes[CN00℄ G. Cairns and Y. Nikolayevsky, Bounds for generalized thrakles, Disrete Comput.Geom. 23 (2000), 191{206.[MT01℄ B. Mohar and C. Thomassen: Graphs on surfaes, Johns Hopkins Studies in theMathematial Sienes. Johns Hopkins University Press, Baltimore, MD, 2001.[SU04℄ G. Salazar and E. Ugalde: An improved bound for the rossing number of Cm�Cn:a self-ontained proof using mostly ombinatorial arguments, Graphs Combin. 20 (2004),247{253. 9


