Orthogonal Graph Embeddings with

 Minimal Number of Bends```
Based on a result by
```



## Raghavan S. Dhandapani

Courant Institute of Mathematical Sciences

9 Nov, 2005.

## Orthogonal Embeddings

## What is an Orthogonal Grid Embedding?

A mapping that maps the vertices of a (planar) graph $G=(V, E)$ into the grid points and the edges into interior disjoint paths on the grid.

- A triangle embedded on a grid.
- The 3 vertices are shown as circles.
- Embedding has 4 bends. This can be reduced.


## InTRODUCTION

OUR Aim
Given a planar representation $G$, compute an orthogonal embedding with the minimum number of bends.

- We consider only graphs with max degree 4.
- Among orthogonal embeddings with the minimal number of bends, we want the the one with the smallest area, (and/or width, length etc.)
- Two sources for all the material:
- Graph Drawing: Algorithms for the Visualization of Graphs by Di Battista, Eades, Tamassia and Tollis (Book).
- On embedding a graph in the grid with the minimum number of bends, Tamassia, SIAM J. Computing Vol 16, No. 3, 1987.
- The book is a more complete source.
- All material can be found at: www. cs.nyu.edu/~raghavan/gd (for now).


## A Few Definitions

- Planar Representation: A planar graph $G$ together with the set of faces of $G$ and the order of edges around each face.
- $90^{\circ}$ bend: A bend in a face $f$ of an orthogonal embedding such that the $90^{\circ}$ is inside $f$.
- Orthogonal Representation: A planar representation together with the the following information for every face $f$ :
- The angle between every pair of consecutive edges in $f$. This can be one of $90^{\circ}, 180^{\circ}, 270^{\circ}, 360^{\circ}$.
- For every edge $e \in f$, a list of all $90^{\circ}$ and $270^{\circ}$ bends in $e$. Note that $e$ can have only these two kinds of bends.
In a nutshell, an Orthogonal Representation (Ortho-rep) is an orthogonal embedding but without any information about the lengths of the edges.
- Normalized Ortho-Rep: An ortho-rep every one of whose faces is rectangular in shape.


## Summary of Results

- $\mathcal{N} \mathcal{P}$-hard to find minimal embedding of a 4-planar graph $G$ over all possible planar representations (Garg-Tamassia 95).
- For a fixed planar representation this can be done in $O\left(n^{2} \log n\right)$ time (Tamassia 1987).
- This was improved to $O\left(n^{\frac{7}{4}} \log n\right)$ (Garg-Tamassia 1997).
- If $G$ has max degree 3 then a bend minimal embedding over all possible planar representations can be found in polynomial time (Di Battista, Liotta and Vargiu 93).
- We Consider: Planar graphs with max degree 4 which have a fixed planar representation.


## Overview of the Algorithm

Given a planar representation $G$,

- We first compute a bend minimal ortho-rep.
- We then refine it to get a normalized ortho-rep.
- This is then embedded into the grid.
- The fictitious edges added during the normalization are then deleted to obtain and embedding of $G$.
Each of the above steps can be performed in $O\left(n^{2} \log n\right)$ time.

Pretty Simple, Ain't it?

## Outline

- A (very brief) review of the Minimum-cost-flow problem.
- Sums of the angles of a polygon.
- Grid embedding of a normalized ortho-rep.
- Normalizing an ortho-rep.
- Computing a bend minimal ortho-rep.
- Characterizing bend minimal embeddings.
- Homework ;-).


## Review of Minimum Cost Flow

- A network $N=(V, E$, low, capacity, cost, demand $)$ consists of :
- A finite set of vertices $V$.
- A set $E$ of ordered pairs of vertices.
- low, capacity, cost and demand are functions such that: low $: E \longrightarrow \mathcal{R}$, capacity $: E \longrightarrow \mathcal{R}$, cost $: E \longrightarrow \mathcal{R}$ and demand $: V \longrightarrow \mathcal{R}$.
- For any $v \in V$ if $\operatorname{demand}(v)>0$ then $v$ is called a source and if $\operatorname{demand}(v)<0$ then $v$ is called a sink.
- A flow in $N$ is a function $x: E \longrightarrow \mathcal{R}$ such that:
- $\operatorname{low}(e) \leq x(e) \leq \operatorname{capacity}(e) \forall e \in E$.
- $\Sigma_{w} x(v, w)-\Sigma_{u} x(u, v)=\operatorname{demand}(v) \forall v \in V$.
- The value of the flow is $\Sigma_{u \in \text { Sources }} \operatorname{demand}(u)$.
- The cost of a flow is $\Sigma_{e \in E} \operatorname{cost}(e) x(e)$.
- The Minimum cost flow problem asks to compute the flow with the minimum cost among those with a given value.


## Review of Minimum Cost Flow II

- When the low, capacity and demand functions are integral and cost is non-negative, the Min-Cost-Flow problem can be solved in time $O(|x|(V+E) \log V)$ where $x$ is the value of the flow.
- Consider a cycle $C$, with respect to a flow $x$, in the underlying undirected graph $G$ of the network such that:
- For every edge $e$ traversed by $C$ in the direction of $e$ we have $x(e)<\operatorname{capacity}(e)$.
- For every edge $e$ traversed in the opposite direction, we have $x(e)>\operatorname{low}(e)$.
- We can some additional flow along $C$ to obtain a new flow function $x^{\prime}$ with value same as that of $x$. How?
- The cycle $C$ is called a Flow Augmenting Cycle if the cost of $x^{\prime}$ is less than that of $x$.
- The flow $x$ is a Min-cost-flow iff there is no Flow Augmenting Cycle with respect to it (Ahuja, Magnanti and Orlin).


## Sums of Angles in a Polygon

- Sum of internal angles of a simple, convex, not necessarily orthogonal, polygon with $n$ sides is $\pi(n-2)$.
- Sum of external angles $\pi(n+2)$.
- What if the polygon is non-convex (but still simple)? Same result holds.
- Let $n_{90^{\circ}}$ and $n_{270^{\circ}}$ be the number of convex and reflex vertices of an orthogonal polygon, then $n_{90^{\circ}}-n_{270^{\circ}}=4$ (Homework!).
- Given an orthogonal polygon with vertex set $V$, let $V^{\prime} \subset V$ and let $n_{d^{\circ}}, n_{d^{\circ}}^{\prime}$ and $n_{d^{\circ}}^{\prime \prime}$ be the number of convex angles in $V$ and $V^{\prime}$ and $V-V^{\prime}$ where $d=\left\{90^{\circ}, 270^{\circ}\right\}$. Then


## EQUATION

$$
\frac{2\left(\Sigma_{v \in V^{\prime}} \operatorname{angle}(v)\right)}{\pi}+n_{270^{\circ}}^{\prime \prime}-n_{90^{\circ}}^{\prime \prime}=2\left|V^{\prime}\right|-4
$$

## Grid Embedding for a Normalized Ortho-Rep

- We are given an planar representation $G$ and $H$ an ortho-rep of $G$ such that every face of $H$ is rectangular in shape (though not necessarily a rectangle).
- More formally, we have the following information:
- The set of faces of $G$ and the list of edges forming each face are given.
- The angle between any two consecutive edges in a face is fixed at $90^{\circ}$ or $180^{\circ}$ and all but the four "corner" edges have no bends.
- The number of bends in each corner edge is fixed.


## What We need to get a Grid Embedding

We only need to compute the length of the horizontal and vertical segments. All other information is already present.

- Note: The lengths of the horizontal and vertical segments can be computed independently.



## Grid Embedding for a Normalized Ortho-Rep

The Algorithm outline:

- First, we compute the lengths of the horizontal segments:
- Construct a flow network $N_{\text {hor }}$ associated with $H$.
- Compute the min cost flow in $N_{h o r}$.
- Compute the length of each horizontal edge from the min cost flow.
- Lengths of the vertical segments are computed in a similar manner.
- Putting these together, we have a grid embedding of $H$.
- The embedding obtained has minimum width, height, area and total edge length.


## The Horizontal Segments

The network $N_{h o r}$ is constructed as follows:

- $N_{h o r}$ has a node corresponding to every internal face of $H$.
- Two additional $s$ and $t$ representing the lower and upper regions of the outer face are also added to $N_{h o r}$.
- Two nodes of $N_{h o r}, f$ and $g$ are joined by an edge iff faces $f$ and $g$ of $N_{h o r}$ share a horizontal edge.
- Every edge in $N_{h o r}$ has a lower bound of 1 , a capacity of $+\infty$ and a cost of 1.


## AN EXAMPLE OF $N_{h o r}$



- The original ortho-rep is shown in red (with solid lines) and the edges of $N_{h o r}$ are in blue (dashed lines).
- $N_{h o r}$ is planar with a unique source and a sink.
- Remember: At this point we do not have a grid embedding yet! (the figure on the right represents an ortho-rep and is not a grid-embedding yet)


## A FLOW IN $N_{h o r}$ FROM A GRID EMBEDDING of $H$



- Given a grid embedding of $N_{\text {hor }}$, we can obtain a flow in $N_{h o r}$ by setting the flow in an edge $e \in N_{\text {hor }}$ to be the length of the corresponding horizontal edges of the grid embedding of $H$.
- The flow satisfies the lower bound and is conserved at the vertices of $N_{\text {hor }}$. Why?
- How do we compute a grid-embedding of $H$ from a flow in $N_{h o r}$ ?


## Flows and Grid-Embeddings: Some Intuition

- Consider a node $v$ of $N_{h o r}$ :

- Since the shape is a rectangle, it follows that length of bottom segment is the same as the length of the top segment.
- This implies that flow in conserved! Why?
- Flow lower bound is 1 in the edges of $N_{h o r} \Longleftrightarrow$ Minimum length of an edge in the grid embedding is 1 .
- Flow Capacity of each edge in $N_{h o r}$ is $\infty \Longleftrightarrow$ Edges can be of any length in the grid embedding.
- Flow has unit cost on each edge $\Longleftrightarrow$ we want the flow with minimum total edge length.


## NORMALIZING AN ORTHO-REP

## THE PROBLEM DEFINITION

Given a general ortho-rep $F$ whose faces are not necessarily rectangular, how do we refine it (by adding edges and vertices) to obtain a normalized ortho-rep $H$ ?

- Add a new vertex at every bend in $F$.
- For each non-rectangular internal face $f \in F$ :
- For each edge $e$ in $f$, let next (e) be the next counterclockwise edge and let corner ( $e$ ) be the common vertex of $e$ and next (e).
- Let $\operatorname{turn}(e)=+1$ if $e$ and $n e x t(e)$ form a left turn, $\operatorname{turn}(e)=0$ if they are aligned and $\operatorname{turn}(e)=-1$ if they form a right turn.
- If $\operatorname{turn}(e)=-1$ then let $\operatorname{front}(e)=e^{\prime}$ where $e^{\prime}$ follows $e$ counterclockwise and the sum of turn values of all edges between $e$ (included) and $e^{\prime}$ (excluded) is 1 .


## NORMALIZING AN ORTHO-REP II



- $\operatorname{turn}\left(e_{0}\right)=-1$ and $\operatorname{front}\left(e_{0}\right)=e_{5}$.
- Remember: We are currently dealing with an ortho-rep, not with a embedding.
- For all $e$ such that $\operatorname{turn}(e)=-1$, add an edge $\operatorname{extend}(e)$ from corner $(e)$ to front $(e)$ to break the face into two simpler pieces.
- Let $r=\{e \mid \operatorname{turn}(e)=-1, e \in f\}$, then face $f$ is broken into $r+1$ rectangular pieces.
- The external face has to be dealt with in a slightly different way.
- Two questions remain:
- Does front(e) always exist?
- Is the final graph planar?


## Normalizing an ortho-rep III

- For all edges $e \in f$ where $f$ is an internal face, front $(e)$ exists since $\Sigma_{e \in f} t u r n(e)=4$. Why?
- Two newly inserted edges $\operatorname{extend}(e)$ and $\operatorname{extend}\left(e^{\prime}\right)$ cannot intersect. Why?



## Computing a Bend Minimal Ortho-Rep

## The Problem

Given a planar representation $G$, compute the ortho-rep with the minimum number of bends.

Some intuition about the angles in a grid embedding:

- Let one unit= $\frac{\pi}{2}$ radians.
- Each vertex generates 4 units worth of angles.

- A face that containing a pair of consecutive edges making an angle of $\alpha$ units $(1 \leq \alpha \leq 4)$ is said to gain $\alpha$ units from the vertex.
- Each $k$-face of $G$ is said to consume $2 k-4$ units worth of angles if it is internal and $2 k+4$ units if it is external.
- Two questions arise:
- Why $2 k-4$ and $2 k+4$ ?
- Can we say something about the bends in the edges?


## Intuition about the Bends

First consider the bends:

- For each $90^{\circ}$ bend we say face $\mathcal{F}_{1}$ loses one unit of angles (to face $\mathcal{F}_{2}$ ) via edge $e$ and face $\mathcal{F}_{2}$ gains gains the same via edge $e$.

- Let $\operatorname{Bends}_{90^{\circ}}(e, \mathcal{F})$ be the units lost by face $\mathcal{F}$ via edge $e$ and Bends $2_{270^{\circ}}(e, \mathcal{F})$ be the units gained.
- Let Angle $(e, \mathcal{F})$ be the angle (in units) between edge $e$ and the next counterclockwise edge in $\mathcal{F}$.
- Let $\phi(\mathcal{F})=\Sigma_{e \in F}$ Angle $(e, \mathcal{F})+\operatorname{Bends}_{270^{\circ}}(e, \mathcal{F})-\operatorname{Bends} 90^{\circ}(e, \mathcal{F})$ and let $\mathcal{F}$ have $k$ graph edges.


## The Key Equation

## Recall

For every $k$-face $\mathcal{F}, \phi(\mathcal{F})=2 k-4$ if $\mathcal{F}$ is internal and $\phi(\mathcal{F})=2 k+4$ if $\mathcal{F}$ is external.

- $\phi(\mathcal{F})$ is the net units gained by $\mathcal{F}$. Hence it makes sense to say that $\mathcal{F}$ consumes $2 k-4$ (or $2 k+4$ ) units.
Now we look at things from a Network Flow Perspective by building a network $\mathcal{N}$ :
- $\mathcal{N}$ has a vertex for every vertex and face of $G$.
- Directed edge $(v, \mathcal{F}) \in E(\mathcal{N})$ iff face $\mathcal{F}$ contains vertex $v$ in $G$.
- If faces $\mathcal{F}_{1}$ and $\mathcal{F}_{2}$ are adjacent in $G$ then $\mathcal{N}$ contains directed edges $\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ and $\left(\mathcal{F}_{2}, \mathcal{F}_{1}\right)$.
- The vertices of $\mathcal{N}$ corresponding to vertices of $G$ are sources with each producing 4 units of flow. The vertices corresponding to the faces of $G$ are sinks with each face $\mathcal{F}$ consuming $\phi(\mathcal{F})$ units.


## The Network Flow Perspective

- Edge $(v, \mathcal{F})$ of $\mathcal{N}$ has capacity 4 , cost 0 and lower bound of 1 .
- Edge $\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ of $\mathcal{N}$ has capacity $+\infty$, cost 1 and lower bound of 0 .

- The original graph is in red (dotted lines) with green (circular) vertices.
- The dual vertices are in blue.
- The left figure shows all vertex-face edges in the network.
- The right figure shows all face-face edges in the network.


## From Network Flows to Bends

Given a flow $\mathcal{X}$,

- The flow in edge $(v, \mathcal{F})$ can be thought of as the angle at vertex $v$ of face $\mathcal{F}$.
- The flow in edge $\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ can be thought of as the number of $90^{\circ}$ bends in the common edge.
- The flow is conserved at every vertex implies that every vertex has a net flow of 4 units away from it (as this is the supply).
- Flow is conserved at every face implies that every $k$-face gets $2 k-4$ units of flow (as this is the demand).
- Total flow out of the sources = Total flow into the sinks (by Eulers formula).


## Network Flows and Bends

- Given a grid embedding of $G$ we can compute the associated network flow in $\mathcal{N}$. How?
- The total cost of any flow in $\mathcal{N}$ is the total number of bends in the associated grid embedding. Why?
- So we can compute min-cost flow and find the number of bends of each type in each edge of $G$.
- Total value of flow $=O(n)$. Hence algorithm runs in $O\left(n^{2} \log n\right)$ time.


## Characterizing Bend Minimal Embeddings

## Theorem

A orthogonal embedding of planar representation $G$ is bend-minimal iff there is no directed cycle $J$ such that :(a) $J$ intersects each edge of $G$ at most twice, (b) $J$ enters vertices of $G$ only from angles of at least $180^{\circ}$ and (c) More than half the edges crossed by $J$ have a bend with the angle of $270^{\circ}$ on the side from which $J$ enters.

Proof: Augmenting Cycle in $\mathcal{N}$ implies the existence of $J$.

- If the embedding then a flow-augmenting cycle $C$ must exist in the network $\mathcal{N}$
- If this curve enters a vertex of $G$, it must do so while traversing a vertex-face edge in the reverse direction. Why?
- If $C$ traverses a total of $k$ face-face edges of $\mathcal{N}$, then it must traverse at least $\frac{k}{2}$ of these in the reverse direction of the edge.
- We can also show that $J$ implies the existence of an augmenting cycle in a similar way.


## An Example



In the left figure:

- The curve enters edges $C F, A E$ and $A B$ from a $270^{\circ}$ angle.
- $C B$ does not have a $270^{\circ}$ angle in the direction the curve enters.
- The curve enters vertex which has an angle of $180^{\circ}$ in the direction the curve enters.
The right figure has two less bends.


## (Simple!) Homework

- Let $n_{90^{\circ}}$ and $n_{270^{\circ}}$ be the number of convex and reflex vertices of an orthogonal polygon, then prove that $n_{90^{\circ}}-n_{270^{\circ}}=4$
- Show that no edge of a planar bend-minimal orthogonal embedding has two bends with an angle of $90^{\circ}$ on opposite sides.

