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ORTHOGONAL EMBEDDINGS

WHAT IS AN ORTHOGONAL GRID EMBEDDING?
A mapping that maps the vertices of a (planar) graph G = (V,E) into
the grid points and the edges into interior disjoint paths on the grid.

A triangle embedded on a grid.
The 3 vertices are shown as circles.
Embedding has 4 bends. This can be reduced.
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INTRODUCTION

OUR AIM

Given a planar representation G, compute an orthogonal embedding
with the minimum number of bends.

We consider only graphs with max degree 4.
Among orthogonal embeddings with the minimal number of
bends, we want the the one with the smallest area, (and/or width,
length etc.)
Two sources for all the material:

Graph Drawing: Algorithms for the Visualization of Graphs by Di
Battista, Eades, Tamassia and Tollis (Book).
On embedding a graph in the grid with the minimum number of
bends, Tamassia, SIAM J. Computing Vol 16, No. 3, 1987.

The book is a more complete source.
All material can be found at: www.cs.nyu.edu/~raghavan/gd
(for now).
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A FEW DEFINITIONS

Planar Representation: A planar graph G together with the set of
faces of G and the order of edges around each face.

90◦ bend: A bend in a face f of an orthogonal embedding such
that the 90◦ is inside f .
Orthogonal Representation: A planar representation together with
the the following information for every face f :

The angle between every pair of consecutive edges in f . This can
be one of 90◦, 180◦, 270◦, 360◦.
For every edge e ∈ f , a list of all 90◦ and 270◦ bends in e. Note that
e can have only these two kinds of bends.

In a nutshell, an Orthogonal Representation (Ortho-rep) is an
orthogonal embedding but without any information about the
lengths of the edges.

Normalized Ortho-Rep: An ortho-rep every one of whose faces is
rectangular in shape.
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SUMMARY OF RESULTS

NP-hard to find minimal embedding of a 4-planar graph G over all
possible planar representations (Garg-Tamassia 95).

For a fixed planar representation this can be done in O(n2 log n)
time (Tamassia 1987).

This was improved to O(n
7
4 log n) (Garg-Tamassia 1997).

If G has max degree 3 then a bend minimal embedding over all
possible planar representations can be found in polynomial time
(Di Battista, Liotta and Vargiu 93).

We Consider: Planar graphs with max degree 4 which have a
fixed planar representation.
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OVERVIEW OF THE ALGORITHM

Given a planar representation G,

We first compute a bend minimal ortho-rep.

We then refine it to get a normalized ortho-rep.

This is then embedded into the grid.

The fictitious edges added during the normalization are then
deleted to obtain and embedding of G.

Each of the above steps can be performed in O(n2 log n) time.

Pretty Simple, Ain’t it?
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OUTLINE

A (very brief) review of the Minimum-cost-flow problem.

Sums of the angles of a polygon.

Grid embedding of a normalized ortho-rep.

Normalizing an ortho-rep.

Computing a bend minimal ortho-rep.

Characterizing bend minimal embeddings.

Homework ;-).
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REVIEW OF MINIMUM COST FLOW

A network N = (V,E, low, capacity, cost, demand) consists of :
A finite set of vertices V .
A set E of ordered pairs of vertices.
low, capacity, cost and demand are functions such that:
low : E −→ R, capacity : E −→ R, cost : E −→ R and
demand : V −→ R.
For any v ∈ V if demand(v) > 0 then v is called a source and if
demand(v) < 0 then v is called a sink.

A flow in N is a function x : E −→ R such that:
low(e) ≤ x(e) ≤ capacity(e)∀e ∈ E.
Σwx(v, w)− Σux(u, v) = demand(v)∀v ∈ V .

The value of the flow is Σu∈Sourcesdemand(u).

The cost of a flow is Σe∈Ecost(e)x(e).

The Minimum cost flow problem asks to compute the flow with the
minimum cost among those with a given value.
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REVIEW OF MINIMUM COST FLOW II

When the low, capacity and demand functions are integral and
cost is non-negative, the Min-Cost-Flow problem can be solved in
time O(|x|(V + E) log V ) where x is the value of the flow.
Consider a cycle C, with respect to a flow x, in the underlying
undirected graph G of the network such that:

For every edge e traversed by C in the direction of e we have
x(e) < capacity(e).
For every edge e traversed in the opposite direction, we have
x(e) > low(e).

We can some additional flow along C to obtain a new flow function
x′ with value same as that of x. How?

The cycle C is called a Flow Augmenting Cycle if the cost of x′ is
less than that of x.

The flow x is a Min-cost-flow iff there is no Flow Augmenting
Cycle with respect to it (Ahuja, Magnanti and Orlin).
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SUMS OF ANGLES IN A POLYGON

Sum of internal angles of a simple, convex, not necessarily
orthogonal, polygon with n sides is π(n− 2).

Sum of external angles π(n + 2).

What if the polygon is non-convex (but still simple)? Same result
holds.

Let n90◦ and n270◦ be the number of convex and reflex vertices of
an orthogonal polygon, then n90◦ − n270◦ = 4 (Homework!).

Given an orthogonal polygon with vertex set V , let V ′ ⊂ V and let
nd◦ , n′

d◦ and n′′
d◦ be the number of convex angles in V and V ′ and

V − V ′ where d = {90◦, 270◦}. Then

EQUATION

2 (Σv∈V ′angle(v))

π
+ n′′

270◦ − n′′
90◦ = 2|V ′| − 4
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GRID EMBEDDING FOR A NORMALIZED ORTHO-REP

We are given an planar representation G and H an ortho-rep of G
such that every face of H is rectangular in shape (though not
necessarily a rectangle).
More formally, we have the following information:

The set of faces of G and the list of edges forming each face are
given.
The angle between any two consecutive edges in a face is fixed at
90◦ or 180◦ and all but the four “corner” edges have no bends.
The number of bends in each corner edge is fixed.

WHAT WE NEED TO GET A GRID EMBEDDING

We only need to compute the length of the
horizontal and vertical segments. All other
information is already present.

Note: The lengths of the horizontal and vertical
segments can be computed independently.
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GRID EMBEDDING FOR A NORMALIZED ORTHO-REP

The Algorithm outline:
First, we compute the lengths of the horizontal segments:

Construct a flow network Nhor associated with H.
Compute the min cost flow in Nhor.
Compute the length of each horizontal edge from the min cost flow.

Lengths of the vertical segments are computed in a similar
manner.

Putting these together, we have a grid embedding of H.

The embedding obtained has minimum width, height, area and
total edge length.
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THE HORIZONTAL SEGMENTS

The network Nhor is constructed as follows:

Nhor has a node corresponding to every internal face of H.

Two additional s and t representing the lower and upper regions of
the outer face are also added to Nhor.

Two nodes of Nhor, f and g are joined by an edge iff faces f and g
of Nhor share a horizontal edge.

Every edge in Nhor has a lower bound of 1, a capacity of +∞ and
a cost of 1.
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AN EXAMPLE OF Nhor

s

t
The original ortho-rep is
shown in red (with solid lines)
and the edges of Nhor are in
blue (dashed lines).

Nhor is planar with a unique
source and a sink.

Remember: At this point we
do not have a grid embedding
yet! (the figure on the right
represents an ortho-rep and is
not a grid-embedding yet)
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A FLOW IN Nhor FROM A GRID EMBEDDING OF H

s

t
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(5,5)(0,5) Given a grid embedding of
Nhor, we can obtain a flow in
Nhor by setting the flow in an
edge e ∈ Nhor to be the length
of the corresponding
horizontal edges of the grid
embedding of H.

The flow satisfies the lower
bound and is conserved at the
vertices of Nhor. Why?

How do we compute a
grid-embedding of H from a
flow in Nhor?

Raghavan Dhandapani () Orthogonal Embeddings 9 Nov, 2005. 15 / 28



FLOWS AND GRID-EMBEDDINGS: SOME INTUITION

Consider a node v of Nhor:

Since the shape is a rectangle, it follows that length of bottom
segment is the same as the length of the top segment.
This implies that flow in conserved! Why?
Flow lower bound is 1 in the edges of Nhor ⇐⇒ Minimum length of
an edge in the grid embedding is 1.
Flow Capacity of each edge in Nhor is ∞⇐⇒ Edges can be of
any length in the grid embedding.
Flow has unit cost on each edge ⇐⇒ we want the flow with
minimum total edge length.
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NORMALIZING AN ORTHO-REP

THE PROBLEM DEFINITION

Given a general ortho-rep F whose faces are not necessarily
rectangular, how do we refine it (by adding edges and vertices) to
obtain a normalized ortho-rep H?

Add a new vertex at every bend in F .
For each non-rectangular internal face f ∈ F :

For each edge e in f , let next(e) be the next counterclockwise edge
and let corner(e) be the common vertex of e and next(e).
Let turn(e) = +1 if e and next(e) form a left turn, turn(e) = 0 if they
are aligned and turn(e) = −1 if they form a right turn.
If turn(e) = −1 then let front(e) = e′ where e′ follows e
counterclockwise and the sum of turn values of all edges between e
(included) and e′ (excluded) is 1.
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NORMALIZING AN ORTHO-REP II
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turn(e0) = −1 and front(e0) = e5.

Remember: We are currently
dealing with an ortho-rep, not with a
embedding.

For all e such that turn(e) = −1, add an edge extend(e) from
corner(e) to front(e) to break the face into two simpler pieces.

Let r = {e|turn(e) = −1, e ∈ f}, then face f is broken into r + 1
rectangular pieces.

The external face has to be dealt with in a slightly different way.
Two questions remain:

Does front(e) always exist?
Is the final graph planar?
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NORMALIZING AN ORTHO-REP III

For all edges e ∈ f where f is an internal face, front(e) exists
since Σe∈f turn(e) = 4. Why?

Two newly inserted edges extend(e) and extend(e′) cannot

intersect. Why?

e

e’

front(e)

front(e’)
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COMPUTING A BEND MINIMAL ORTHO-REP

THE PROBLEM

Given a planar representation G, compute the ortho-rep with the
minimum number of bends.

Some intuition about the angles in a grid embedding:

Let one unit=π
2 radians.

Each vertex generates 4 units worth of angles.

21

1

A face that containing a pair of consecutive edges making an
angle of α units (1 ≤ α ≤ 4) is said to gain α units from the vertex.
Each k-face of G is said to consume 2k − 4 units worth of angles if
it is internal and 2k + 4 units if it is external.
Two questions arise:

Why 2k − 4 and 2k + 4?
Can we say something about the bends in the edges?
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INTUITION ABOUT THE BENDS

First consider the bends:

For each 90◦ bend we say face F1 loses
one unit of angles (to face F2) via edge e
and face F2 gains gains the same via
edge e.

e

F1
F
2

1

1

1

1
2 1

1

Let Bends90◦(e,F) be the units lost by face F via edge e and
Bends270◦(e,F) be the units gained.

Let Angle(e,F) be the angle (in units) between edge e and the
next counterclockwise edge in F .

Let φ(F) = Σe∈F Angle(e,F) + Bends270◦(e,F)−Bends90◦(e,F)
and let F have k graph edges.
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THE KEY EQUATION

RECALL

For every k-face F , φ(F) = 2k − 4 if F is internal and φ(F) = 2k + 4 if
F is external.

φ(F) is the net units gained by F . Hence it makes sense to say
that F consumes 2k − 4 (or 2k + 4) units.

Now we look at things from a Network Flow Perspective by building a
network N :

N has a vertex for every vertex and face of G.
Directed edge (v,F) ∈ E(N ) iff face F contains vertex v in G.
If faces F1 and F2 are adjacent in G then N contains directed
edges (F1,F2) and (F2,F1).
The vertices of N corresponding to vertices of G are sources with
each producing 4 units of flow. The vertices corresponding to the
faces of G are sinks with each face F consuming φ(F) units.
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THE NETWORK FLOW PERSPECTIVE

Edge (v,F) of N has capacity 4, cost 0 and lower bound of 1.
Edge (F1,F2) of N has capacity +∞, cost 1 and lower bound of 0.

The original graph is in red (dotted lines) with green (circular)
vertices.
The dual vertices are in blue.
The left figure shows all vertex-face edges in the network.
The right figure shows all face-face edges in the network.
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FROM NETWORK FLOWS TO BENDS

Given a flow X ,

The flow in edge (v,F) can be thought of as the angle at vertex v
of face F .

The flow in edge (F1,F2) can be thought of as the number of 90◦

bends in the common edge.

The flow is conserved at every vertex implies that every vertex has
a net flow of 4 units away from it (as this is the supply).

Flow is conserved at every face implies that every k-face gets
2k − 4 units of flow (as this is the demand).

Total flow out of the sources = Total flow into the sinks (by Eulers
formula).
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NETWORK FLOWS AND BENDS

Given a grid embedding of G we can compute the associated
network flow in N . How?

The total cost of any flow in N is the total number of bends in the
associated grid embedding. Why?

So we can compute min-cost flow and find the number of bends of
each type in each edge of G.

Total value of flow = O(n). Hence algorithm runs in O(n2 log n)
time.
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CHARACTERIZING BEND MINIMAL EMBEDDINGS

THEOREM

A orthogonal embedding of planar representation G is bend-minimal iff
there is no directed cycle J such that :(a) J intersects each edge of G
at most twice, (b) J enters vertices of G only from angles of at least
180◦ and (c) More than half the edges crossed by J have a bend with
the angle of 270◦ on the side from which J enters.

Proof: Augmenting Cycle in N implies the existence of J .
If the embedding then a flow-augmenting cycle C must exist in the
network N
If this curve enters a vertex of G, it must do so while traversing a
vertex-face edge in the reverse direction. Why?
If C traverses a total of k face-face edges of N , then it must
traverse at least k

2 of these in the reverse direction of the edge.
We can also show that J implies the existence of an augmenting
cycle in a similar way.
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AN EXAMPLE

Before After

A

B

C

D E

F

B

C F

A

ED

In the left figure:

The curve enters edges CF , AE and AB from a 270◦ angle.

CB does not have a 270◦ angle in the direction the curve enters.

The curve enters vertex which has an angle of 180◦ in the
direction the curve enters.

The right figure has two less bends.
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(SIMPLE!) HOMEWORK

Let n90◦ and n270◦ be the number of convex and reflex vertices of
an orthogonal polygon, then prove that n90◦ − n270◦ = 4

Show that no edge of a planar bend-minimal orthogonal
embedding has two bends with an angle of 90◦ on opposite sides.
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