
Combinatorial Methods and Algorithms

Zsolt Tuza

Csilla Bujtás

Máté Hegyháti

Latest update on March 24, 2014

Contents

Preface 8

0 Basic graph theory 10

0.1 Basic definitions . 10

0.2 Special significant graphs . 22

0.3 Graph parameters . 25

0.3.1 Clique number: ω . 28

0.3.2 Clique covering number: θ 29

0.3.3 Independence number: α 33

0.3.4 Transversal number: τ 36

0.3.5 Chromatic number: χ 39

0.3.6 Matching number: ν 43

0.3.7 Chromatic index: χ′ 46

0.4 Graph extensions . 50

0.4.1 Directed graphs . 50

0.4.2 Set systems . 53

0.5 Complexity of algorithms . 55

1 Interval systems 58

1.1 Helly’s theorem . 58

1.2 Transversals and matchings 59

1.3 Decomposition into intersecting subsystems 63

1.4 Decomposition into matchings 64

1.5 Example . 66

1.6 Interval systems and subpaths of a path 68

2 Interval graphs and sequential coloring 70

2.1 Intersection graph of an interval system 70

2.2 Sequential coloring . 74

2

CONTENTS 3

3 Chordal graphs 78

3.1 Subtrees of a tree . 78

3.2 Chordal graphs and simplicial order 79

3.3 Algorithms for chordal graphs 84

3.3.1 Determination of α and θ 84

3.3.2 Determination of ω and χ 85

4 Tree decompositions of graphs 87

4.1 Creating a tree decomposition 90

4.2 Nice tree decomposition . 94

4.3 Example: Largest independent set 97

4.4 Graphs of bounded treewidth 105

4.5 Tree decompositions of small width 107

4.6 Notes . 109

4.6.1 Traversing a rooted tree 109

4.6.2 Monadic logic . 110

5 Bipartite graphs 112

5.1 Maximum matchings in bipartite graphs 113

5.2 Systems of distinct representatives 120

5.3 Consequences of the Kőnig-Hall theorem 122

5.3.1 Edge colorings and factorizations of bipartite graphs . 122

5.3.2 Orientations and out-degrees 125

5.4 Stable matchings . 125

5.5 Perfect graphs . 128

6 The Max-Cut problem 132

6.1 First approach: Searching local optimum 133

6.2 Second approach: Finding a solution online 135

6.3 Third approach: The probabilistic method 136

6.4 Notes . 137

6.4.1 Online algorithms . 137

6.4.2 Probabilistic methods 138

7 Locally restricted colorings 139

7.1 Precoloring extension . 139

7.2 List coloring . 140

7.3 Kernels in directed graphs . 142

7.4 Line graphs of bipartite graphs 146

7.5 Planar graphs . 148

4 CONTENTS

8 Edge decompositions of graphs 150
8.1 Perfect matchings, Hamiltonian subgraphs 151
8.2 Complete bipartite graphs . 155
8.3 Complete subgraphs . 158

8.3.1 Complete subgraphs of variable size 158
8.3.2 Complete subgraphs of fixed size 159

8.4 Notes . 160
8.4.1 Double enumeration 161

9 Finite projective planes 162
9.1 Finite fields . 165
9.2 Galois planes . 166
9.3 Projective plane, Euclidean plane 168

10 Extremal problems 171
10.1 Forbidden subgraphs . 171
10.2 A generalization and some proofs 172
10.3 Routing . 174
10.4 The Turán problem for 4-cycles 177

Further reading 180

Index 181

A Illustration of algorithms 184
A.1 Transversal and matching in interval systems 184
A.2 Decomposition of interval systems into matchings 187
A.3 Optimal vertex order for coloring number 193
A.4 Large cut by local improvements 206
A.5 Large cut by the online approach 210
A.6 Subtree representation of chordal graphs 215

List of Figures

1 An undirected simple graph . 11
2 Some subgraphs of the graph in Figure 1 13
3 Some induced subgraphs of the graph in Figure 1 14
4 A tree subgraph of the graph given in Figure 1 and two of its

tree-like layouts . 18
5 The graph of Figure 1 with its line graph 21
6 Smallest empty graphs, also indicating the null graph E0 with

zero vertices and zero edges (which is obviously invisible...) . . 22
7 Smallest path graphs . 23
8 Smallest cycle graphs . 23
9 Smallest complete graphs . 24
10 K4 and its line graph . 25
11 Smallest complete bipartite graphs 26
12 K3,4 and its line graph . 27
13 Some clique coverings for the graph in Figure 1 30
14 Clique covering number of special graphs 32
15 Largest independent vertex sets for the graph in Figure 1 . . . 34
16 Some largest independent vertex sets of special graphs 35
17 Transversals for the graph in Figure 1 37
18 Smallest transversals of special graphs 38
19 Three different colorings of the example in Figure 1 40
20 Minimal vertex colorings of special graphs 42
21 Three different matchings in the graph of Figure 1 44
22 Maximum matchings of special graphs 45
23 Two different (proper) edge colorings of the graph given in

Figure 1 . 47
24 Edge colorings with minimum number of colors for special graphs 49
25 A directed graph . 51
26 A set system . 54

1.1 Illustration of the Helly property for intervals 59

5

1.2 An interval system with a transversal T = {x1, x2, x3} and
with a matchingM = {I1, I3, I7}. As it can be shown, T is of
minimum and M is of maximum cardinality. 60

1.3 Decomposition of a system of 7 intervals into matchings . . . 65

1.4 System I on which Algoritms 1.1 and 1.2 are illustrated . . . 67

2.1 G is the intersection graph of S1, and that of S2, as well . . . 71

2.2 Intersection graph of system I shown on Figure 1.4 72

2.3 This is not an interval graph; note that every induced cycle of
it has length 3. 72

3.1 A graph with several simplicial orders 80

4.1 K1,3 and a tree decomposition; the subgraph with bold edges
indicates the occurrences of v1 in the sets Si 89

4.2 First step of creating a tree decomposition: making the graph
chordal . 91

4.3 Second step of creating a tree decomposition: finding subtrees
in some tree, whose intersection graph is the chordal graph . . 92

4.4 Third step of creating a tree decomposition: assigning sets to
the nodes of the tree . 93

4.5 A nice tree decomposition of P3, and the types of its nodes . . 95

4.6 Transforming a tree decomposition to a nice tree decomposition 96

4.7 Modifying a tree containing a node with more than 2 children
to a binary tree; the newly created intermediate nodes must be
assigned to the same vertex subset Sk 97

5.1 A matching M1 = {a2b1, a3b3, a4b4} with an augmenting path
a1b3a3b4a4b5 and the enlarged matching M2 = M1\{a3b3, a4b4}∪
{a1b3, a3b4, a4b5}. (For M1 we have X = {a1} and Y =
{b2, b5, b6}.) . 116

5.2 An example for perfect matching in a bipartite graph 118

5.3 A set system and its incidence graph 121

7.1 Finding the kernel of an oriented tree 145

8.1 Perfect matching decomposition of K6 152

8.2 Hamilton path decomposition of K6 154

8.3 Hamilton cycle decomposition of K7 154

9.1 Fano plane with q = 2 . 164

9.2 Galois plane of order 3 . 169

6

10.1 Routing example for the q = 2 case 177

List of Tables

2.1 Correspondence between the parameters of interval systems
and their intersection graphs 74

List of Algorithms

1.1 Algorithm to determine τ and ν for interval systems 62
1.2 Algorithm to determine q(I) for an interval system I 64
6.1 Algorithm to find locally maximal max cut 135
6.2 Algorithm to find cut with the online aproach 136

7

Preface

These lecture notes contain the material of the course “Combinatorial meth-
ods and algorithms”, taught in the first or second semester of MSc in En-
gineering Information Technology and MSc in Logistic Engineering at the
University of Pannonia.

Combinatorics and related optimization algorithms constitute a very rich
and wide area, therefore we had no chance to survey the full range of impor-
tant directions and approaches. In the current selection our intention was to
collect problems of various kinds which, although are different, have several
relations among themselves and, moreover, offer a way to present some char-
acteristic methods in proofs and algorithms. To emphasize this aspect, in
some cases we describe several substantially different arguments which prove
the same assertion. Certainly, already one proof validates a theorem;1 but
there is a message in showing that the same goal can be reached along various
ways.

The text is strictly theoretical in the sense that it follows the precise
“mathematical” structure of definition–theorem–proof. On the other hand,
the algorithms described here can be applied in a wide range of practical
problems, and in fact they are applied in them. Still, we do not tell much
about these connections in the lecture notes. The reason is that we tradi-
tionally give it as a homework to search for one or more applications which
use the notions and methods of the course. Experience shows that students,
depending on their fields of interest or specialization, find a large variety of
quite different such themes on the internet. If time permits near the end
of the course, it is very useful to organize a session of presentations during
which everyone can learn what kinds of applications their classmates have
found.

The course assumes some basic knowledge in graph theory. In many (but
not all) curricula, this is taught in the first year of BSc studies. The first
chapter of our notes helps in refreshing memory and to learn parts of earlier
material which have possibly been missed. Throughout the text, we include

1 provided that the proof is correct...

8

9

figures to make the formal discussion easier to follow; and also illustrate the
algorithms with some explicit examples.

At several points, additional pieces of information of various kinds are
provided in the “Notes” sections at the end of some chapters and also in
footnotes. They may deal with topics which are beyond but related to the
course material, or which possibly occurred in a way in previous studies of the
reader; and occasionally minor details are mentioned which may clarify some
steps of an argument if necessary. We also mention alternative terminology;
it may be helpful in searching for applications and related literature.

We hope that students and readers will find these notes not only useful
but also enjoyable.

Veszprém, January 2013

Zsolt Tuza
Csilla Bujtás

Máté Hegyháti

Chapter 0

Basic graph theory

In this preliminary section we list some definitions on graphs and set sys-
tems, that will be used throughout the text. In many curricula this material
occurred already in some course before a student attends the current one,
nevertheless it is safer to give a summary here, making these notes more
self-contained.

0.1 Basic definitions

A fundamental mathematical structure studied in this course is the (undi-
rected simple) graph.

Definition 0.1 (Graph (Undirected Simple); Vertex; Edge) A graph
is a pair G = (V,E), where

• V is the set of vertices,

• E is the set of edges.

Each edge connects exactly two vertices, i.e., E ⊆ {{v, v′} | v, v′ ∈ V, v 6= v′}.
In other words, the edges are unordered pairs of vertices.

Thus, a simple graph is a set of vertices and a set of edges connecting
some vertex pairs. A vertex is sometimes called node — we shall use this
term in a particular context — and an edge is sometimes called ‘line’ or
‘link’. The number |V | of vertices is called the order of G, and is very often
denoted by n.

In general, an undirected graph may contain loops or parallel (or multiple)
edges; for the sake of simplicity, however, if it is not stated otherwise, the
term graph will be used for undirected simple graphs.

The following notation will also be used for G = (V,E) :

10

0.1. BASIC DEFINITIONS 11

• V (G) : set of vertices of G, thus V ;

• E(G) : set of edges of G, thus E.

Usually the vertices of a graph will be denoted by v, v′, v1, v2, . . . , while
the edges will be denoted by e, e1, e2, . . . or by the pairs of their endpoints,
like vv′, v1v2, In case of an undirected graph, the order of vertices in an
edge is arbitrary, thus vivj denotes the same edge as vjvi. Also, if e = vivj
is an edge, vi is said to be connected or joined to vj by e, or that e joins vi
with vj ; and vi, vj are incident with e. Vertices vi and vj are the endpoints
or the ends of edge e. A standard term to express that vivj is an edge is that
vi and vj are adjacent, or that vi is adjacent to vj .

The graph (∅, ∅) is called the null graph ; we shall mention it only occa-
sionally at some points, and usually leave it to the reader to decide which of
the stated assertions are or are not valid for this degenerate case.

An example of a graph with 12 vertices and 18 edges is given in Figure 1.
The vertices are denoted by dots, while edges are represented by continuous
lines (curves).

Figure 1: An undirected simple graph

Definition 0.2 (Isomorphism; Isomorphic graphs) Two graphs G = (V,E)
and G′ = (V ′, E ′) are isomorphic if there exists a mapping f : V → V ′ such
that

• f establishes a bijection between V and V ′, and

• for any two vertices v, v′ ∈ V , the pair f(v)f(v′) is an edge in G′ if
and only if vv′ is an edge in G.

12 CHAPTER 0. BASIC GRAPH THEORY

A mapping f with these properties is called an isomorphism between G and
G′.

Unless there is a special meaning attributed to the vertices and/or edges,
isomorphic graphs need not be distinguished from each other.

A subgraph of a graph is obtained by removing some of the vertices and
edges of the graph such that an edge must be removed if so is any of its
endpoints.

Definition 0.3 (Subgraph) Graph G′ = (V ′, E ′) is a subgraph of G =
(V,E) if G′ is a graph, moreover V ′ ⊆ V and E ′ ⊆ E. This relation is
denoted by G′ ⊆ G.

Figure 2 shows three subgraphs of the graph in Figure 1. The first of
them is the graph itself; it is always true that G ⊆ G. The second graph in
the figure contains only a subset of vertices and edges; and finally, the third
example has the same vertices, but no edges.

Induced subgraph is a particular kind of subgraph: it has to contain all
the edges that have none of their endpoints removed.

Definition 0.4 (Induced subgraph) Graph G′ = (V ′, E ′) is an induced
subgraph of G = (V,E) if V ′ ⊆ V , and E ′ = {e ∈ E | e ⊆ V ′}.

If we want to describe a subgraph G′ = (V ′, E ′), we have to specify both
V ′ and E ′. But an induced subgraph is determined already by its vertex set
V ′. We say that this is the subgraph induced by V ′, and denote it by G[V ′].

In Figure 2 the second and third examples are not induced subgraphs.
The first example, however, is an induced subgraph, as G = G[V (G)] is
always true. Some other induced subgraphs of the graph in Figure 1 are
shown in Figure 3.

The neighbors of a vertex v ∈ V (G) are the vertices adjacent to v in G.
Formally:

Definition 0.5 (Neighborhood of a vertex)

NG(v) = {v′ ∈ V (G) | vv′ ∈ E(G)} .

This is often called the open neighborhood of v. (The closed neighborhood also
includes v itself.) Unless specified otherwise, ‘neighborhood’ always means
open neighborhood.

In Figure 1, the neighbors of v10 are v3, v5, v7, v9, and v11. Similarly,
NG(v7) = {v10, v11} and NG(v9) = {v5, v10}. If there is no danger of ambi-
guity, the subscript G is omitted to have a simpler notation, like N(v2) =
{v1, v4, v5, v6}.

0.1. BASIC DEFINITIONS 13

Figure 2: Some subgraphs of the graph in Figure 1

14 CHAPTER 0. BASIC GRAPH THEORY

Figure 3: Some induced subgraphs of the graph in Figure 1

0.1. BASIC DEFINITIONS 15

The degree of a vertex v, denoted by d(v), is the number of edges con-
taining that vertex.

Definition 0.6 (Degree) In a simple undirected graph G,

d(v) = |{e ∈ E(G) | v ∈ e}| = |NG(v)|.

In Figure 1, d(v1) = 3, d(v2) = 4. A vertex of degree zero, i.e., a vertex
not connected to any other vertex, is called an isolated vertex.

A graph, all of whose vertices have the same degree, is called regular:

Definition 0.7 (Regular graph) Graph G is k-regular if d(v) = k for all
v ∈ V (G).

There is a simple relation between the number of vertices and edges in
a k-regular graph. It follows from the more general relation between degree
sum and number of edges. The proof is based on the observation that each
edge is incident with precisely two vertices.

Proposition 0.1 If G is k-regular, then k · |V (G)| = 2 · |E(G)|. More
generally,

∑

v∈V (G) d(v) = 2 · |E(G)| holds in every graph G.

From this, it also follows that the number of odd-degree vertices is even
in every graph.

A path is an alternating sequence of vertices and edges such that each
edge connects two consecutive vertices. The sequence starts and ends with a
vertex. Formally:

Definition 0.8 (Path) A subgraph v0, e1, v1, . . . , ek, vk is a path from v0 to
vk in G if the vertices v0, v1, . . . , vk are all distinct, and if k ≥ 1 then ei =
{vi−1, vi} and ei ∈ E(G) for all i ∈ {1, 2, . . . , k}. (The single vertex v0 itself
is also considered to be a path.) The length of a path is the number of its
edges.

As an example, in Figure 1, v1 , v1v6 , v6 , v6v2 , v2 , v2v4 , v4 is a path of
length three from v1 to v4. Since the edge set of a path is uniquely determined
by the sequence of its vertices, we can simplify notation to just listing the
vertices:

v1v6v2v4

means the same path as v1 , v1v6 , v6 , v6v2 , v2 , v2v4 , v4.
A graph is said to be connected if there is a path from each of its vertices

to any other vertex.

16 CHAPTER 0. BASIC GRAPH THEORY

Definition 0.9 (Connected graph; Disconnected graph) Graph G is con-
nected if there exists a path from v to v′ for all v, v′ ∈ V (G). Graphs which
are not connected are called disconnected graphs.

Note that the graph in Figure 1 is not connected (i.e., is disconnected), as
there is no path from v11 to v12. These vertices are in different components of
the graph. The components of a graph are its inclusionwise largest connected
(induced) subgraphs, more formally:

Definition 0.10 (Component) The induced subgraph G[V ′] is a compo-
nent of G — also called connected component — if it is connected, and for
all v ∈ V (G) \ V ′, the subgraph G[V ′ ∪ {v}] is disconnected.

It is important to note that the components are mutually vertex-disjoint.

Proposition 0.2 The components partition the vertex set, and this partition
is unique.1

If we identify the two ends of a path, we obtain a cycle. Formally:

Definition 0.11 (Cycle) A subgraph v0, e1, v1, . . . , ek, vk is a cycle in G if
v0 = vk, ei = {vi−1, vi}, ei ∈ E(G) for all i ∈ {1, 2, . . . , k}, and vi 6= vj for
any i, j ∈ {1, 2, . . . , k}, i 6= j. Similarly to paths, the length of a cycle is the
number of its edges.

As an example, in Figure 1, v1 , v1v6 , v6 , v6v2 , v2 , v2v1 , v1 is a cycle of
length 3. Notation can again be simplified:

v1v6v2

means the same cycle.
A graph is called bipartite if its vertices can be organized into two dis-

joint sets such that all edges have exactly one endpoint in each of the sets.
Formally:

Definition 0.12 (Bipartite graph) Graph G = (V,E) is bipartite if there
exist A,B ⊆ V such that A ∪ B = V , A ∩ B = ∅, and E ⊆ {vavb | va ∈
A, vb ∈ B}.

1 It is not hard to show that the binary relation “there is a path connecting the vertices
v and v′ in G ” is an equivalence relation. Then the components of G are the subgraphs
induced by the equivalence classes.

0.1. BASIC DEFINITIONS 17

The subsets A and B in this partition of the vertex set are called the
partite sets or the vertex classes of G. Note that G[A] and G[B] have no
edges. (One an see that the partition is unique apart from possibly switching
A and B if G is connected; and not unique if G is disconnected.)

Trees are connected graphs without cycles.

Definition 0.13 (Tree (graph)) Graph G is a tree if it is connected and
contains no cycle as a subgraph.

The definition implies that there exists exactly one path from any vertex
to any other vertex in a tree.

Although trees may seem to look rather simple at first sight, they are
very important kinds of graphs. Some combinations of their properties turn
out to be equivalent to the definition above.

Proposition 0.3 For any graph G = (V,E) with at least one vertex, any
two of the following three properties imply the third one:

• G is connected.

• G contains no cycle as a subgraph.

• |E| = |V | − 1.

By selecting one vertex as a so-called root , any tree can be drawn in a
tree-like layout:

• The root is placed on the top, composing the top level, often denoted
as level 0 itself.

• Then, the neighbors of the root are placed below it, forming level 1.

• The neighbors of the neighbors of the root are placed on level 2 (below
level 1) with the exception of the root itself.

• In a similar fashion, the tree is plotted recursively, i.e., the neighbors
of the vertices on level i (if any) are placed below them on level i + 1
with the exception of their neighbors on level i− 1.

The tree together with a selected root (and often together with the corre-
sponding layout) is referred to as a rooted tree.

In Figure 4 a tree subgraph of the graph from Figure 1 is shown with two
tree-like layouts by choosing v6 and v1 as roots.

18 CHAPTER 0. BASIC GRAPH THEORY

Figure 4: A tree subgraph of the graph given in Figure 1 and two of its tree-like
layouts

0.1. BASIC DEFINITIONS 19

Note that all neighbors of a vertex are placed on the neighbor levels, i.e.,
there is no edge between vertices whose levels are not consecutive.2

Also, except for the root, each vertex v of a level i has exactly one neighbor
on the higher neighbor level, and |N(V)|−1 neighbors on the lower neighbor
level.3

To describe algorithms on rooted trees in a simpler manner, the unique
neighbor on the higher level is called the parent of a vertex, while the neigh-
bors in the lower level (if any) are called its children . The vertices sharing
the same parent (and thus being on the same level) are often called siblings.4

A vertex without any children is called leaf of a rooted tree. Hence, any two
leaves are nonadjacent.

We note that the above procedure to draw a tree-like layout, or the def-
inition of the rooted tree does not specify the order of the vertices within
a level. Unlike many applications of rooted trees, the algorithms presented
in this book do not require and do not depend on the ordering of vertices.
In visual representations, however, if a vertex "precedes" another one on the
same level, then all of its children precede the children of the other vertex,
in order to avoid crossing edges.

Trees are always bipartite. Indeed, fixing a tree-like layout arbitrarily,
the even levels can be selected for one partite set and the odd levels for the
other. Then definition of bipartite graph is satisfied.

In many applications a special type of rooted trees, so-called binary trees
are used, where the number of children is limited by 2. Note, that the term
“binary tree” is a bit misleading, as a tree itself can not be binary, only its
tree-like layout. The graph in Figure 4 is a tree, for which the second layout
(with root v1) is binary, and the other (with root v6) is not. Thus, when the
term binary tree is used, it immediately refers not only to a tree, but to a
rooted tree.

Trees containing all vertices of a given connected graph are of great im-
portance.

Definition 0.14 (Spanning subgraph; Spanning tree) A graph H is a
spanning subgraph of graph G if H is a subgraph of G and V (H) = V (G). A
spanning tree of G is a spanning subgraph which is a tree at the same time.

2 In the visual representation of a tree-like layout, in different “branches” of the tree the
vertices of the same level may be vertically shifted to different height in order to provide a
nicer visual representation, or vertices of different levels may be aligned vertically according
to their shared properties from a certain aspect.

3 The terms ‘lower’ and ‘higher’ are interpreted visually, i.e., the levels with higher
number are lower, and vice versa.

4 The vertices on the same level which have different parents are not siblings, and terms
like grandparents and cousins are not introduced.

20 CHAPTER 0. BASIC GRAPH THEORY

Graphs can also be transformed into other graphs. The complement of a
graph is a graph with exactly the same vertices, and with all the edges that
are not present in the graph. Formally:

Definition 0.15 (Complement) The complement (or complementary graph)
of G is defined as

G = (V (G), {{v1, v2} | v1, v2 ∈ V (G), v1 6= v2, {v1, v2} 6∈ E(G)}).

In the complement of a graph, the degree of a vertex is the number of
vertices which were not adjacent to the vertex in the original graph, therefore
we have:

Proposition 0.4 For any vertex v in any graph G, dG(v)+dG(v) = |V (G)|−
1.

The definition also implies

Proposition 0.5 For every graph G, |E(G)|+ |E(G)| =
(

|V (G)|
2

)

holds.

One can also see that the complement of the complement is the original
graph:

G = G.

The line graph of a graph expresses the intersection relation between
the edges. In the line graph of G, the vertices correspond to the edges of
the original graph, and two of them are connected by an edge if the two
corresponding edges share a vertex in the original graph. Formally:

Definition 0.16 (Line graph, L(G)) The line graph of graph G is the graph

L(G) = (E(G), {eiej | ei, ej ∈ E(G), ei ∩ ej 6= ∅, ei 6= ej}).

The line graph of the graph of Figure 1 is shown in Figure 5. This line
graph has 18 vertices, as the original graph had 18 edges. The number of
edges can also be easily calculated from the vertex degrees of original graph.
A vertex of degree d in the original graph yields a subgraph with d pairwise
adjacent vertices in the line graph, thus:

Proposition 0.6 For every graph G, |E(L(G))| =∑v∈V (G)

(

d(v)
2

)

.

0.1. BASIC DEFINITIONS 21

Figure 5: The graph of Figure 1 with its line graph

22 CHAPTER 0. BASIC GRAPH THEORY

0.2 Special significant graphs

Next, we introduce some particular types of graphs. Later on we shall com-
pute their various parameters, too. At those points we shall refer to these
graphs together as ‘special graphs’; this is not a standard term, however: we
use it just for the sake of simplifying the text.

The empty graph on n vertices is a graph with no edges; it is denoted by
En. Formally:

Definition 0.17 (Empty graph, En)

En = ({v1, v2, . . . , vn}, ∅).

The smallest empty graphs are given in Figure 6. Note that in an

Figure 6: Smallest empty graphs, also indicating the null graph E0 with zero
vertices and zero edges (which is obviously invisible...)

empty graph, the degree of each vertex is 0, and the graph has exactly n
components. As the empty graph has no edges, its line graph is the null
graph. The empty graphs are the 0-regular graphs.

The graph on n vertices containing the edges of a single path of length
n− 1 is called a path graph, and is denoted by Pn. Formally:

Definition 0.18 (Path graph, Pn)

Pn = ({v1, v2, . . . , vn}, {vivi+1 | i ∈ {1, 2, . . . , n− 1}}).

The smallest path graphs are given in Figure 7. Note that every path
graph is a tree, hence always bipartite, connected, and two of its vertices
have degree 1 (except for P1), all the other vertices have degree 2. The line
graph of P1 is the null graph, and the line graph of any other path is the
path with one fewer vertices:

0.2. SPECIAL SIGNIFICANT GRAPHS 23

Figure 7: Smallest path graphs

Proposition 0.7 For every n ≥ 2, we have L(Pn) = Pn−1.

Identifying the two ends of the path graph Pn+1 of length n we obtain a
cycle graph, denoted by Cn. Formally:

Definition 0.19 (Cycle graph, Cn) For n ≥ 3,

Cn = ({v1, v2, . . . , vn}, {vivi+1 | i ∈ {1, 2, . . . , n− 1}} ∪ {v1vn}).

The smallest cycle graphs are given in Figure 8.5

Figure 8: Smallest cycle graphs

Note that a cycle graph is always connected, 2-regular (i.e., all of its
vertices have degree 2), and it is bipartite if the number of vertices is even.
The line graph of a cycle is (isomorphic to) itself:

5 Note that the cycle graph is not defined for n = 1, 2 for simple graphs. But C1 and
C2 can be defined when loops and parallel edges are introduced, respectively, as shown
with gray color in Figure 8.

24 CHAPTER 0. BASIC GRAPH THEORY

Proposition 0.8 For every n ≥ 3, L(Cn) = Cn.

The graph on n vertices, in which all pairs of vertices are adjacent, is
called the complete graph of order n and is denoted by Kn. Formally:

Definition 0.20 (Complete graph, Kn)

Kn = ({v1, v2, . . . , vn}, {vivj | 1 ≤ i < j ≤ n}).

Of course, it does not matter if we write vivj or vjvi, these two define
the same edge. The smallest complete graphs are given in Figure 9. A

Figure 9: Smallest complete graphs

complete graph is always connected and (n − 1)-regular: all of its vertices
have degree n− 1. Moreover, K3 = C3, the complement of a complete graph
is an empty graph (Kn = En), and all induced subgraphs of a complete
graph are complete graphs. The line graph of the complete graph Kn consist
of n subgraphs that are Kn−1, any two of these subgraphs share exactly one
vertex, and their other vertices are connected in pairs, with n − 2 disjoint
edges. The line graph of K4 is shown in Figure 10.

A bipartite graph with partite sets A and B is called the complete bi-
partite graph over |A| + |B| vertices if all vertices of A are connected to all
vertices of B. Formally:

Definition 0.21 (Complete bipartite graph, Kp,q)

Kp,q = ({a1, a2, . . . , ap, b1, b2 . . . , bq}, {aibj | 1 ≤ i ≤ p, 1 ≤ j ≤ q}).

The smallest complete bipartite graphs are given in Figure 11. A complete
bipartite graph with p, q ≥ 1 is always connected, and the vertex degrees are
equal to the size of the other partition class. Moreover, the complement of

0.3. GRAPH PARAMETERS 25

Figure 10: K4 and its line graph

a complete bipartite graph is a graph with two components, each of them
being a complete subgraph. The line graph of Kp,q has p copies of Kq and q
copies of Kp. Those two families of subgraphs are cross-intersecting: each Kq

shares exactly one vertex with each Kp Moreover, any two copies of Kp are
vertex-disjoint and their vertices are connected in pairs by p disjoint edges;
and the structure is similar for any two copies of Kq. See Figure 12 for
illustration.

Remark 0.1 In the particular case of p = 1, the graph K1,q is often called
a star.

0.3 Graph parameters

There are some important parameters of graphs, which play important roles
in practical applications.

Minimum and maximum degree

The minimum and maximum degree of a graph is the smallest and the largest
value of its vertex degrees. Formally:

26 CHAPTER 0. BASIC GRAPH THEORY

Figure 11: Smallest complete bipartite graphs

0.3. GRAPH PARAMETERS 27

Figure 12: K3,4 and its line graph

28 CHAPTER 0. BASIC GRAPH THEORY

Definition 0.22 (Maximum degree, ∆)

∆(G) = max
v∈V (G)

d(v).

Definition 0.23 (Minimum degree, δ)

δ(G) = min
v∈V (G)

d(v).

Proposition 0.9 Both the minimum and maximum degree are 0 for all
empty graphs and for the graph with one vertex (which is empty and complete
at the same time). For the other ‘special graphs’ we have:

• δ(Pn) = 1 and ∆(Pn) = 2, for all n ≥ 3; and ∆(P2) = 1.

• δ(Cn) = ∆(Cn) = 2 for all n ≥ 3.

• δ(Kn) = ∆(Kn) = n− 1 for all n ≥ 1.

• δ(Kp,q) = min(p, q) and ∆(Kp,q) = max(p, q).

The degree of a vertex v in the complementary graph is the number of
vertices not adjacent to v in the original graph. This implies:

Proposition 0.10 For every graph G with at least one vertex,

δ(G) + ∆(G) = |V (G)| − 1 = |V (G)| − 1.

0.3.1 Clique number: ω

We use the word ‘clique’ as a synonym of ‘complete subgraph’. (A more
restrictive meaning also occurs in the literature of graph theory.)

Definition 0.24 (Clique) An induced subgraph G[V ′] is called a clique in
G if it is a complete graph.

In the example from Figure 1, the induced subgraphs G[{v1, v2, v5, v6}]
and G[{v7, v10, v11}] are cliques. Also, a single edge with its two endpoints is
a clique, and so is a single vertex, too.

The number of vertices of largest cliques in a graph is denoted by ω and
is termed the clique number:

0.3. GRAPH PARAMETERS 29

Definition 0.25 (Clique number, ω)

ω(G) = max
G[V ′] is a clique in G

|V ′|.

Proposition 0.11 The clique number of En and of P1 = K1 is 1, as there
is not even a single edge in these graphs. For the other ‘special graphs’ we
have:

• ω(Pn) = ω(Kp,q) = 2 (with n ≥ 2 and p, q ≥ 1), and also ω(Cn) = 2
for n ≥ 4, attained by selecting a single edge from the graph;

• ω(Kn) = n (including the case ω(C3) = 3, too), attained by selecting
all vertices of the graph.

As the number of edges in a clique of size k is k · (k − 1)/2, the clique
number is bounded from above in terms of the number of edges in the graph:

Proposition 0.12 ω(G) ≤
√

2 · |E(G)|+ 1
4
+ 1

2
.

Also, the degrees of the vertices in the largest clique are at least ω(G)−1,
thus

Proposition 0.13 ω(G) ≤ ∆(G) + 1.

The edges incident with the same vertex in a graph induce a clique in the
line graph, thus

Proposition 0.14 ω(L(G)) ≥ ∆(G).

Equality does not hold for some graphs; e.g., the 3-cycle has L(C3) = C3,
ω(L(C3)) = 3, and ∆(C3) = 2. However, for graphs with ∆(G) ≥ 3, equality
must hold:

Proposition 0.15 If ∆(G) ≥ 3, then ω(L(G)) = ∆(G).

0.3.2 Clique covering number: θ

The vertices of a graph can always be partitioned into (disjoint) subsets such
that the subgraphs induced by these sets are complete. This is called a clique
covering.

Definition 0.26 (Clique covering) The induced subgraphs G[V1], G[V2], . . . , G[Vk]
form a clique covering of G if

⋃k
i=1 Vi = V (G) and G[Vi] is a clique for all

i = 1, . . . , k.

30 CHAPTER 0. BASIC GRAPH THEORY

Figure 13: Some clique coverings for the graph in Figure 1

0.3. GRAPH PARAMETERS 31

Two examples of clique coverings of the graph in Figure 1 are given in
Figure 13.

The coverings in Figure 13 use 5 and 7 cliques, respectively. An obvious
way that can be done in every graph is to take one-vertex subgraphs. But
using larger subgraphs we can have a vertex partition into fewer cliques,
which is more preferable. The minimum number of cliques needed is called
clique covering number:

Definition 0.27 (Clique covering number, θ)

θ(G) = min
G[V1],...,G[Vk] is a clique covering in G

k.

The first covering in Figure 13 is minimal. We note that the minimal
clique covering of a graph is not necessarily unique.

Proposition 0.16 The clique covering number of the ‘special graphs’ and
an example minimal cover is:

• θ(En) = n, by covering each vertex with a different clique of size one.

• θ(Pn) = θ(Cn) =
⌈

n
2

⌉

, by covering with G[{v1, v2}], G[{v3, v4}], . . . ,
G[{v2·⌊n2 ⌋−1, v2·⌊n2 ⌋}], plus the single vertex G[{vn}] in case if the num-

ber of vertices is odd; the only exception is C3, where θ(C3) = 1 as the
graph is a clique itself.

• θ(Kn) = 1, by selecting the whole graph as one clique.

• θ(Kp,q) = max(p, q), by selecting cliques G[{a1, b1}], G[{a2, b2}], . . . ,
G[{amin(p,q), bmin(p,q)}], and covering the rest of the vertices with max(p, q)−
min(p, q) single vertices.

The clique covering numbers of the ‘special graphs’ are illustrated in
Figure 14 for both even and odd numbers of vertices.

A function of the clique number provides a lower bound on the clique
covering number:

Proposition 0.17 θ(G) ≥
⌈

|V (G)|
ω(G)

⌉

.

If we take the set of edges incident with an arbitrarily chosen vertex, the
vertices representing those edges in the line graph induce a clique. Each
edge of the original graph has two vertices, therefore taking those stars for
all but one vertices, already a clique covering of the line graph is obtained.
This yields the following rough upper bound:

Proposition 0.18 θ(L(G)) ≤ |V (G)| − 1.

32 CHAPTER 0. BASIC GRAPH THEORY

Figure 14: Clique covering number of special graphs

0.3. GRAPH PARAMETERS 33

0.3.3 Independence number: α

A set of vertices in a graph is independent if no two vertices are connected
in the graph. Formally:

Definition 0.28 (Independent vertex set) A set V ′ ⊆ V (G) of vertices
is independent if ∄v1, v2 ∈ V ′ : {v1, v2} ∈ E; or alternatively if ∀v1, v2 ∈ V ′ :
{v1, v2} /∈ E.

In the graph of Figure 1 the following vertex sets are independent for
example: {v1, v10, v8}, {v2, v3, v9, v11}. Also, the emptyset is independent,
every single vertex is independent, and each pair of nonadjacent vertices is
independent in every graph. The independence number is the size of the
largest independent set, i.e., maximum number of vertices in a graph, such
that no two of them are adjacent. Formally:

Definition 0.29 (Independence number, α)

α(G) = max
V ′ is an independent set in G

|V ′|.

The independence number of the graph in Figure 1 is 5. The largest
independent vertex set is not necessarily unique, Figure 15 shows two of
them.

Proposition 0.19 For the ‘special graphs’ the independence numbers and
an example largest independent vertex sets are:

• α(En) = n, as all of the vertices are independent.

• α(Pn) =
⌈

n
2

⌉

, by selecting v1, v3, . . . , v2⌈n2 ⌉−1.

• α(Cn) =
⌊

n
2

⌋

, by selecting v1, v3, . . . , v2⌊n2 ⌋−1.

• α(Kn) = 1 by selecting any of the vertices.

• α(Kp,q) = max(p, q).

The largest independent vertex sets of the ‘special graphs’ are illustrated
in Figure 16 for both even and odd numbers of vertices.

It is easy to see that the independence number of a disconnected graph is
the sum of the independence numbers of its components. Moreover, the in-
dependence number is at least 1 for each component, thus, the independence
number is at least as large as the number of components. Also, at most one
vertex can be selected into an independent set from any clique, thus

34 CHAPTER 0. BASIC GRAPH THEORY

Figure 15: Largest independent vertex sets for the graph in Figure 1

0.3. GRAPH PARAMETERS 35

Figure 16: Some largest independent vertex sets of special graphs

36 CHAPTER 0. BASIC GRAPH THEORY

Proposition 0.20 α(G) ≤ θ(G).

Since at most one vertex can be selected into any independent set from
the largest clique, we also have:

Proposition 0.21 α(G) + ω(G) ≤ |V (G)|+ 1.

An independent vertex set in a graph G is a clique in its complement G,
and vice versa. Thus:

Proposition 0.22 α(G) = ω(G).

0.3.4 Transversal number: τ

A set of vertices is called a transversal if all edges of the graph are incident
with at least one of them. Formally:

Definition 0.30 (Transversal) A set V ′ ⊆ V (G) is a transversal of G if
e ∩ V ′ 6= ∅ holds for all edges e ∈ E(G).

In Figure 17 two different transversals are shown for the graph of Figure
1.

The transversal number is the smallest size of a transversal set, i.e., min-
imum number of vertices in a graph, with which all of the edges can be
“covered”. Formally:

Definition 0.31 (Transversal number, τ)

τ(G) = min
V ′ is a transversal set in G

|V ′|

The smallest transversal is not necessarily unique, Figure 17 shows actu-
ally two minimum transversals for the graph of Figure 1.

Proposition 0.23 The transversal numbers and example smallest transver-
sals of the ‘special graphs’ are:

• τ(En) = 0, as the graph has no edges.

• τ(Pn) =
⌊

n
2

⌋

, by selecting v2, v4, . . . , v2·⌊n2 ⌋.

• τ(Cn) =
⌈

n
2

⌉

, by selecting v2, v4, . . . , v2·⌊n2 ⌋, and vn in case of n odd.

• τ(Kn) = n−1, by selecting all the vertices except one, e.g., v1, v2, . . . ,
vn−1.

0.3. GRAPH PARAMETERS 37

Figure 17: Transversals for the graph in Figure 1

38 CHAPTER 0. BASIC GRAPH THEORY

Figure 18: Smallest transversals of special graphs

0.3. GRAPH PARAMETERS 39

• τ(Kp,q) = min(p, q), by selecting all the vertices in the smaller vertex
class.

The smallest transversals of the ‘special graphs’ are illustrated in Fig-
ure 18 for both even and odd numbers of vertices.

Observe that the selected transversal vertices in Figure 18 are exactly
the ones that were not selected for the independent vertex sets in Figure 16.
The relation between the transversals and independent vertex sets of the
examples in Figures 17 and 15 is the same. These examples suggest the
following result:

Theorem 0.1 τ(G) + α(G) = |V (G)|.
The assertion follows from two facts. First, the vertices not included in a

transversal must be independent, otherwise the transversal would not cover
all the edges. This holds for the smallest transversal as well, thus there is
an independent vertex set with |V (G)| − τ(G) vertices, giving a lower bound
on the independence number, i.e., α(G) ≥ |V (G)| − τ(G). Similarly, the
vertices not included in an independent vertex set must form a transversal,
otherwise there would be an edge between two vertices of the independent
vertex set. This holds for the largest independent vertex set as well, thus
there is a transversal with |V (G)|−α(G) vertices, giving an upper bound on
the transversal number, i.e., τ(G) ≤ |V (G)| − α(G). Combining these two
inequalities, the theorem is proved.

0.3.5 Chromatic number: χ

Similarly to clique covering, the vertices of a graph can be covered with
independent vertex sets as well. However, this type of covering of the vertices
is often considered from a different aspect: proper vertex coloring. To begin
with something more general, a vertex coloring of a graph is an assignment
of a single color to each vertex. Formally:

Definition 0.32 (Vertex coloring) A mapping ϕ : V → {1, 2, . . . , k} is
called a (vertex-) coloring with k colors, or simply a k-coloring of (the vertices
of) G.

The assigned numbers (1, 2, . . . , k) are referred to as colors, and graphi-
cally often are represented by coloring the vertices of the graph. Figure 19
shows three different colorings of the graph given in Figure 1. The colorings
use 4, 3, and 6 colors, respectively.

After the vertices of a graph have been colored, an edge has either the
same color on both of its endpoints, or two different colors. A coloring that
does not result in any monochromatic edges is called proper. Formally:

40 CHAPTER 0. BASIC GRAPH THEORY

Figure 19: Three different colorings of the example in Figure 1

0.3. GRAPH PARAMETERS 41

Definition 0.33 (Proper vertex coloring) A coloring ϕ is called a proper
coloring of G if ∄{v1, v2} ∈ E(G) such that ϕ(v1) = ϕ(v2). In other words,
{v1, v2} ∈ E(G) implies ϕ(v1) 6= ϕ(v2).

In Figure 19 the second coloring is not proper as v1v5, v2v4, v10v11, and
also some further edges are monochromatic. Note that there exists at least
one proper coloring for any graph: namely, the coloring that assigns different
colors to all of the vertices satisfies the condition of being proper.

In this book improper vertex colorings will not be considered, therefore
the term ‘vertex coloring’ itself will be applied for proper vertex colorings;
and the term proper/improper will only be used when this property of a
coloring needs to be emphasized.

The set of nodes sharing the same assigned color is called a color class.
In a proper coloring two vertices in the same color class cannot be connected
by an edge, as it would be monochromatic; thus, the color classes are inde-
pendent vertex sets. Consequently, a proper coloring unambiguously defines
a partition of the vertex set into independent sets. Similarly, a proper vertex
coloring can easily be constructed from an independent vertex set covering,
thus the two notions are the same from a different point of view.

Similarly to the clique covering number, the minimum number of inde-
pendent sets covering the vertex set, or equivalently the minimum number
of colors in a proper vertex coloring is an important parameter of a graph,
called chromatic number:

Definition 0.34 (Chromatic number)

χ(G) = min
G has a proper k-coloring

k.

In Figure 19 the first coloring is minimal, i.e., the chromatic number of
the graph in Figure 1 is 4.

Proposition 0.24 The chromatic numbers of the ‘special graphs’ and exam-
ple colorings with minimal number of colors are:

• χ(En) = 1, as all the vertices can be colored with the same single color.

• χ(Pn) = 2, by coloring the odd and even vertices with two different
colors; the exception is P1 where χ(P1) = 1.

• χ(Cn) =

{

2 if n is even,
3 if n is odd,

by coloring the odd and even vertices with two different colors except
for the last vertex if n is odd, which should be assigned to a third color.

42 CHAPTER 0. BASIC GRAPH THEORY

• χ(Kn) = n, as all the vertices need different colors.

• χ(Kp,q) = 2, by selecting the partite sets as color classes.

Minimal vertex colorings of the ‘special graphs’ are illustrated in Figure 20
for both even and odd numbers of vertices.

Figure 20: Minimal vertex colorings of special graphs

Note that not only the complete bipartite graphs, but every bipartite
graph with at least two vertices can be colored with exactly two colors, as
the two partite sets of the graph are independent.

It is also easy to see that for any subgraph G′ ⊆ G, the inequality χ(G) ≥
χ(G′) must hold, as a proper coloring of G is a proper coloring of G′ as well.

0.3. GRAPH PARAMETERS 43

Based on this simple observation, and on the fact that a clique is a complete
graph whose vertices need pairwise different colors, the following lower bound
on the chromatic number could be derived:

Proposition 0.25 χ(G) ≥ ω(G).

Also, as α(G) provides an upper bound on the size of the color classes, it
also provides a lower bound on the number of necessary colors:

Proposition 0.26 χ(G) ≥
⌈

V (G)
α(G)

⌉

.

As an independent vertex set is a clique in the complementary graph, the
chromatic number of a graph must be equal to the clique covering number
of its complement:

Proposition 0.27 χ(G) = θ(G).

0.3.6 Matching number: ν

A set of pairwise vertex-disjoint edges in a graph is called matching. For-
mally:

Definition 0.35 (Matching) A set E ′ ⊆ E(G) of edges is a matching if
e1 ∩ e2 = ∅ holds for all e1, e2 ∈ E ′, e1 6= e2.

Some matchings of the graph in Figure 1 are shown in Figure 21. These
matchings include 5, 4, and 6 edges, respectively. The second matching
can easily be extended with two more edges (v3v4 and v9v10); the first one,
however, cannot be extended with a single edge to have size 6.

The maximum size of matchings in a graph is called the matching number:

Definition 0.36 (Matching number, ν)

ν(G) = max
E′ is a matching in G

|E ′|.

The third matching in Figure 21 is maximum, as it covers all of the
vertices. This observation results in a simple upper bound that the maximum
size of a matching cannot exceed the half of the number of vertices, otherwise
two edges would definitely share a vertex:

Proposition 0.28 ν(G) ≤
⌊

|V (G)|
2

⌋

.

44 CHAPTER 0. BASIC GRAPH THEORY

Figure 21: Three different matchings in the graph of Figure 1

0.3. GRAPH PARAMETERS 45

Proposition 0.29 The matching numbers of the ‘special graphs’ and exam-
ples for maximal matchings are:

• ν(En) = 0, as the graph has no edges.

• ν(Pn) = ν(Cn) = ν(Kn) =
⌊

n
2

⌋

by selecting v1v2, v3v4, . . . , v2·⌊n2 ⌋−1v2·⌊n2 ⌋.

• ν(Kp,q) = min(p, q), by selecting a1b1, a2b2, . . . , amin(p,q)bmin(p,q).

Maximum matchings of the ‘special graphs’ are illustrated in Figure 22
for both even and odd numbers of vertices.

Figure 22: Maximum matchings of special graphs

A transversal covers all the edges, thus, every edge in a matching is
incident with at least one vertex in a transversal. Since matching edges are

46 CHAPTER 0. BASIC GRAPH THEORY

vertex-disjoint, it follows that the size of a matching cannot exceed the size
of a transversal:

Proposition 0.30 ν(G) ≤ τ(G).

A matching in a graph corresponds to an independent vertex set of the
same cardinality in the line graph, and vice versa. Thus:

Proposition 0.31 α(L(G)) = ν(G).

0.3.7 Chromatic index: χ′

Similarly to the coloring of the vertices, the edges can also be colored:

Definition 0.37 (Edge coloring) A mapping φ : E → {1, 2, . . . , k} is
called an edge coloring with k colors, or a k-coloring of the edges.

Analogously to vertex coloring, an edge coloring is proper if two adjacent
edges do not share the same color:

Definition 0.38 (Proper edge coloring) An edge coloring φ is called a
proper edge coloring of G if, for all e1, e2 ∈ E(G), e1 6= e2 with e1 ∩ e2 6= ∅
we have φ(e1) 6= φ(e2).

As in the case of vertex coloring, the term edge coloring will mostly be
used for proper edge colorings, and the words proper/improper will only be
used to emphasize this property. Two proper edge colorings of the graph in
Figure 1 are shown in Figure 23, using 6 and 5 colors, respectively.

The minimum number of colors in a proper edge coloring is called chro-
matic index (should not be confused with chromatic number, that is the
minimum for proper vertex coloring):

Definition 0.39 (Chromatic index)

χ′(G) = min
G has a proper edge coloring with k colors

k.

Proposition 0.32 The chromatic index of the ‘special graphs’ and example
minimal edge colorings are:

• χ′(En) = 0, as the graph has no edges.

• χ′(Pn) = 2, with color classes {v1v2, v3v4, . . . , v2·⌊n2 ⌋−1v2·⌊n2 ⌋} and

{v2v3, v4, v5, . . . , v2·⌈n2 ⌉−2v2·⌈n2 ⌉−1}; the exceptions are χ′(P2) = 1 and

χ′(P1) = 0.

0.3. GRAPH PARAMETERS 47

Figure 23: Two different (proper) edge colorings of the graph given in Figure 1

48 CHAPTER 0. BASIC GRAPH THEORY

• χ′(Cn) =

{

2 if n is even,
3 if n is odd,

with color classes {v1v2, v3v4, . . . , v2·⌊n2 ⌋−1v2·⌊n2 ⌋} and {v2v3, v4, v5,

. . . , v2·⌊n2 ⌋−2v2·⌊n2 ⌋−1}, and an additional color class {vnv1} in case of

n odd. (In fact, there are many proper 3-colorings.)

• χ′(Kn) =

{

n− 1 if n is even,
n if n is odd,

except that χ′(K1) = 0. For n even, a proper edge coloring of Kn with
n − 1 colors will be constructed in Section 8.1. From that, one can
construct an (edge) n-coloring of Kn for n odd by taking an n-coloring
of Kn+1 (then n+ 1 is even) and by deleting one vertex.6

• χ′(Kp,q) = max(p, q), by having color classes {aib(i+k mod q)+1 | i =
1, 2, . . . , p} for each k = 0, 1, . . . , q if q ≥ p; the q < p case is analogous.

Edge colorings of the ‘special graphs’ with minimum number of colors are
illustrated in Figure 24 for both even and odd numbers of vertices.

The color classes of a proper edge coloring are independent edge sets, i.e.
matchings, thus connection between the matchings and edge colorings is the
same as between the independent vertex sets and the vertex colorings: an
edge coloring is a partition of the edge set into matchings.

As a consequence, we obtain the following lower bound:

Proposition 0.33 χ′(G) ≥
⌈

|E(G)|
ν(G)

⌉

.

The edges adjacent to a vertex all must have distinct colors, thus:

Proposition 0.34 χ′(G) ≥ ∆(G).

Because of this, the first example in Figure 23 is a minimal coloring, as
it uses 5 colors, and the degree of some of the vertices is 5.

As a matching corresponds to an independent vertex set in the line graph
and vice versa, a proper edge coloring of a graph is equivalent to a proper
vertex coloring of its line graph, thus:

Proposition 0.35 χ(L(G)) = χ′(G).

6 Fewer colors are not enough. Indeed, we have to color n(n−1)
2 edges, and a color class

can contain at most n
2 edges if n is even, and at most n−1

2 edges if n is odd.

0.3. GRAPH PARAMETERS 49

Figure 24: Edge colorings with minimum number of colors for special graphs

50 CHAPTER 0. BASIC GRAPH THEORY

0.4 Graph extensions

Graphs have many kinds of extensions. This section introduces the basics
for two of them, that will be needed in later chapters.

0.4.1 Directed graphs

A directed graph or digraph is defined similarly as its undirected counterpart:

Definition 0.40 (Directed graph (Digraph)) A directed graph or digraph
is a pair D = (V,A), where

• V is the set of vertices,

• A is the set of arcs, which are ordered pairs of vertices; i.e., A ⊆ V ×V .

Thus, compared to edges of a simple graph which are unordered vertex
pairs, the arcs in a digraph are ordered vertex pairs. Note that the definition
also allows loops (arcs starting and ending at the same vertex, i.e. (vi, vi)).
Moreover, although parallel arcs (more than one arc from some vi to a vj)
are not allowed, oppositely oriented arcs (vi, vj) and (vj , vi) may occur at the
same time, and are considered to be distinct.

The following notation will also be used for D = (V,A) :

• V (D) : set of vertices of D, thus V ;

• A(D) : set of arcs of D, thus A.

The vertices of a digraph will be denoted in the same way as in the
undirected case. The arcs will be denoted by a1, a2, . . . or by the pairs of
their endpoints, like vv′, v1v2, Note that in case of a directed graph, the
order of vertices in an arc is not arbitrary, thus vivj does not denote the same
arc as vjvi.

An example of a digraph with 6 vertices and 11 arcs is given in Figure
25, where the arcs are represented by continuous lines (straight lines and
curves) with arrows indicating the direction of the arc: for arc vivj the arrow
is directed from its ‘tail’ vi to its ‘head’ vj.

In this digraph, there is a loop on v4 and there is an arc in each direction
between v5 and v8.

Subdigraphs and induced subdigraphs are defined analogously as in the
case of undirected graphs:

0.4. GRAPH EXTENSIONS 51

Figure 25: A directed graph

Definition 0.41 (Subdigraph) A directed graph D′ = (V ′, A′) is called a
subdigraph of D = (V,A) — or simply its subgraph, if this term causes no
ambiguity in the context — if D′ is a digraph, moreover V ′ ⊆ V and A′ ⊆ A.
This relation is denoted by D′ ⊆ D.

Definition 0.42 (Induced subdigraph) A directed graph D′ = (V ′, A′) is
an induced sub(di)graph of D = (V,A) if V ′ ⊆ V , and A′ = A∩V ′×V ′. The
subdigraph induced by V ′ in D is denoted by D[V ′].

Neighbors are defined similarly as in the undirected case; based on the
direction of the arcs, however, we can distinguish between in- and out-
neighbors:

Definition 0.43 (Neighbors of a vertex in digraphs)

• N−(v) = {v′ ∈ V (D) | v′v ∈ A(D)} : in-neighborhood;

• N+(v) = {v′ ∈ V (D) | vv′ ∈ A(D)} : out-neighborhood;

• N(v) = N−(v) ∪N+(v) : neighborhood.

In Figure 25, the in-neighbours of v4 are {v1, v4}, and the out-neighbours
of v5 are {v6, v8}.

Similarly, the vertices in a digraph have in-degree, out-degree and degree:

Definition 0.44 (Degree, In-degree, Out-degree)

52 CHAPTER 0. BASIC GRAPH THEORY

• d−(v) = |N−(v)| : in-degree;

• d+(v) = |N+(v)| : out-degree;

• d(v) = d+(v) + d−(v) = |N−(v)|+ |N+(v)| : degree.

In the graph of Figure 25 we have d+(v1) = 2, d−(v2) = 1, d(v8) = d(v4) =
3.

A directed path is an alternating sequence of vertices and arcs such that,
for each arc, the preceding vertex is its tail and the successor vertex is its
head. Formally:

Definition 0.45 (Directed path) A sequence v0, a1, v1, . . . , ak, vk is a di-
rected path from v0 to vk in D if the vertices v0, v1, . . . , vk are all distinct,
and if k ≥ 1 then ai = (vi−1, vi) and ai ∈ A(D) for all i ∈ {1, 2, . . . , k}. The
vertex v0 alone is also considered to be a path; this does not require (although
allows) the presence of a loop at v0.

In Figure 25, there is a directed path from v8 to v4 through v5, v6, v3, v2,
and v1, however there is no directed path from v4 to v8. This suggest the
definition of strong connectivity.

Definition 0.46 (Strongly connected digraph) A digraph D is strongly
connected if there exists a directed path from every vertex v to every other
vertex v′ (v, v′ ∈ V (D)).

Directed cycles are defined similarly to undirected ones:

Definition 0.47 (Directed cycle) A sequence v0, a1, v1, . . . , ak, vk is a di-
rected cycle in D if v0 = vk, ai = (vi−1, vi) and ai ∈ A(D) for all i ∈
{1, 2, . . . , k}, and vi 6= vj for any i, j ∈ {1, 2, . . . , k}, i 6= j).

In Figure 25 there is a directed cycle of length 5 on v1, v5, v6, v3, and v2;
and the loop on v4 is a cycle of length 1. Also, the two arcs between v5 and
v8 form a cycle of length 2.

If it is obvious from the context, the terms path and cycle will be used
without emphasizing their directed nature. It has to be clear in any case,
however, that ‘directed path/cycle’ always means that the edges are oriented
consecutively (and cyclically in case of a cycle).

A digraph can always be converted to an undirected graph by removing
the direction of the arcs:

0.4. GRAPH EXTENSIONS 53

Definition 0.48 (Underlying undirected graph) The underlying undi-
rected graph of a loopless digraph D is obtained by omitting the orientations:

G(D) = (V (D), {vw | (v, w) ∈ A(D)})

where we keep just one edge joining v and w if multiple edges occurred.

A graph constructed in this way will not have parallel edges for arcs vivj
and vjvi. Therefore, D can be obtained by suitably orienting the edges of
G(D) exactly when D has no cycles of length two. And if D had some loops,
they would remain there after the removal of orientations, hence G(D) would
not be a simple graph. (Loops could be avoided by modifying the definition
with the further condition v 6= v′, but we do not want to impose this.)

Definition 0.49 (Orientation, Oriented graph) Given a graph G = (V,E),

an orientation ~G of G is obtained by making each edge vv′ ∈ E an arc in one
direction. A digraph D is called an oriented graph if it is an orientation of a
simple undirected graph. This is exactly when D contains no cycles shorter
than 3.

If D is an orientation of G, then G is the underlying undirected graph of
D. Bipartite oriented graphs and oriented trees can be defined as oriented
graphs whose undirected underlying graph is a bipartite graph or a tree,
respectively. In case of rooted trees, however, it is often required that all
arcs should be oriented from the root toward the leaves, or all of them be
oriented from the leaves toward the root.

The directed path graph and directed cycle graph can be defined analo-
gously as in the undirected case.

0.4.2 Set systems

Definition 0.50 (Set system; Underlying set) A set system is a set S,
in which each member S ∈ S is a nonempty7 set. If S is given in the form
S = {S1, . . . , Sm}, then we allow members Si, Sj ∈ S of different indices i 6= j
to be the same set of elements. (This is in analogy with multiple edges in
graphs which are not simple.) Any set containing the union of the members,
i.e., any X ⊇ ⋃S∈S S can be viewed as an underlying set of the system. If
the underlying set is not specified, we may assume that X =

⋃

S∈S S.

7 Sometimes the empty set is not forbidden to be a member of a set system; but our
discussion needs to exclude this case.

54 CHAPTER 0. BASIC GRAPH THEORY

Throughout, we will consider only finite set systems, which are the ones
containing only a finite number of members. In notation, we usually refer to
the system as S = {S1, S2, . . . , Sm}, and the elements of the underlying set
X are usually denoted by x, x′, x1, x2, A system S ′ ⊆ S will be called a
subsystem of S.

A set system with 3 members is given in Figure 26. The elements of
the underlying set are denoted by dots, while members of the system are
represented by curvy areas.

Figure 26: A set system

Definition 0.51 (Uniform set system) A set system S is k-uniform if
every member S ∈ S is of the same cardinality k.

Hence, the system in Figure 26 is not uniform as it contains a member of
size 2, and one of size 4 as well.

A simple undirected graph G (without isolated vertices) can be considered
as a 2-uniform set system, whose members are the edges of G and whose
underlying set corresponds to the vertex set V (G). Therefore, set systems
are generalizations of graphs.8 Due to this, most of our definitions given for
graphs can be extended to set systems analogously. Here we mention only
some of them which will be used in later chapters.

Definition 0.52 (Degree; Minimum/Maximum degree) The degree of
an element x ∈ X is the number of members S ∈ S containing it. Formally,

d(x) = |{S ∈ S | x ∈ S}|.
8 With another terminology not used in this book, set systems are called hypergraphs;

they have vertices and so-called hyperedges.

0.5. COMPLEXITY OF ALGORITHMS 55

The minimum and maximum degree of the set system S is the minimum and
maximum of the degrees of elements in the underlying set, respectively. The
minimum degree is denoted by δ(S) whilst the maximum degree is denoted by
∆(S).

Definition 0.53 (Matching; Matching number) For a set system S, a
subsystem M⊆ S is a matching if no two members of M′ share an element;
i.e., for any two distinct Si, Sj ∈M′, Si∩Sj = ∅ holds. The matching number
ν(S) is the maximum cardinality of a matching in S.

Definition 0.54 (Independent set; Independence number) For a set
system S, a subset I of its underlying set is independent if I contains no
member S ∈ S entirely. The maximum cardinality of an independent set of
S is called independence number and is denoted by α(S).

Definition 0.55 (Transversal; Transversal number) For a set system
S, a subset T of its underlying set is called a transversal if T contains at
least one element from each member S ∈ S; that is, if T ∩S 6= ∅ holds for all
S ∈ S. The minimum cardinality of a transversal of S is called transversal
number and is denoted by τ(S).

In some parts of the literature, the terms vertex cover and hitting set are
also used for transversal. In this way it is customary to say that an element
covers the sets which contain it.9

It is clear by the definitions above that the complement of an indepen-
dent set is necessarily a transversal and vice versa. Consequently, for the
maximum and minimum cardinalities

α(S) + τ(S) = |X|

necessarily holds. Further parameters for set systems, relations between
them, and connections between the parameters of graphs and set systems
will be discussed in later chapters.

0.5 Complexity of algorithms

An algorithmic problem is given with a problem instance (input data) and
a task to be solved. For example, a decision problem asks whether the

9 This meaning of ‘covering’ differs from everyday usage. Nevertheless, it becomes
logical not only in the context of set systems and hypergraph theory but also in connection
with the duality principle between points and lines of projective planes, which we shall see
in Chapter 9.

56 CHAPTER 0. BASIC GRAPH THEORY

problem instance satisfies a certain property (e.g., whether χ(G) ≤ 3); a
search problem requires to find a structure in the instance with a specified
property (e.g., find a proper vertex coloring of G with three colors if such a
coloring exists); an optimization problem asks for the minimum or maximum
value of a function on the problem instance (e.g., determine χ(G)); etc.

There is a mathematical theory of computing, which also deals with the
complexity of computational problems and that of the algorithms solving
them. It is not the subject of the present lecture notes to give an introduction
to it, but we would like to mention at least some basic details.

One measure of algorithms is their worst-case behavior. This compares
the number of steps with the size of the given instance; more precisely one
asks what is the largest number of steps the algorithm performs on problem
instances of size n. Loosely speaking, if a graph G = (V,E) is given in the
input, it counts with |V | + |E| in size, while the contribution of a positive
integer to input size is considered to be the number of its digits (e.g., when
written as a binary number).

Restricting ourselves to algorithms which perform one elementary com-
putational operation in each time step, an algorithm (and its running time)
is said to be bounded by a function f if, for all possible problem instances,
the amount of steps needed is not greater than f(n), where n is the size of
the instance.

In theory and in practice, especially, algorithms that are bounded by poly-
nomial functions are of special interest, as the computational need to solve
larger problems does not increase ‘drastically’, and remains in a manageable
level.

In the text we shall use the informal phrase ‘efficient algorithm’ for those
algorithms which are bounded by polynomial functions, i.e., they are guar-
anteed to terminate with a solution in polynomial time.

Similarly, problems for which there exists an efficient algorithm are called
‘efficiently solvable’. Note that a problem can usually be solved by several
algorithms, which may differ in complexity. Thus, an ‘efficiently solvable’
problem admits at least one fast solution (and it is irrelevant that many
‘non-efficient algorithms’ can also solve the same problem).

The phrase ‘algorithmically hard’ will be used for the problems for which
no efficient algorithms are known so far and for which the tools of the theory
of computing have proved strong indication that those problems are indeed
harder than the efficiently solvable ones. Note that the absence of efficient
algorithms is not proven for all of these problems at the current state of
science. A certain subset of them still may turn out to be efficiently solvable;
in fact, if one of them is, it implies the same for the others as well.

For readers familiar with the theory of computing, the problems being

0.5. COMPLEXITY OF ALGORITHMS 57

efficiently solvable, algorithmically hard, and the mentioned subset of the
latter (i.e., still being open whether they are efficiently solvable or not) refer
to P, NP-hard, and NP-complete problems, respectively.

Chapter 1

Interval systems

A finite closed interval [a, b] is defined on the real line as

[a, b] = {x : a ≤ x ≤ b} ⊂ R

where the real numbers a and b are called the left and the right ends or
endpoints of the interval, respectively. As a convention, the left and right
ends of an interval Ii will be denoted by ai and bi. An interval system I
is a set system whose members are finite closed intervals. We will consider
finite systems, that are the ones containing only a finite number of intervals.

1.1 Helly’s theorem

The classical theorem of Helly concerns set systems F whose members are
bounded, closed, convex sets from the d-dimensional Euclidean space Rd.
Helly’s theorem states that if any d + 1 members of F have a nonempty
intersection, then the whole system has a nonempty intersection:

⋂

F∈F F 6=
∅. The real line is the 1-dimensional Euclidean space, and its convex sets are
the intervals. Hence, Helly’s theorem1 with d = 1 gives:

Theorem 1.1 (Helly property for intervals) If any two intervals from
the interval system I share a point, then there exists a point contained in all
intervals from I.

Proof: Let L = ai be the rightmost left endpoint and R = bj be the leftmost
right endpoint over the intervals of I. If i = j—and also when i 6= j but the
intervals Ii and Ij coincide—each point of the interval Ii is a common point

1 The assertion is valid for infinitely many bounded, closed intervals, too; here we give
a proof for finite systems only.

58

1.2. TRANSVERSALS AND MATCHINGS 59

of all intervals. Otherwise, Ii and Ij are different intervals, but they have a
nonempty intersection due to our assumption. This implies L = ai ≤ bj = R
and by the choice of L and R, ak ≤ L ≤ R ≤ bk must hold for every interval
Ik from the system. Then, every point of [L,R] belongs to all intervals from
I. �

Figure 1.1 gives an illustration for the proof. Remark that the Helly
property with d = 1 does not hold in a dimension higher than 1. Indeed,
just consider a (non-degenerate) triangle ABC in the 2-dimensional plane
and observe that the three sides AB, BC and CA are pairwise intersecting
but there is no point contained in all the three sides.

Figure 1.1: Illustration of the Helly property for intervals

1.2 Transversals and matchings

The two main concepts considered in this section are transversal and match-
ing of an interval system I. Due to Definitions 0.55 and 0.53, a transversal
T of I is a set of points containing at least one element from each interval
Ii ∈ I, whilst a matching M is a subsystem of I which contains pairwise
disjoint intervals. For illustration see Figure 1.2.

As we have already proved, the inequality τ(G) ≥ ν(G) holds for every
graph G. A similar argument can be given for the more general case.

60 CHAPTER 1. INTERVAL SYSTEMS

Figure 1.2: An interval system with a transversal T = {x1, x2, x3} and with
a matching M = {I1, I3, I7}. As it can be shown, T is of minimum and M
is of maximum cardinality.

1.2. TRANSVERSALS AND MATCHINGS 61

Proposition 1.1 For every set system S, the transversal number is not
smaller than the matching number:

τ(S) ≥ ν(S).

Proof: Consider a maximum matching M. The ν sets in M are pairwise
disjoint and hence, they are covered with ν different elements in a transversal.
Thus, each transversal is of cardinality not smaller than ν. �

The inequality may hold in the strong form τ > ν for set systems, as
shown by the following simple examples:

• Take an n-element underlying set X and all k-element subsets of it.
The set system Kk

n obtained has transversal number n− k + 1 (in fact
any (n − k + 1)-element subset of X is a minimum transversal) and
matching number ⌊n/k⌋. This yields τ > ν for every n and k which
satisfy 2 ≤ k < n.

• In Chapter 0, we gave examples for transversal numbers and matching
numbers of specified graphs. For instance, the transversal number of
an odd cycle C2k+1 equals k + 1, whilst its matching number is only k.

In this section we prove that for interval systems the two parameters are
always equal.

In optimization problems a typical task is to determine a smallest transver-
sal or a largest matching. For set systems in general, both problems are
NP-complete, but we will see that for interval systems they can be solved in
polynomial time.2 The following algorithm determines a transversal T and
a matchingM with the same cardinality for a generic input interval system
I.

Algorithm 1.1

1. Arrange the intervals in a list in the order of increasing3 right ends.
Let T = ∅,M = ∅.

2. Take the first (smallest) right endpoint, say bj , and put it into T .

2 If the set system consists of the edges of a graph, then the matching number can be
determined in polynomial time, but to determine the transversal number is an NP-complete
problem.

3 We use the term ‘increasing sequence’ in the sense of what is also often called
‘non-decreasing’; that is, we say that a sequence a1, a2, . . . is increasing if ai ≤ ai+1

holds for every i ≥ 1. Similarly, a1, a2, . . . is a decreasing sequence if ai ≥ ai+1 holds for
every i ≥ 1.

62 CHAPTER 1. INTERVAL SYSTEMS

3. Take the interval Ij (with right end bj) and put it into M.

4. Delete all intervals from the list which contain bj .

5. If the list is not empty, go to Step 2, otherwise stop.

Described in pseudo code:

Algorithm 1.1 Algorithm to determine τ and ν for interval systems

T := ∅,M := ∅, I := {I1, I2, . . . , In} with increasing right ends
while I 6= ∅ do
b′ := minIi∈I bi
T := T ∪ {b′}
Select I ′ form {Ii ∈ I | bi = b′} arbitrarily
M :=M∪ {I ′}
I := {I ∈ I | b′ 6∈ I}

end while
τ = |T |, ν = |M|, T is a smallest transversal andM is a largest matching.

At the end of the procedure all intervals are deleted and hence, each of
them is covered by at least one point from T . Moreover, at the end of any
turn the list consists of intervals which are disjoint from each interval inM,
because the left end of any interval remaining in the list is larger than the
right ends of all selected intervals. Consequently, T is a transversal, M is
a matching, and they are of the same cardinality. Since τ is the minimum
size of a transversal and ν is the maximum size of a matching, moreover we
have seen that ν(S) ≤ τ(S) holds for every set system S, we obtain

τ(I) ≤ |T | = |M| ≤ ν(I) ≤ τ(I).
This implies that all inequalities in the chain above must hold with equality.
Then, τ(I) = |T | and |M| = ν(I) follow; that is, the algorithm outputs
a minimum transversal and a maximum matching. Furthermore, the last
relation also holds with equality and proves the following theorem.

Theorem 1.2 For every interval system I,
τ(I) = ν(I).

This statement generalizes the 1-dimensional Helly theorem. The con-
dition of Theorem 1.1 says that any two intervals intersect that is ν = 1
holds, and the conclusion is the existence of a common point that is τ = 1.
Now, Theorem 1.2 equivalently means that ν = k implies τ = k, for every
integer k.

In Subsection 1.5 we present an example for applying Algorithm 1.1.

1.3. DECOMPOSITION INTO INTERSECTING SUBSYSTEMS 63

1.3 Decomposition into intersecting subsystems

Definition 1.1 A set system is called intersecting if any two members of
it have a nonempty intersection.

Equivalently, a set system S is intersecting if and only if no two of its
members are disjoint that means ν(S) = 1 . In general, τ(S) = 1 implies
that S is intersecting, but the converse is not true. For example, over the set
{a, b, c} the system S = {{a, b}, {a, c}, {b, c}} is intersecting but τ(S) = 2.

By definition, every set system containing only one set is intersecting.
Hence, every system can be decomposed (partitioned) into intersecting sub-
systems. The goal is to find a decomposition of S into the minimum num-
ber k(S) of intersecting subsystems.

Theorem 1.3 For every set system S and for the minimum number k(S)
of intersecting subsystems into which S can be decomposed, we have

ν(S) ≤ k(S) ≤ τ(S).

Proof: No two disjoint sets can belong to the same intersecting subsystem.
Hence, the ν sets in a maximum matching are contained in ν different inter-
secting subsystems, which proves ν(S) ≤ k(S). On the other hand, if we have
a τ(S)-element transversal T and each set S ∈ S is assigned to an x ∈ T
which covers S, the obtained t ≤ τ(S) nonempty intersecting subsystems
together decompose S. Therefore, k(S) ≤ τ(S) must hold. �

By Theorem 1.2, for any interval system its matching number and its
transversal number are equal. This fact, together with Theorem 1.3, imme-
diately implies the following chain of equalities.

Corollary 1.1 For every interval system I and for the minimum number
k(I) of intersecting subsystems into which I can be decomposed,

ν(I) = k(I) = τ(I).

With a simple extension, Algorithm 1.1 can produce a decomposition into
the minimum number of intersecting subsystems. Let Step 4 be replaced with
the following:

4′ If an interval contains bj , put it into the subsystem K(bj) and delete
the interval from the list.

Then, the k = τ(I) subsystems K(bj) (indexed by the elements bj ∈ T) are
intersecting and decompose I.

64 CHAPTER 1. INTERVAL SYSTEMS

1.4 Decomposition into matchings

A further typical type of optimization problems is when a system has to be
decomposed into subsystems which are matchings. This can always be done,
because the decomposition consisting of 1-element subsystems satisfies the
requirement. If the system considered is intersecting, we have no smaller
decomposition. In general, the decomposition into the minimum number of
matchings is an NP-complete problem. But as we will see, also this problem
is easy to solve for interval systems.

The decomposition into matchings is also known as a coloring problem;
it is a generalization of edge colorings of graphs. Each set is assigned to a
color such that intersecting sets must get different colors. Sets assigned to a
common color correspond to matchings, as illustrated in Figure 1.3.

The following greedy algorithm solves the problem for interval systems
with a method which is called First Fit. The input is an interval system
whose members are colored one by one in a fixed order. ‘First Fit’ means
that each interval is assigned to the smallest possible integer not forbidden
for it.

Algorithm 1.2

1. Arrange the intervals in a list in the order of increasing left ends:
I1, I2, . . . , In. Let i = 1.

2. Assign Ii to the smallest possible color that is, to the smallest positive
integer which has not been assigned to any intervals intersecting Ii. If
i < n, let i := i+ 1, otherwise stop.

In the pseudocode, we denote by Dom(ϕ) the set of intervals which have
already received their colors under the current coloring ϕ.

Algorithm 1.2 Algorithm to determine q(I) for an interval system I
ϕ := ∅, I := {I1, I2, . . . , In} with increasing left ends
while Dom(ϕ) 6= I do
a′ := minIi∈I\Dom(ϕ) ai
Select I ′ form {Ii ∈ I \Dom(ϕ) | ai = a′} arbitrarily
k := min k∈Z+

∄I∈Dom(ϕ), a′∈I, ϕ(I)=k

k

ϕ := ϕ ∪ {(I ′, k)}
end while
ϕ is a minimal coloring of I

1.4. DECOMPOSITION INTO MATCHINGS 65

Figure 1.3: Decomposition of a system of 7 intervals into matchings

66 CHAPTER 1. INTERVAL SYSTEMS

Denote by ∆(I) the maximum degree of the interval system I; that is,
the maximum number of intervals in I sharing a point. We prove that
Algorithm 1.2 uses ∆(I) colors and yields an optimal coloring.

Theorem 1.4 For every interval system I, the possible minimum number
of matching subsystems into which I can be decomposed is equal to the maxi-
mum degree ∆(I). Moreover, Algorithm 1.2 yields a decomposition into ∆(I)
matchings.

Proof: First, in every coloring (decomposition into matchings) of I the ∆
intervals sharing a point must have ∆ different colors. On the other hand,
we prove that ∆ colors are enough. Since the intervals are ordered accord-
ing to their left endpoints, for every index-pair i < j the interval Ii meets
Ij = [aj , bj] if and only if Ii contains aj . Since aj is incident with at most
∆ intervals and one of them is Ij itself, at the moment when Algorithm 1.2
colors Ij, only at most ∆−1 intervals intersecting it were colored previously.
Consequently, no interval is assigned to a color greater than ∆. This proves
that the minimum number of colors (i.e., matching subsystems in the de-
composition) equals ∆, moreover Algorithm 1.2 gives an optimal coloring.
�

1.5 Example

Procedures of Algorithms 1.1 and 1.2 are illustrated with the following ex-
ample. Let system I consist of eight intervals, also shown in Figure 1.4.

I1 = [1, 13]
I4 = [3, 7]
I7 = [14, 26]

I2 = [17, 24]
I5 = [9, 15]
I8 = [18, 22]

I3 = [12, 20]
I6 = [5, 10]

Algorithm 1.1

• The intervals have to be ordered with respect to increasing right ends:

I4, I6, I1, I5, I3, I8, I2, I7

• Choose b4 = 7;
T ← b4;
M← I4;
Delete: I4, I6, I1;
Remaining: I5, I3, I8, I2, I7.

1.5. EXAMPLE 67

Figure 1.4: System I on which Algoritms 1.1 and 1.2 are illustrated

• Choose b5 = 15;
T ← b5;
M← I5;
Delete: I5, I3, I7
Remaining: I8, I2.

• Choose b8 = 22;
T ← b8;
M← I8;
Delete: I8, I2
No interval remains.

• Output:
τ(I) = ν(I) = k(I) = 3;
Minimum transversal T = {b4, b5, b8};
Maximum matching M = {I4, I5, I8};
Decomposition into minimum number of intersecting subsystems

{I4, I6, I1}, {I5, I3, I7}, {I8, I2}.

Algorithm 1.2

68 CHAPTER 1. INTERVAL SYSTEMS

• The intervals have to be ordered with respect to increasing left ends:

I1, I4, I6, I5, I3, I7, I2, I8

• I1 → color 1
Color 1 is forbidden for I4, I6, I5, I3.

• I4 → color 2
Color 2 is forbidden for I6.

• I6 → color 3
Color 3 is forbidden for I5.

• I5 → color 2
Color 4 is forbidden for I3, I7.

• I3 → color 3
Color 3 is forbidden for I7, I2, I8

• I7 → color 1
Color 1 is forbidden for I2, I8.

• I2 → color 2
Color 2 is forbidden for I8.

• I8 → color 4
No further interval.

• Output:
Coloring of intervals with minimum number (4) of colors;
Decomposition into minimum number (4) of matching subsystems

{I1, I7}, {I4, I5, I2}, {I6, I3}, {I8}.

One can check that the maximum degree in I equals 4, for example point
a8 = 18 is contained in exactly four intervals.

1.6 Interval systems and subpaths of a path

Let us note at the end of this chapter that the combinatorial properties of
finite interval systems can also be represented with discrete mathematical
models. For example, stretching the subintervals to have integer lengths

1.6. INTERVAL SYSTEMS AND SUBPATHS OF A PATH 69

between any two consecutive endpoints4 will change only the sizes of some
intervals but has no effect on the structure and intersection/disjointness re-
lation, neither on the parameters τ, ν, k,∆ studied above. Further, assuming
that all endpoints are integers, the structure and the quantitative parameters
remain unchanged if we only keep the integer points in each interval. In this
way, we obtain a representation in terms of graphs and hypergraphs. An
interval system may be viewed as a collection of subpaths of a path which is
also called interval hypergraph. (For instance, if the smallest left endpoint
is 1 and the largest right endpoint is n, and one of the intervals is [3, 7],
then this interval is represented with the subpath v3v4v5v6v7 in the path
Pn = v1v2 . . . vn.)

4 With this modification, the distance between any two endpoints becomes an integer,
not only between consecutive ones.

Chapter 2

Interval graphs and sequential

coloring

2.1 Intersection graph of an interval system

Given a set system S, its intersection graph1 expresses the structure of the
pairwise intersections between the members of S.

Definition 2.1 The intersection graph G(S) of a set system S has one
vertex vi for each set Si ∈ S moreover two different vertices vi and vj are
adjacent in G(S) if and only if the corresponding members Si and Sj of S
have a nonempty intersection.

Since an edge uv of a graph G is defined as the set {u, v}, the line graph
L(G) is exactly the intersection graph of the system whose members are the
edges of G. We also note that essentially different intersection patterns can
yield the same intersection graph, as shown in Figure 2.1. Moreover, every
simple graph can be obtained as an intersection graph. Indeed, for any graph
G with vertices v1, v2, . . . , vn, and with edges e1, e2, . . . , em, take the system
of sets S1, S2, . . . , Sn over an underlying set {x1, . . . , xm} ∪ {y1, . . . , yn} of
cardinality m+n, where Si = {xj : vi ∈ ej}∪{yi}. This construction always
yields a set system in which no three members have a common element,
moreover its intersection graph is G. For instance, starting with the graph
G on Figure 2.1 we obtain system S1 of the same figure.

Now, we turn to the intersection graphs of interval systems.

Definition 2.2 A graph which is an intersection graph of some interval sys-
tem is called an interval graph.

1 Intersection graph is also called ‘representative graph’ in the literature.

70

2.1. INTERSECTION GRAPH OF AN INTERVAL SYSTEM 71

Figure 2.1: G is the intersection graph of S1, and that of S2, as well

That is, the intervals are represented by vertices and adjacency means
that the corresponding two intervals intersect. See Figure 2.2 for the inter-
section graph of system I which was considered in Section 1.5.

There exist graphs which are not interval graphs. For instance, no cycle of
length at least four can be obtained as the intersection graph of any interval
system. This assertion can be verified by observing that in any interval
system an interval with smallest right end either meets at most one member of
the system or two members intersecting it also meet each other; consequently
in the intersection graph the interval in question corresponds to a vertex
which either has degree less than two or is contained in a triangle K3. No
such vertices occur in a cycle longer than three.

Another example is shown in Figure 2.3. This is not an interval graph,
even though it contains no induced cycle of length greater than 3, moreover
every induced subgraph of it is an interval graph. (To see that it is not an
interval graph, observe that the three mutually non-adjacent external vertices
should correspond to three pairwise disjoint intervals, say I1, I2, I3 on the real
line in this order, and there should also occur an interval which meets both
I1 and I3 but is disjoint from I2. This is impossible.)

72CHAPTER 2. INTERVAL GRAPHS AND SEQUENTIAL COLORING

Figure 2.2: Intersection graph of system I shown on Figure 1.4

Figure 2.3: This is not an interval graph; note that every induced cycle of it
has length 3.

2.1. INTERSECTION GRAPH OF AN INTERVAL SYSTEM 73

Parameters studied in the previous chapter for an interval system I have
their corresponding pairs in the intersection graph G(I).

1. By definition, an intersecting subsystem of I yields pairwise adjacent
vertices that is a clique in G(I), and vice versa. By Helly’s theorem,
the maximum size of an intersecting subsystem equals the maximum
number ∆(I) of intervals incident with a point in I. Consequently,
the maximum order of a clique in the intersection graph equals the
maximum degree of the system: ∆(I) = ω(G(I)).

2. By the previous correspondence, the minimum number k(I) of inter-
secting subsystems to which the intervals of I can be decomposed gives
the minimum number of cliques which together cover all vertices in
G(I): k(I) = θ(G(I)).

3. It is clear by definition that the matchings of I are in one-to-one cor-
respondence with the independent vertex sets of G(I). Then, for their
maximum cardinalities ν(I) = α(G(I)) holds.

4. When the system I is decomposed into matchings, the vertex set of
G(I) is partitioned into independent vertex classes, and vice versa.
Thus, the proper colorings of the intervals are in one-to-one correspon-
dence with the proper vertex colorings of G(I). For the minimum
number of colors (partition classes) we get q(I) = χ(G(I)).

Table 2.1 summarizes the correspondences between properties and pa-
rameters of interval systems and their intersection graphs.

Taking into account that for interval systems q(I) = ∆(I) and k(I) =
τ(I) = ν(I) were proved, we obtain:

Theorem 2.1 For any interval graph G,

χ(G) = ω(G) and θ(G) = α(G).

Graph G in Figure 2.2 is the intersection graph of system I from Sec-
tion 1.5. By the above correspondences and by the results obtained in Sec-
tion 1.5 we have:

• α(G) = 3 and a maximum independent set is {v4, v5, v8}.

• θ(G) = 3 and a minimum clique cover is

{v4, v6, v1}, {v5, v3, v7}, {v8, v2}.

74CHAPTER 2. INTERVAL GRAPHS AND SEQUENTIAL COLORING

Table 2.1: Correspondence between the parameters of interval systems and
their intersection graphs

interval system I intersection graph G(I)
intersecting intervals adjacent vertices

intersecting subsystem clique
∆(I) ω(G(I))

decomposition into intersecting subsystems clique cover
k(I) θ(G(I))

disjoint intervals non-adjacent vertices
matching independent vertex set

ν(I) α(G(I))
decomposition into matchings proper vertex coloring

(coloring of intervals) (partition to independent vertex sets)
q(I) χ(G(I))

• ω(G) = 4 and a maximum clique is induced by {v3, v7, v2, v8} (because
in I point a8 is of maximum degree 4 and the intervals incident with
it are I3, I7, I2 and I8.)

• χ(G) = 4 and a 4-coloring is obtained with color classes

{v1, v7}, {v4, v5, v2}, {v6, v3}, {v8}.

We note that interval graphs can be recognized in time proportional to
the number |V | + |E| of vertices plus edges, moreover for interval graphs a
corresponding interval system can also be constructed efficiently. Then by
Algorithms 1.1 and 1.2, the significant graph parameters ω, α, θ, χ and also
τ = |V | −α (each of them is hard to determine for graphs in general) can be
computed by fast algorithms on the class of interval graphs.

2.2 Sequential coloring

We applied a First Fit algorithm to color intervals ordered due to increasing
left ends. If the vertices of the intersection graph are considered in the
corresponding order, the same method yields a proper vertex coloring with
minimum number of colors.

2.2. SEQUENTIAL COLORING 75

In general, First Fit can be used for coloring vertices of any graph in any
fixed order.

First Fit coloring:
Given a graph G and a vertex order v1, v2, . . . , vn, color the vertices in this
order with colors 1, 2, . . . , such that each vertex vi gets the smallest color
which has not been assigned to any previously colored neighbors of vi.

The coloring is necessarily proper as we do not use the same color on
adjacent vertices, but the optimality is not guaranteed.2 Just consider the
following bipartite graph G:

V (G) = {v1, v2, . . . , vk, u1, u2, . . . , uk}

E(G) = {viuj | i 6= j ∧ 1 ≤ i, j ≤ k}
(This is the complete bipartite graph Kk,k from which a ‘perfect match-
ing’ consisting of the edges v1u1, v2u2, . . . , vkuk is deleted.) If we apply the
First Fit coloring with the original vertex order as listed above, we obtain
a coloring with two colors, which is optimal as χ(G) = 2. But if the order
v1, u1, v2, u2 . . . , vk, uk is taken, then for every vertex vi or ui exactly the col-
ors smaller than i are forbidden. And then, First Fit outputs a coloring with
k colors. This indicates that First Fit is sensitive to vertex order.

A First Fit coloring assigns each vertex vi to a color which is not greater
than the number of neighbors preceding vi plus 1. Hence, our goal is to
bound the number of preceding neighbors in the coloring order.

Definition 2.3 Given a graph G and a vertex order v1, v2, . . . vn, let d−(vi)
denote the number of neighbors of vi which precede it:

d−(vi) = |{vj | vivj ∈ E(G) ∧ j < i}| .

Then, the coloring number col(G) of graph G is the minimum of the max-
imum value of d−(vi) plus 1, taken over all vertex orders:

col(G) = min
vertex orders

max {d−(vi) + 1 | 1 ≤ i ≤ n}.

2 Nevertheless, for every graph G there exists a vertex order such that First Fit produces
a coloring with minimum number χ(G) of colors. But this order is hard to determine in
general.

76CHAPTER 2. INTERVAL GRAPHS AND SEQUENTIAL COLORING

A vertex order where max {d−(vi) + 1 | 1 ≤ i ≤ n} equals the coloring
number is called optimal. The coloring number is an upper bound on the
chromatic number.

Theorem 2.2 For every graph G,

χ(G) ≤ col(G).

Proof: Consider an optimal vertex order v1, v2, . . . , vn of G and color the
vertices using the First Fit algorithm. As every vertex vi is preceded by
d−(vi) of its neighbors, when we color vi, not more than d−(vi) colors are
forbidden for vi. Then, vi gets a color which is not greater than d−(vi) + 1.
By definition d−(vi)+1 ≤ col(G) for every vi, hence First Fit yields a coloring
with at most col(G) colors and we conclude χ(G) ≤ col(G). �

Recall from the introductory chapter that ∆(G) + 1 is a trivial upper
bound on the chromatic number. Since col(G) ≤ ∆(G) + 1, now we have a
better upper bound on χ(G). Moreover, whilst the determination of χ(G) is
algorithmically hard, the following theorem shows that col(G) can be calcu-
lated efficiently. An interesting aspect of this result is that in the definition
of col(G) all the n! vertex orders of G are involved, which grows superexpo-
nentially as a function of the number n of vertices.

Theorem 2.3 The coloring number col(G) can be determined for any graph
G in polynomial time.

Proof: We construct the following order of the n vertices of G:

• Choose a vertex of minimum degree in G and let it be called vn. This
will be the last vertex in the order.

• Then, for every i = n−1, n−2, . . . , 1 select a vertex of minimum degree
in the subgraph induced by the set V (G) \ {vj | j > i} of remaining
vertices. Let it be called vi.

This procedure results in a vertex order v1, v2, . . . , vn. We prove that this is
an optimal one.

Consider any optimal order of the vertices. If it is v1, v2, . . . , vn, there is
nothing to prove. Otherwise select the largest index i where the two orders
differ. In the original order v1, v2, . . . , vn we have vi and in the optimal one
we have vk with k < i. Modify the optimal order by placing vi right after vk.
By this change d−(vi) may increase but it cannot be higher than d−(vk) was
before the modification, since vi has minimum degree in V (G) \ {vj | j > i}.

2.2. SEQUENTIAL COLORING 77

Moreover, for a vertex vℓ with ℓ > i the degree d−(vℓ) does not change, while
for a vℓ with ℓ < i (including ℓ = k), d−(vℓ) either decreases or remains
the same. Consequently, max d− does not increase and the order remains
optimal. Repeating this procedure, at each turn the largest index where
the order v1, v2, . . . , vn and the optimal one differ will be smaller by at least
1, and finally the optimal one is transformed into v1, v2, . . . , vn preserving
optimality. �

Here is another way to obtain an optimal order:

• All the vertices of minimum degree are taken at the end of the or-
der. Then, these vertices are deleted and the step is repeated for the
subgraph induced by the remaining vertices.

In Section A.3, we present some examples for the First Fit coloring and
for the determination of an optimal vertex order and the coloring number of
graphs.

Chapter 3

Chordal graphs

3.1 Subtrees of a tree

We have already seen that a finite interval system can be represented in terms
of graphs, as it corresponds to a collection of subpaths of a path. Various
properties of interval systems remain valid in the more general structure class
composed by collections of subtrees of trees.1 Here we mention the following
important one.

Theorem 3.1 (Helly property for subtrees) Let T1, T2, . . . , Tn be sub-
trees of a tree graph T . If any two Ti, Tj share at least one vertex (1 ≤ i <
j ≤ n), then some vertex is contained in all Ti (1 ≤ i ≤ n).

Proof: Let us make T a rooted tree, by fixing one of its arbitrarily chosen
vertices, say x, as root. If x is contained in all of the Ti, we have nothing to
prove. Otherwise, for each i, denote by xi the vertex of Ti closest to x. (In
particular, this definition implies xi = x if x ∈ V (Ti).) Let ℓ be an index for
which xℓ is at largest distance from x. In a tree-like layout of T every xi is
positioned at least as high as xℓ. Therefore any path from xi to any vertex
of Tℓ enters Tℓ at xℓ. Since all Ti meet Tℓ, it follows that all of them contain
the vertex xℓ. �

Later, our results on chordal graphs will imply further statements on
parameters of systems of subtrees.

1 A subtree — as already the name indicates — of a tree T is a connected subgraph of
T . If the subtrees are represented with the vertex sets covered, the system is also called
hypertree.

78

3.2. CHORDAL GRAPHS AND SIMPLICIAL ORDER 79

3.2 Chordal graphs and simplicial order

Definition 3.1 A graph is chordal2 if it contains no induced cycle of length
greater than 3.

The name ‘chordal’ expresses that every cycle of the graph whose length
is at least 4 cannot be induced, i.e. it has some chord(s). It is immediate
from the definition that every tree is a chordal graph, as it has no cycle at
all. Another important subclass of chordal graphs is the class of interval
graphs as we have seen that no chordless cycles longer than 3 can occur in
the latter. We shall return to this connection between graph classes later in
Corollary 3.1.

We introduce the following notions in terms of whom the class of chordal
graphs can also be defined.

Definition 3.2 A vertex v is simplicial in G if and only if any two of its
neighbors are adjacent.

Hence, every vertex with degree 1 or 0 is simplicial. Moreover, if d(v) ≥ 1,
the definition is equivalent to the requirement that N(v) induces a clique
in G.

Definition 3.3 A simplicial order3 of G is an order v1, v2, . . . , vn of its
vertices such that for every 1 ≤ i ≤ n − 1, vertex vi is simplicial in the
subgraph induced by vi, vi+1, . . . , vn.

For example, for the graph G on six vertices a, b, c, d, e, f and with eight
edges ab, ac, ad, ae, bc, bf, cd, de (cf. Figure 3.1) a possible simplicial order is
e, d, a, f, c, b and also f, b, c, e, a, d and several further ones are simplicial. But
e, f, c, d, a, b is not a simplicial order because c is not a simplicial vertex in the
subgraph induced by c, d, a, b, as it has two non-adjacent neighbors, namely
d and b.

Theorem 3.2 A graph has a simplicial order if and only if every induced
subgraph of it has a simplicial vertex.

2 A chordal graph is also called ‘rigid circuit graph’ and ‘triangulated graph’ in the
literature.

3 A simplicial order is also called perfect elimination order in the literature.

80 CHAPTER 3. CHORDAL GRAPHS

Figure 3.1: A graph with several simplicial orders

Proof: If every induced subgraph of G (including G itself) has a simplicial
order then we can choose an arbitrary simplicial vertex in G and a further
one in the subgraph induced by the remaining vertices, and so on. Finally,
we have a simplicial order, definitely.

On the other hand, assuming a simplicial order v1, v2, . . . , vn of G, for
every induced subgraph G′ ⊆ G, the vertex of G′ which has the smallest
index in the order above is surely simplicial in G′. �

This theorem implies that if a graph admits a simplicial order, then the
following procedure always yields an appropriate one; no matter which sim-
plicial vertex is chosen in a step (if there exist more than one).

• For i = 1, 2, . . . n:
Let Gi be the subgraph induced by V (G) \ {vj : j < i}.

– If there is no simplicial vertex in Gi, then G has no simplicial
order. STOP

– Otherwise let vi be an arbitrary simplicial vertex of Gi.

• If all the n iterations have been executed, the output is v1, v2, . . . , vn,
which is a simplicial order of G.

Remark 3.1 For a fixed vertex v ∈ V (G), deciding whether v is simplicial
in G means deciding whether every two neighbors of v are adjacent. This
needs at most (n− 1)(n− 2)/2 steps. Then, the determination of a simpli-
cial vertex in a graph G (or finding out that there is no such vertex) takes
polynomial time. Therefore, applying Theorem 3.2 and its proof, deciding

3.2. CHORDAL GRAPHS AND SIMPLICIAL ORDER 81

whether there is a simplicial vertex order and determining one, if it exists,
can be done in polynomial time.

The following important characterization theorem establishes a close con-
nection between the notions defined in this section.

Theorem 3.3 For any graph G, the following statements are equivalent:

(i) G is chordal;

(ii) G has a simplicial order;

(iii) G is the intersection graph of a collection of subtrees of some tree T .

Proof: We prove the equivalences (i) ⇔ (ii) and (ii) ⇔ (iii). Generally
speaking, (i)⇒ (ii) will require the formulation of a stronger assertion and an
argument with structural considerations, (ii) ⇒ (i) is easy, and (ii) ⇔ (iii)
is closely related to the ideas behind Theorem 3.1.

(i)⇒ (ii)

The implication clearly holds for complete graphs, because all vertices of Kn

are simplicial for every n. For any other graph, we prove the followig stronger
assertion:

(ii′) If a graph is chordal, but not a complete graph, then it contains two
nonadjacent simplicial vertices.

To prove this, we apply induction on the number n of vertices. The
anchor of the induction is n = 2 : the smallest non-complete graph is the
empty graph E2, and both of its vertices are simplicial.

Let G = (V,E) be a chordal graph of order n > 2, and suppose that the
implication (i) ⇒ (ii′) has been proved for all graphs on fewer than n ver-
tices. If G is disconnected, then each of its components contains at least one
simplicial vertex, and vertices from different components are nonadjacent.
So, the proof is done for this case.

Assume that the chordal graph G is connected. Since G is not complete,
we can select two nonadjacent vertices in it, say x and y. Let Z ⊂ V be a
set of vertices with the following properties:

• G− Z is disconnected,

• x and y are in different components of G− Z,

• Z is minimal in the sense that G−Z ′ is connected for every set Z ′ (Z.

82 CHAPTER 3. CHORDAL GRAPHS

Sets Z of this kind exist; for instance, the neighborhood N(x) separates x
from y, therefore at least one subset of N(x) is a suitable choice for Z. We
denote the component of G − Z containing x by Gx, and the component
containing y by Gy.

Claim: The set Z induces a complete subgraph in G.

Proof: Suppose for a contradiction that G[Z] is not complete; say, z, z′ ∈ Z
and zz′ /∈ E. There exists a path P from x to y through z and not containing
z′, because Z is minimal and x, y are in the same component of (G−Z)∪{z}.
Similarly, there exists a path P ′ from x to y through z′, not containing z.
From P ∪ P ′ we see that z and z′ are connected by some paths in each of
Gx∪{z, z′} and Gy ∪{z, z′}. Taking one shortest (thus, chordless) z–z′ path
in Gx ∪ {z, z′} and one in Gy ∪ {z, z′}, the union of these two paths induces
a chordless cycle of length at least four, because z and z′ are nonadjacent
and there are no edges between Gx and Gy. This contradicts the assumption
that G is chordal. ♦

Let us now consider the subgraph induced by Z ∪ V (Gx) in G. If it is
complete, then x is a simplicial vertex in it and also in G; and if it is not
complete, then the induction hypothesis implies that it contains at least two
nonadjacent simplicial vertices. At most one of them can be in Z because
G[Z] is complete; thus there exists one, all of whose neighbors are in Z ∪Gx,
and therefore this vertex is simplicial in the entire G, too. For the same
reason, Gy contains a vertex outside Z, which is not adjacent to any vertices
of Gx and is simplicial in G. These two vertices satisfy the requirements of
(ii′). This completes the proof of (i)⇒ (ii).

(ii)⇒ (i)

Let v1, v2, . . . , vn be a fixed simplicial order of G, and let C = x1x2 . . . xk be
any cycle subgraph in G, with k ≥ 4. We have to prove that C has at least
one chord. We may label the vertices of C in a way that x2 is its vertex
which appears in the fixed order v1, v2, . . . , vn first. Then both x1 and x3

stand after x2, and therefore being neighbors of x2 they are adjacent, by the
definition of simplicial order. Consequently, the edge x1x3 is a chord of C.

(ii)⇒ (iii)

This implication is of great importance with respect to algorithms. For this
reason, to put more emphasis on it, we devote a separate paragraph to its
algorithmic proof at the end of this subsection.

(iii)⇒ (ii)

Let T = {T1, . . . , Tn} be a collection of subtrees of a tree T , such that the
intersection graph of T is G. As in the proof of Theorem 3.1, we select a root

3.2. CHORDAL GRAPHS AND SIMPLICIAL ORDER 83

vertex x in T arbitrarily, and for each i, denote by xi the vertex of Ti closest
to x. Let again ℓ be an index for which xℓ is at largest distance from x. We
have seen that if a Ti meets Tℓ, then xℓ ∈ V (Ti) holds, therefore all such Ti are
mutually intersecting. In the intersection graph G of T the subtrees meeting
Tℓ correspond to the neighbors of vertex vℓ; and their pairwise intersections
imply that all those neighbors are adjacent to each other. Consequently, vℓ
is a simplicial vertex in G. This argument works for every subcollection of
T and hence for every induced subgraph of G. We conclude that G has a
simplicial order. �

Remark 3.2 In part (iii), a subtree T ′ is considered as the set of vertices
contained in it and hence, in the intersection graph adjacency means that the
corresponding subtrees share a vertex.

As mentioned above, induced cycles longer than 3 cannot occur in interval
graphs. Theorem 3.3 offers us the possibility to point out the relation between
chordal graphs and interval graphs from a different approach, too.

Corollary 3.1 Every interval graph is chordal.

Proof: We have already noted that an interval system can be viewed as a
set of subpaths of a path (graph). Hence, it is a collection of subtrees of a
special kind of tree (i.e. a path). Thus, interval graphs, which are precisely
their intersection graphs, satisfy part (iii) of Theorem 3.3. Consequently,
they are chordal graphs. �

Observe that a simplicial order of an interval graph can be determined
via ordering the intervals represented by the vertices in increasing right ends.
When Algorithms 1.1 and 1.2 were applied for an interval system, significant
parameters of its intersection graph were also computed. We will see that
these methods have their analogous versions for chordal graphs.

Each algorithm discussed in this chapter proceeds by simplicial order (or
its inverse). Roughly speaking, simple problems are typically solved using
simplicial order, but more difficult tasks often require the representation by
subtrees.

Building a representation of a chordal G with nonempty subtrees.
We proceed in inverse simplicial order vn, . . . , v1. Vertex vn is represented by
the one-vertex subtree {x1} of the tree T consisting of only this vertex. When
a vertex vi is considered, the vertices vi+1, . . . , vn are already represented by
subtrees Ti+1, . . . , Tn of a tree T . Since the (already represented) neighbors

84 CHAPTER 3. CHORDAL GRAPHS

of vi form a clique in G, the corresponding subtrees are pairwise intersecting.
By Theorem 3.1, these subtrees have a vertex, say xj , in common. It may
happen that xj is contained in subtrees representing vertices non-adjacent
with vi. For this reason we take a new vertex xi which is a leaf adjacent just
to xj in T , and represent vi by the one-vertex subtree {xi}; moreover, each
subtree assigned to a neighbor of vi is extended by this leaf xi. If vi has no
neighbors among vi+1, . . . , vn, we join the new vertex xi by an edge to an
arbitrarily chosen vertex of T , in order to keep the extended T connected.
In this way, the representation contains subtrees of a tree in every step and
vertices adjacent in G correspond to intersecting subtrees while non-adjacent
vertices correspond to vertex-disjoint subtrees.

3.3 Algorithms for chordal graphs

In this section we present algorithms determining the independence number
α, clique covering number θ, clique number ω and chromatic number χ for
chordal graphs. On the one hand, these parameters are algorithmically hard
to determine for graphs in general. On the other hand, we have seen that on
the class of interval graphs, which is a subclass of chordal graphs, the param-
eters above can be computed efficiently. Here we show that this efficiency
does not change and also the basic ideas of the algorithms remain applicable
for chordal graphs.

Each algorithm discussed in this section starts with the determination
of a simplicial order. This can be executed in polynomial time in the way
described in the previous section, so here we assume that a simplicial order
denoted by v1, v2, . . . vn is at hand.

3.3.1 Determination of α and θ

Algorithm 3.1

1. Take the first element vi from the simplicial order and put it into I.

2. Delete vi and all neighbors of vi from the list. If the list is not empty,
proceed with (1).

In each iteration, the neighbors of the vertex chosen are deleted, hence I
is an independent vertex set, it contains |I| = s elements for some s. On the
other hand, by the definition of simplicial order, the set of vertices deleted in
any step form a clique. Finally, these s cliques together cover all vertices of

3.3. ALGORITHMS FOR CHORDAL GRAPHS 85

the graph. Recall that θ ≥ α holds for every graph. Moreover, in the present
case, since α is defined to be the maximum cardinality of an independent
set, we have α ≥ s; and since θ is the minimum number of cliques covering
all vertices, we have θ ≤ s. That is, for a chordal graph and for the number
s of iterations in the algorithm:

θ ≤ s ≤ α ≤ θ.

Consequently, in the chain above each relation holds with equality.
As follows, the algorithm determines a maximum independent set I with

s = α vertices and a clique cover with the minimum number s = θ of cliques.
This verifies the optimality of the outputs. In addition, this proves the
following theorem:

Theorem 3.4 For every chordal graph G,

θ(G) = α(G)

holds.

3.3.2 Determination of ω and χ

Definition 3.4 Let v1, v2, . . . , vn be a simplicial order in a graph G. Relating
to this order, the forward degree d+(vi) of a vertex vi is

d+(vi) = |{vj : vivj ∈ E ∧ i < j}|

that is, the number of those neighbors of vi which are later in the order than
vi.

Theorem 3.5 For every chordal graph G and for every simplicial order of
it,

ω(G) = max
1≤i≤n

{d+(vi) + 1}.

Proof: Consider a chordal graph G and a simplicial order v1, v2, . . . , vn.
Then, for every 1 ≤ i ≤ n, vertex vi is simplicial in the subgraph induced
by {vi, vi+1, . . . , vn}. Thus, a clique of d+(vi) + 1 vertices surely occurs in G
implying that

ω(G) ≥ d+(vi) + 1

holds for every i. Then,

ω(G) ≥ max
1≤i≤n

{d+(vi) + 1}

86 CHAPTER 3. CHORDAL GRAPHS

holds as well.
On the other hand, for a clique of ω vertices consider the vertex vi which is

the earliest one among them in the order. For this vertex, d+(vi) = ω(G)−1
holds and we have

ω(G) ≤ max
1≤i≤n

{d+(vi) + 1}.

This completes the proof. �

As follows, the clique number ω can be efficiently computed on the class of
chordal graphs. Just determine any simplicial order and the forward degrees
of vertices. Theorem 3.5 then shows a direct way to compute ω. Choosing
some vi with largest d+(vi) and taking it together with its later neighbors,
we also find a maximum clique efficiently.

To determine the chromatic number of chordal graphs, we propose the fol-
lowing algorithm, which proceeds in inverse simplicial order vn, vn−1, . . . , v2, v1.

Algorithm 3.2

• Apply First Fit coloring in order vn, vn−1, . . . , v2, v1.

At the moment when a color is assigned to vertex vi, exactly d+(vi) neigh-
bors of it were colored previously. Therefore, precisely d+(vi) colors are for-
bidden for vi (as those neighbors are mutually adjacent), and First Fit can
assign a color to vi from the set {1, 2, . . . , d+(vi) + 1}. Consequently, the
coloring uses at most max1≤i≤n{d+(vi) + 1} colors. This maximum value is
an upper bound for χ. On the other hand, ω is a trivial lower bound for χ
(not only for chordal graphs), and together with Theorem 3.5, we have

ω(G) ≤ χ(G) ≤ max
1≤i≤n

{d+(vi) + 1} = ω(G).

Thus, equalities must hold all along the chain, which proves that the algo-
rithm above results in an optimal χ-coloring for any chordal graph. Also,
the leftmost equality implies the following theorem.

Theorem 3.6 For every chordal graph G,

ω(G) = χ(G).

It can also be shown that inverse simplicial order (if exists) is also an op-
timal order for sequential coloring. Moreover, the chromatic and the coloring
numbers are equal for any chordal graph. It is important to note, however,
that the algorithms presented in the previous chapter for finding an optimal
vertex order with respect to col(G) cannot be applied to find simplicial orders
of chordal graphs in general. The reason is that in some chordal graphs the
vertices of minimum degree are not simplicial.

Chapter 4

Tree decompositions of graphs

In the previous chapter we proved several useful structural properties of
chordal graphs. The algorithmic ideas to be presented here will be based
on them (although we shall not mention this at every point).

We are going to develop a method which leads to efficient algorithms for
a large class of hard problems on a certain class of graphs. In fact, here
“class of graphs” means a nested sequence G1 ⊂ G2 ⊂ · · · of graph classes;
the individual members of this sequence are relatively small1 when compared
to the class of all graphs, nevertheless each graph occurs in some member of
this sequence. The rather general structure of this approach is exhibited in
the following scheme, in which we build various kinds of structures one after
the other. The larger graph H in the second line of the scheme is often called
a chordal supergraph2 of G. The middle step from H to T is feasible because
of the characterization theorem of chordal graphs as those representable as
intersection graphs of trees (Theorem 3.3).

graph G = (V,E)
↓

chordal graph H containing G as a subgraph
↓

collection T of subtrees of a tree
such that H is the intersection graph of T

↓
tree graph T with nodes (vertices) xk and associated subsets Sk ⊆ V

satisfying specific properties

1 This is not surprising, because for very large classes one cannot expect efficient
algorithms on provably hard (NP-hard) problems.

2 In general, the phrases ‘G1 is a subgraph of G2 ’ and ‘G2 is a supergraph of G1 ’ are
equivalent, nevertheless the latter is used in particular contexts only; e.g., the one here.

87

88 CHAPTER 4. TREE DECOMPOSITIONS OF GRAPHS

It is the model obtained in the last phase of this scheme which will be
the base to design algorithms. The tree structure behind the sets Sk allows
to apply the principle of dynamic programming. To execute those algorithms
we shall not need the intermediate graph H and the subtrees occurring in
T ; we shall use information from G and from the tree T and its associated
sets Sk only. Before illustrating this with an example, let us give the formal
definition.

Definition 4.1 Let G = (V,E) be a graph with nonempty vertex set V =
{v1, . . . , vn} and (possibly empty) edge set E. A tree decomposition of
G is a pair (T,S) where T = (X,F) is a tree graph with node set3 X =
{x1, . . . , xm} and edge set F , and S = {S1, . . . , Sm} is a set system over V
(where the same vertex subset is allowed to occur for more than one of the
Si), indexed according to the nodes of T , that satisfies the following three
requirements:

1. Every vertex vi ∈ V of G occurs in some set Sk ∈ S.

2. The two ends of any edge vivj of G occur together in some set Sk ∈ S.

3. If vi ∈ Sk′ and vi ∈ Sk′′ for two indices k′, k′′, then vi ∈ Sk also holds
whenever the node xk is on the xk′–xk′′ path in T .

The requirements are illustrated in Figure 4.1. The two ends of each edge
v1vi (i = 2, 3, 4) occur together in the set Si assigned to node xi. Since v1
appears in both S2 and S4, it has to be present in the set S1 between them,
too.

The first condition is included only to ensure that the isolated vertices
(if there are any) should also appear in the representation. The essence is
captured in conditions 2 and 3.

Below we first show how this kind of structure can be created for a given
graph G. Then we fine-tune the model for algorithmic purposes and show
how it can be applied in solving optimization problems.

We note already at this point that not all chordal extensions are equally
good for algorithmic purposes. For example, inserting edges between all
nonadjacent vertex pairs we certainly obtain the chordal graph Kn but it
would be of no use at all. It would actually lead to a tree decomposition
where some set Sk would be identical to the entire vertex set V . We wish
just the contrary, to keep the sets Si as small as possible.

3 In order to avoid ambiguity, in the present context we use the term “node” for the
vertices of the tree T ; i.e., the word “vertex” is reserved for the elements of V .

89

Figure 4.1: K1,3 and a tree decomposition; the subgraph with bold edges indi-
cates the occurrences of v1 in the sets Si

Definition 4.2 The width of a tree decomposition (T,S) is

max
1≤k≤|V (T)|

|Sk| − 1.

The treewidth of G, denoted by tw(G), is the smallest possible width of a
tree decomposition:

tw(G) = min
(T,S) : tree decomposition of G

max
1≤k≤|V (T)|

|Sk| − 1.

This definition is quite technical and the relevance of its condition will
become clear only when we see how the structure can be applied in the design
of efficient algorithms. A more plausible alternative approach to treewidth
is expressed in terms of clique number, as shown by the following result. We
shall give the proof at the end of Section 4.1, because it is closely related to
the way how a tree representation can be constructed for G according to the
scheme above, and we prefer to describe the construction first.

Theorem 4.1 The treewidth of a graph G is equal to

tw(G) = min
H : chordal, G⊆H

ω(H)− 1.

90 CHAPTER 4. TREE DECOMPOSITIONS OF GRAPHS

The treewidth of a general graph is hard to determine. Nevertheless, for
any fixed t, it can be checked efficiently whether or not tw(G) ≤ t holds; and if
it does, then also a tree decomposition of width at most t can be determined.
The proof of this result is beyond the scope of the present course.

Graphs with very small treewidth have a transparent structure:

• tw(G) = 0 if and only if G has no edges.

• tw(G) = 1 if and only if G has no cycles but has at least one edge.

• tw(G) ≥ 2 for every other graph.

These facts follow directly from Theorem 4.1, and can also be shown without
applying it.

We note further that if the initial graph G is chordal, then there is no
need to insert new edges, i.e. we may take H = G. In this way we obtain:

Theorem 4.2 If G is a chordal graph, then tw(G) = ω(G)− 1.

Since the chromatic number of a chordal graph is equal to its clique num-
ber, this theorem equivalently means that tw(G) = χ(G)−1 holds whenever
G is chordal.

Trees are particular cases: they have clique number 2 — as well as chro-
matic number 2 — and treewidth 1, assuming that there are at least two
vertices. The assertion of Theorem 4.2 does not extend from trees to bipar-
tite graphs, however; already the even cycles have treewidth 2.

Remark 4.1 The reason for writing |Sk| − 1 in the definition of tw(G)
rather than |Sk| is that we wish trees have treewidth 1 rather than 2.

4.1 Creating a tree decomposition

As we indicated at the beginning of this chapter, a tree decomposition can
be obtained for a given graph G in three steps. We illustrate the method
with the following graph:

G = (V,E), V = {v1, v2, v3, v4, v5, v6, v7, v8},

E = {v1v2, v1v4, v2v3, v2v4, v3v6, v4v5, v4v6, v5v7, v6v8, v7v8}.

4.1. CREATING A TREE DECOMPOSITION 91

Figure 4.2: First step of creating a tree decomposition: making the graph
chordal

1. Finding a chordal supergraph H of G. This step is easy to describe:
edges have to be inserted into the graph as long as it contains some chordless
cycles longer than 3. In our example, by inserting the edges

v2v6, v4v8, v5v8

we eliminate all chordless cycles, as shown in Figure 4.2.

Note that there are several ways to achieve this goal, for instance in
our example the other diagonal v3v4 might also have been chosen in the 4-
cycle v2v3v6v4, and/or any two non-crossing chords (or more) of the 5-cycle
v4v5v7v8v6 could have been taken.

Insertion of edges may create new chordless cycles, hence this step needs
some care. Keeping in mind that the resulting graph has to be chordal, and
that the chordal graphs are precisely the graphs admitting a simplicial order,
a systematic way for a chordal extension is to create a simplicial order for H
and to insert precisely those edges which are missing in the assumed order. In
our example the order v1v3v2v6v4v5v7v8 corresponds exactly to the insertions
chosen.

2. Finding a tree representation. This can be done in the way described
in the previous chapter. In our example, we may take for instance the host
tree with vertex set {x1, x2, x3, x4, x5, x6} and edge set {x1x2, x1x4, x2x3, x4x5, x4x6}
as illustrated in Figure 4.3. If we denote by Ti the vertex set of the subtree

92 CHAPTER 4. TREE DECOMPOSITIONS OF GRAPHS

that represents vi, a possible choice is:

T1 = {x5}
T2 = {x4, x5, x6}
T3 = {x6}
T4 = {x1, x2, x4, x5}
T5 = {x2, x3}
T6 = {x1, x4, x6}
T7 = {x3}
T8 = {x1, x2, x3}

Figure 4.3: Second step of creating a tree decomposition: finding subtrees in
some tree, whose intersection graph is the chordal graph

As we have seen in Section 3.2, subtree representations are constructed
in inverse simplicial order. In our current example, it is derived from the
following simplicial order of H : v3, v1, v2, v7, v5, v4, v6, v8.

3. Finding the sets Sk. Formally, this step can be done by setting S =
{S1, . . . , Sm} where

Sk := {vi | xk ∈ Ti}

4.1. CREATING A TREE DECOMPOSITION 93

for all 1 ≤ k ≤ m. That is, in the set assigned to xk we list the vertices of G
with the indices of subtrees containing xk, as illustrated in Figure 4.4.

Figure 4.4: Third step of creating a tree decomposition: assigning sets to the
nodes of the tree

Lemma 4.1 The pair (T,S) constructed above satisfies the requirements of
tree decompositions.

Proof: Every tree representing the vertices is nonempty, therefore each ver-
tex of G occurs in at least one Si, verifying the first condition. If vivj is an
edge of G, then it is an edge of H as well. The definition of intersection graph
then implies that Ti and Tj share a vertex, say xk. And then vi and vj occur
together in Sk, according to the construction. This ensures that the second
condition holds. Finally, the occurrences of any vi in the sets Sk correspond
to the nodes xk which are contained in the subtree Ti. That is, those occur-
rences form a subtree of T , implying that the entire path connecting any two
of them is inside the set of occurrences. This verifies the third condition. �

Now we are in a position to prove Theorem 4.1.

Proof of Theorem 4.1: The term ‘−1’ occurs in both formulas, therefore the
quantitative equivalence of the two approaches can be simplified to showing
that the smallest possible cardinality of the largest set Sk in a tree decom-
position (T,S) of G is precisely the minimum clique number of H where H
is a chordal supergraph of G.

Assume first that H ⊇ G is a chordal graph with as small clique number
as possible. We prove that all the numbers |Sk| in some tree decomposition
of G can be kept to be at most ω(H). Let us represent H as the intersection
graph of subtrees T1, . . . , Tn of a tree T . Subtrees containing any one node of
T correspond to mutually adjacent vertices of H , that is a complete subgraph.
For this reason, every node xk of T occurs in at most ω(H) subtrees. Hence,

94 CHAPTER 4. TREE DECOMPOSITIONS OF GRAPHS

the three-step construction described above yields |Sk| ≤ ω(H) for all nodes
xk of T .

Conversely, assume that (T,S) is a tree decomposition of G, in which
the largest value of |Sk| is as small as possible. For 1 ≤ i ≤ n, we consider
the subtree Ti formed by the occurrences of vi in the sets assigned to the
nodes of T . This is indeed a subtree for every i, by condition 3 of tree
decompositions. Denote by H the intersection graph of {T1, . . . , Tn}, where
“intersection” means to share a node. We know from the previous chapter
that H is chordal, moreover condition 2 implies that G ⊆ H also holds.

Let K be the vertex set of a clique of cardinality ω(H) in H . Any two
vertices of H are adjacent, therefore any two of the corresponding subtrees
share a node. By the Helly property of subtrees we obtain that all the |K|
subtrees representing the vertices of K have a nonempty intersection, say all
of them contain node xk. Consequently, ω(G) ≤ |Sk| holds, completing the
proof of the theorem. �

Remark 4.2 We have constructed a tree decomposition from a chordal su-
pergraph. The transformation can be done in the other direction, too. Indeed,
if (T,S) is a tree decomposition of G, then we obtain a chordal graph H ⊇ G
by inserting edges inside the subsets Sk in such a way that all of them become
complete subgraphs. This yields a chordal H whose clique number is equal to
the width of (T,S) plus 1. Graph H is the intersection graph of the collec-
tion T of subtrees, where Ti ∈ T is the set of nodes xk such that vi ∈ Sk.
(Insertions of edges not contained in any Sk may generate further chordless
cycles and therefore may lead to larger clique number in extending G to a
chordal graph. This is the reason why we do not insert any such edge.)

4.2 Nice tree decomposition

Here we introduce a particular kind of tree decompositions, which helps to
design algorithms in a more transparent way.

Definition 4.3 Suppose that (T,S) is a tree decomposition of G. It is called
a nice tree decomposition if the following further conditions are met, too:

1. Viewing T as a rooted tree (with a suitably chosen root) every node of
T has at most two children.

2. Each node is one of the following four types:

4.2. NICE TREE DECOMPOSITION 95

• start node: xk has no children4 (it is a leaf of T);

• forget node: xk has exactly one child, say xk′, and Sk = Sk′\{vi}
for some vi ∈ V ;

• introduce node: xk has exactly one child, say xk′, and Sk =
Sk′ ∪ {vi} for some vi ∈ V ;

• join node: xk has exactly two children, say xk′ and xk′′, and
Sk = Sk′ = Sk′′.

See Figure 4.5 for an illustration.

Figure 4.5: A nice tree decomposition of P3, and the types of its nodes

The explanation for those names is that we shall traverse the tree in a
bottom-up way, from its leaves towards the root, and in this direction when
we move e.g. to a “forget” node from its unique child, the associated set
becomes smaller by one, which may be interpreted as making a vertex vi
“forgotten”. The reason for the term “introduce” is analogous.

Remark 4.3 From any given tree decomposition of G, one can construct a
nice tree decomposition of the same width.

The method is illustrated in Figure 4.6 on a binary tree with six nodes.

4 In some part of the literature, |Sk| = 1 is required and the term leaf node is used. An
advantage of this further condition is that it makes the beginning of computation trivial;
but on the other hand it does not decrease the total number of steps needed in the entire
algorithm. From our model with the current definition of start node, one can create the
situation with |Sk| = 1 for all start nodes, by inserting a sequence of ‘introduce’ nodes.

96 CHAPTER 4. TREE DECOMPOSITIONS OF GRAPHS

Figure 4.6: Transforming a tree decomposition to a nice tree decomposition

Consider for instance the edge between S2 = {v4, v5, v8} and S3 = {v5, v7, v8}.
An additional node is inserted on this edge whose set is S2 ∩ S3 = {v5, v8}.
Essentially the same is done between S4 and S5, and also between S4 and
S5; but the two sets S4 ∩ S5 = {v2, v4} and S4 ∩ S6 = {v2, v6} are different,
therefore they cannot occur directly under the ‘join’ node x4. For this reason
we repeat S4 under the ‘join’ node in both branches and only then we insert
the nodes assigned with the intersections.

A similar operation can be done also in cases where the intersection of
adjacent sets is smaller. For example, should we have an edge xixj in the
tree T with Si = {v1, v2, v3, v4} and Sj = {v4, v5, v6}, we can insert four
new nodes between xi and xj . Then, together with the sets Si and Sj, the
sequence of sets in the extended tree is:

Si = {v1, v2, v3, v4}, {v2, v3, v4}, {v3, v4}, {v4}, {v4, v5}, {v4, v5, v6} = Sj .

Of course, it does not matter whether the second set omits v1 or v2 or v3 from
Si, the essence is to include Si ∩ Sj in the sequence and to create smooth
transition to it from both ends. This requires the insertion of

|Si \ Sj |+ |Sj \ Si| − 1

new nodes, one of them assigned to Si ∩Sj, moreover |Si \Sj| − 1 new nodes
in the direction of Si and |Sj \ Si| − 1 new nodes in the direction of Sj from
the (Si ∩ Sj)-node.

4.3. EXAMPLE: LARGEST INDEPENDENT SET 97

One can also modify the tree to a binary one if some node xk has d
children, d > 2. We then create two new children x′

k and x′′
k for xk with the

same subset S ′
k = S ′′

k = Sk. Then we distribute the children of xk equally
between x′

k and x′′
k: we remove their direct connection to xk, and draw new

edges so that ⌈d/2⌉ of them become children of x′
k while the other ⌊d/2⌋ of

them become children of x′′
k, as illustrated in Figure 4.7.

Figure 4.7: Modifying a tree containing a node with more than 2 children to
a binary tree; the newly created intermediate nodes must be assigned to the
same vertex subset Sk

4.3 Example: Largest independent set

Suppose that we have to solve an optimization problem on a graph G. In
this section we illustrate the basic ideas by showing how they work when the
maximum size α(G) of independent sets has to be determined; the general
method is analogous for any computational problem on G.

Once a nice tree representation (T,S) of G is at hand, we can proceed
along the tree T from leaves towards the root; that is, a node sk is treated only
after all of its children have already been processed. There are many possible
orders to proceed.5 On the original six-node tree above (before modifying it
to a nice tree decomposition) one may take the nodes, for example, in the
order

x3, x2, x5, x6, x4, x1.

5 Actually, the feasible orders of this kind are precisely those simplicial orders of T

which put the root at the end. This number may be small in some cases, e.g. for a path if
one end is the root. But very often it is an exponential function of the number of nodes
because we may have two or more possible choices for the next node in each step except
the last two. And the number of orders may even be factorial: the star K1,n−1 admits
any ordering of its leaves. So, the situation is fairly similar to that in the general class of
chordal graphs.

98 CHAPTER 4. TREE DECOMPOSITIONS OF GRAPHS

The condition of proceeding from the leaves towards the root corresponds to
a natural orientation of the tree edges. Writing just the subscripts of nodes
instead of the nodes themselves (e.g., ‘5, 7, 8’ stands for {v5, v7, v8}, which is
S3), for the original tree decomposition it means

5, 7, 8 → 4, 5, 8
ց

1, 2, 4 4, 6, 8
ց ր

2, 4, 6
ր

2, 3, 6

while for the nice tree decomposition derived from it we have the larger
structure

5, 7, 8 → 5, 8 → 4, 5, 8 → 4, 8 → 4, 6, 8
ց

1, 2, 4 → 2, 4 → 2, 4, 6 4, 6, 8
ց ր

2, 4, 6 → 4, 6 → 4, 6, 8
ր

2, 3, 6 → 2, 6 → 2, 4, 6

on the extended nice tree decomposition. Although the latter seems more
complicated for first sight, in fact the computation for each Si (except for
start nodes) will be dramatically simpler than what would be needed without
modifying the original tree decomposition to a nice one.

We can observe that the types of nodes occur according to the following
scheme:

S → F → I → F → I
ց

S → F → I J
ց ր

J → F → I
ր

S → F → I

S: start, F : forget, I: introduce, J : join.

This latter information is not needed explicitly while performing the algo-
rithm, but of course the way of executing each step will depend on the type
of the node we currently handle.

4.3. EXAMPLE: LARGEST INDEPENDENT SET 99

For node xk we consider the subtree rooted at xk in T ; we denote this
subtree by T k. It consists of xk and the nodes from which an edge is oriented
towards xk; the latter are the nodes which must be processed before xk in
any order allowed for the algorithm. We are interested in those vertices of G
which appear in the sets Sℓ of nodes xℓ ∈ T k. Let

Vk =
⋃

xℓ∈T k

Sℓ

and let Gk be the subgraph of G induced by Vk.
For each node we compute values in a table. The table of xk has as many

rows as the number of independent sets in the subgraph induced by Sk in
G. For example, the table of S2 = {v4, v5, v8} contains six rows because,
from the eight subsets of S2, only {v4, v5, v8} itself and the pair {v4, v5} are
the two non-independent sets. (The emptyset and the singletons always are
independent.)

The tables have three columns. In each row of the table

• the first entry specifies an independent subset S ⊂ Sk;

• the second entry is the maximum cardinality6 of independent sets I in
Gk such that I ∩ Sk = S, this restriction is substantial with respect to
the organization of the computation;

• the third entry is one possible subset S ′ at the child xk′ of xk, for which
an independent set I attaining the maximum with I ∩ Sk = S exists
and I ∩Sk′ = S ′ holds; if xk is a start node, then it has no children and
we write the dummy symbol NIL as third entry in each row of its table.

The algorithm determines these pieces of information for each node in the
order given above.

We have to emphasize that the sets S have to be independent in G but
not necessarily in the extended graph H . In our example this means

• S1 = {v4, v6, v8} → ∅, {v4}, {v6}, {v8}, {v4, v8} ;

• S2 = {v4, v5, v8} → ∅, {v4}, {v5}, {v8}, {v4, v8}, {v5, v8} ;

• S3 = {v5, v7, v8} → ∅, {v5}, {v7}, {v8}, {v5, v8} ;

• S4 = {v2, v4, v6} → ∅, {v2}, {v4}, {v6}, {v2, v6} ;

6 This maximum can be viewed as a function α(Gk, S) of the subgraph Gk and of the
specified subset S ⊂ Sk.

100 CHAPTER 4. TREE DECOMPOSITIONS OF GRAPHS

• S5 = {v1, v2, v4} → ∅, {v1}, {v2}, {v4} ;

• S6 = {v2, v3, v6} → ∅, {v2}, {v3}, {v6}, {v2, v6} .

Beside these, the nice tree decomposition contains some further sets:

• {v2, v4} → ∅, {v2}, {v4} ;

• {v2, v6} → ∅, {v2}, {v6}, {v2, v6} ;

• {v4, v6} → ∅, {v4}, {v6} ;

• {v4, v8} → ∅, {v4}, {v8}, {v4, v8} ;

• {v5, v8} → ∅, {v5}, {v8}, {v5, v8} .

Next, we describe how the entries of the tables for the nodes can be deter-
mined.

Start node. Start nodes have no predecessors in the process, therefore the
value α in each row of their tables depends just on the corresponding set
S. Since S is independent by assumption, we write |S| as its value, which is
indeed the largest cardinality of an independent set I in Gk if xk is a start
node and I ∩ Sk = S. In fact, under the assumption I ∩ Sk = S, we have
I = S as the unique choice for I, because start nodes have Vk = Sk. For
example, the table of ‘5,7,8’ is

S α S ′

∅ 0 NIL

5 1 NIL

7 1 NIL

8 1 NIL

5,8 2 NIL

Forget node. If xk is a forget node whose child is xk′, and Sk is obtained
from Sk′ by removing the vertex vi, then a subset S ⊂ Sk can possibly
originate from two subsets of Sk′: either from S itself or from S ∪ {vi}.
The former always occurs in the table of xk′; the latter is there if and only
if S ∪ {vi} is independent. If it is, then we write the larger of the two
corresponding α-values for S in the table of xk, and in the third column
we indicate whether this value originates from the former S of xk′ or from
S ∪ {vi}. (It depends on the structure of G, which of them has larger α-
value.) If S ∪ {vi} is not independent, we just copy the α-value of S from
the table of xk′ into that of xk.

4.3. EXAMPLE: LARGEST INDEPENDENT SET 101

In our example, consider the S → F → I part of the branch starting with
‘5, 7, 8’. The forget node was obtained by removing v7 from S3 = {v5, v7, v8}.
When we calculate the first row in the ‘5, 8’ table, the emptyset means that
neither v5 nor v8 belongs to the independent set I. Under this condition
the intersection I ∩ S3 can be either ∅ or the ‘forgotten’ vertex v7. In the
table of x3 the former has value 0 and the latter has value 1, the latter being
larger. Therefore, in the table of ‘5, 8’, we write 1 for α and indicate that the
predecessor of ∅ is {v7}. On the other hand, if one or both of v5 and v8 are
contained in S, then S ∪ {v7} is not independent, therefore we just copy the
preceding α-value and put S as third entry. This yields

S α S ′

∅ 0 NIL

5 1 NIL

7 1 NIL

8 1 NIL

5,8 2 NIL

→

S α S ′

∅ 1 7
5 1 5
8 1 8

5,8 2 5,8

A similar situation occurs in computation (exhibited later) when node
‘2, 4’ forgets v1 from ‘1, 2, 4’, or ‘2, 3’ forgets v3 from ‘2, 3, 6’, and so on. We
shall put some further comments on this step near the end of the computation
where ‘4, 8’ and ‘4, 6’ are calculated.

Introduce node. If xk is an introduce node, and the new element of Sk is
vi, then S may or may not contain vi. If vi /∈ S, then for the predecessor S ′ of
S we necessarily have S ′ = S, hence we just copy the α-value from the S-row
of the predecessor table and indicate that it originates from S ′ = S. This is
the case of rows ‘∅’, ‘5’, ‘8’, and ‘5, 8’ in the table of ‘4, 5, 8’, where the vertex
v4 is introduced. On the other hand, if vi ∈ S, we must have S ′ = S \ {vi},
and then — since vi is an additional new element in the independent set —
we add 1 to the α-value of the predecessor S ′ when we compute the S-row
for xk. This is the case of rows ‘4’ and ‘4, 8’ in the table of ‘4, 5, 8’.

S α S ′

∅ 1 7
5 1 5
8 1 8

5,8 2 5,8

→

S α S ′

∅ 1 ∅
4 2 ∅
5 1 5
8 1 8

4,8 2 8
5,8 2 5,8

The steps above are applied also to compute the first three tables in the
other two branches of the tree, starting with ‘1, 2, 4’ and ‘2, 3, 6’. In the

102 CHAPTER 4. TREE DECOMPOSITIONS OF GRAPHS

next tables we replace the general top left entry S with the particular set
of indices of vertices which S contains. Those two sequences of ‘start →
forget → introduce’ computation then yield

1,2,4 α S ′

∅ 0 NIL

1 1 NIL

2 1 NIL

4 1 NIL

→
2,4 α S ′

∅ 1 1
2 1 2
4 1 4

→

2,4,6 α S ′

∅ 1 ∅
2 1 2
4 1 4
6 2 ∅

2,6 2 2

2,3,6 α S ′

∅ 0 NIL

2 1 NIL

3 1 NIL

6 1 NIL

2,6 2 NIL

→

2,6 α S ′

∅ 1 3
2 1 2
6 1 6

2,6 2 2,6

→

2,4,6 α S ′

∅ 1 ∅
2 1 2
4 2 ∅
6 1 6

2,6 2 2,6

These two branches are connected by a ‘join’ node, for which we describe the
rules of computation next.

Join node. A ‘join’ node xk has two children, say xk′ and xk′′ . Since
Sk′ = Sk′′ = Sk holds by assumption, we have I ∩ Sk′ = I ∩ Sk′′ = I ∩ Sk for
every independent set I. Hence, for any S ⊂ Sk, we must take S ′ = S from
both predecessor tables, and the α-value for S has to be computed from those
of their S-rows. Due to the properties of tree decomposition — especially
from property 3 — we see that Vk′ ∩ Vk′′ = Sk and Vk′ ∪ Vk′′ = Vk. So, a set
I ⊂ Vk is independent if and only if S := I ∩ Sk is independent, moreover
both I∩Vk′ and I∩Vk′′ are independent. Consequently, having chosen the set
S, we obtain the α-value for S in the table of xk by adding the α-values for S
in the tables of xk′ and xk′′ and subtracting |S|. The reason for subtraction
is that by adding we count the elements of S twice: once in Vk′ and once in
Vk′′. For example, computing for the ‘join’ node ‘2, 4, 6’,

• ∅ has no repeated element: 1 + 1− 0 = 2 ;

• each of ‘2’, ‘4’, and ‘6’ has exactly one repeated element: 1+1−1 = 1,
1 + 2− 1 = 2, 2 + 1− 1 = 2 ;

• ‘2, 6’ has exactly two repeated elements: 2 + 2− 2 = 2.

4.3. EXAMPLE: LARGEST INDEPENDENT SET 103

2,4,6 α S ′

∅ 1 ∅
2 1 2
4 1 4
6 2 ∅

2,6 2 2
ց

2,4,6 α S ′

∅ 2 ∅
2 1 2
4 2 4
6 2 6

2,6 2 2,6
ր

2,4,6 α S ′

∅ 1 ∅
2 1 2
4 2 ∅
6 1 6

2,6 2 2,6

By these rules we can now complete the computation for the rest of the
nodes in an analogous way, from the middle forget node ‘4, 5, 8’ and from
the join node ‘2, 4, 6’. Those two branches meet in the join node ‘4, 6, 8’. It
can be observed that the ‘8’-row of ‘4, 8’ may originate from the predecessor
‘8’-row and also from the ‘5, 8’-row; we choose the latter because its α-value
is greater. The ‘∅’-row of ‘4, 8’ may also originate from two sources: from
‘∅’ itself and from the ‘5’-row; in the predecessor table both of them have
α-value 1, therefore it does not matter whether we take S ′ = ∅ or S ′ = {5}.

104 CHAPTER 4. TREE DECOMPOSITIONS OF GRAPHS

We write the first one.

4,5,8 α S ′

∅ 1 5,8
4 2 ∅
5 1 5
8 1 8

4,8 2 8
5,8 2 5,8

→

4,8 α S ′

∅ 1 ∅
4 2 4
8 2 5,8

4,8 2 4,8

→

4,6,8 α S ′

∅ 1 ∅
4 2 4
6 2 ∅
8 2 8

4,8 2 4,8

ց
4,6,8 α S ′

∅ 3 ∅
4 3 4
6 3 6
8 4 8

4,8 3 4,8
ր

2,4,6 α S ′

∅ 2 ∅
2 1 2
4 2 4
6 2 6

2,6 2 2,6

→
4,6 α S ′

∅ 2 ∅
4 2 4
6 2 6

→

4,6,8 α S ′

∅ 2 ∅
4 2 4
6 2 6
8 3 ∅

4,8 3 4

Determining the optimum value and an optimal set. Having com-
puted all tables, α(G) is equal to the largest α-value in the table of x1, the
root of T . In our case it yields α(G) = 4, occurring in the ‘8’-row. The
S ′-entry of this row tells us that this value has been achieved by choosing
S ′ = {v8}. Looking into the ‘8’-rows of the predecessor introduce tables, we
find there S ′ = {v5, v8} and S ′ = ∅, respectively. Following those links we
can trace back the origin of an optimal solution; in the next chart we exhibit
the vertex indices in the corresponding S ′-entries:

5, 8 → 5, 8 → 5, 8 → 8 → 8
ց

1 → ∅ → ∅ 8
ց ր

∅ → ∅ → ∅
ր

3 → ∅ → ∅

4.4. GRAPHS OF BOUNDED TREEWIDTH 105

The set of indices occurring in this scheme tells us that an independent set
of cardinality 4 is

{v1, v3, v5, v8}.

Remark 4.4 We have written “the” optimum value and “an” optimal set.
Indeed, while the value of α(G) is unambiguous, the number of optimal sets
(independent sets of maximum cardinality) can be very large. For instance,
if n is even, then n/2 disjoint copies of K2 together (that is, the graph with
n/2 connected components, each of them being just one edge) have exactly
2n/2 largest independent sets. Even more, if n is a multiple of 3, then n/3
vertex-disjoint copies of K3 together form a graph on n vertices, with n/3
connected components and 3n/3 largest independent sets. In fact, this is the
extremum: it is known that every graph on n vertices contains at most 3n/3

maximal (i.e., non-extendable) independent sets.

4.4 Graphs of bounded treewidth

Analyzing the running time of the previous algorithm, we can observe that
the computation of α-values and the determination of predecessor sets S ′ in
each row of the tables involved is fairly simple. Hence, the overall running
time on G essentially depends on the number of rows in the tables. This fact
explains why it is substantial to keep the sets Sk small: the corresponding
table may be quite large if Sk is large. For instance, if Sk itself is independent,
then so are all of its subsets, hence we have 2|Sk| choices for the subset S, and
that many rows in the table of xk. For this reason, the worst-case running
time of the algorithm is an exponential function of treewidth.

With a more optimistic view, however, we see that if a constant universal
upper bound is put on the treewidth of all graphs in a class of graphs to
be handled, also the size of tables will be bounded above by a constant.
Moreover, it is known that for every fixed t, tree decompositions of graphs of
treewidth at most t can be found in cn steps where n denotes the number of
vertices and c is an absolute constant. These facts offer us the opportunity to
solve many kinds of optimization problems efficiently on fairly large classes
of graphs.

An example: Chromatic number. If G has treewidth at most t, then
it is a subgraph of a chordal graph of chromatic number t, consequently
χ(G) ≤ t. Although chromatic number is hard to find in general, it becomes
computable in linear time once we restrict the treewidth of input graphs.
Theorem 4.4 guarantees this in a very general framework; but when we have

106 CHAPTER 4. TREE DECOMPOSITIONS OF GRAPHS

to solve a particular problem, it is more convenient to design an algorithm
tailored directly to the problem in question, rather than to formulate it in
the language of monadic logic.

Suppose that we have a graph G given together with its nice tree decompo-
sition (T,S), and let the task be to decide whether G admits a proper vertex
coloring with three colors. This can be done with the help of tables having
two columns. Indeed, observe that the partial solutions of this problem are
proper 3-colorings of the subgraphs induced by the sets Sk in G. Hence, when
studying the 3-colorings of G, we investigate partial 3-colorings they induce
on the sets Sk. Since the two vertices of any edge occur together in some Sk

(by condition 2 of tree decompositions), it suffices to decide whether there
exists a color assignment of three colors to the vertices, such that each color
class is independent in each Sk.

This can be done in the following way. The first entry in each row of the
table of node xk is a partition P = (S ′, S ′′, S ′′′) of Sk into three independent
sets (some of which are allowed to be empty). That is, the table has as many
rows as the number of proper colorings of the subgraph induced by Sk in G
with at most three colors. The second entry tells us whether this partition
belongs to a proper 3-coloring of the subgraph Gk. For an introduce or forget
node it is so if and only if P is compatible with some feasible 3-partition of
Sk′ where xk′ is the child of xk in T . We write the corresponding 3-partition
P ′ in the second entry of the row if it exists, and write ‘NO’ if it doesn’t.
This ‘NO’ is of course different from the dummy symbol NIL which we use to
indicate that P belongs to a start node. For a join node the 3-partition P
is feasible for Gk if and only if it is feasible for both Gk′ and Gk′′, where xk′

and xk′′ are the children of xk in T .

For start nodes xk the step is immediate, every proper 3-coloring of Gk

is feasible. The step is simple for join nodes, because we just need to check
whether P is feasible for both predecessor sets Sk′ and Sk′′ of Sk. (Recall that
Sk′ = Sk′′ = Sk is required for any join node of a nice tree decomposition.) For
an introduce node, say if Sk = Sk′∪{vi}, we obtain P ′ by removing vi from its
class in P , and then check whether P ′ is feasible for Sk′. The situation may
be more complicated for a forget node, say with Sk = Sk′ \ {vi}. Depending
on adjacencies between vi and Sk′, we have to consider three partitions:

(S ′ ∪ {vi}, S ′′, S ′′′), (S ′, S ′′ ∪ {vi}, S ′′′), (S ′, S ′′, S ′′′ ∪ {vi}).

Then P is feasible for Sk if and only if at least one of these three partitions is
feasible for Sk′. The entire graph is 3-colorable if the table of the root node
contains at least one feasible partition.

4.5. TREE DECOMPOSITIONS OF SMALL WIDTH 107

Algorithms without generating nice tree decompositions. Nice tree
decomposition simplifies the computation of tables for the nodes. Neverthe-
less, the original notion of tree decomposition without the additional restric-
tions on node types is often good enough for designing efficient algorithms.
If Sk and Sk′ are sets assigned to adjacent nodes, then proceeding from xk′ to
compute row S for xk (where S is a partial solution on the subgraph induced
by Sk) we have to consider all those partial solutions S ′ on Sk′ which are
compatible with S; that is, the restrictions of S and S ′ to the subset Sk ∩Sk′

must be the same. Choosing the best S ′ for each child xk′ of xk, their com-
bination yields the optimum for S. There are some optimization problems,
however, for which in order to have a polynomial-time algorithm one needs
to assume that the degrees in T are bounded.

4.5 Tree decompositions of small width

We shall discuss the wide applicability of tree decompositions in the area of
efficient algorithms in the Notes section at the end of this chapter. Before
that, let us mention some further properties of graphs whose treewidth does
not exceed a fixed upper bound.

Interestingly enough, for every fixed t it can be checked efficiently — even
in linear time, where the number of steps is proportional to the number of
vertices — whether a given graph has treewidth at most t. The algorithm
that tests tw(G) ≤ t and finds a tree decomposition of minimum width for
such graphs is quite sophisticated, and is beyond the scope of these lecture
notes.

The next result describes a useful structural property concerning the ex-
istence of small vertex cutsets.

Theorem 4.3 Let G be a connected graph with n vertices. Then every tree
decomposition of G contains a node xk such that each connected component
of G− Sk has fewer than n/2 vertices.

Proof: Let (T,S) be a tree decomposition of G = (V,E). Although not
required formally by definition, we may assume without loss of generality
that Si 6= ∅ holds for all sets at the nodes xi of T . For any edge e = xx′xk′′ of
T , consider the set Se = Sk′ ∩ Sk′′ . We have Ye 6= ∅ because G is connected.
The graph T − e has precisely two components, denote them by T ′ and T ′′

(both are trees).
Due to conditions 1 and 3, each vertex vi /∈ Se of G occurs in some sets at

the nodes of T ′ or of T ′′, but not of both. That is, disregarding the elements
of Ye, we have V ′ ∪ V ′′ = V \ Ye and V ′ ∩ V ′′ = ∅ for the set V ′ of vertices

108 CHAPTER 4. TREE DECOMPOSITIONS OF GRAPHS

occurring in the sets of T ′ and the set V ′′ of vertices occurring in the sets of
T ′′. If |V ′| < |V ′′|, we orient the edge e from xx′ to xk′′ ; and if |V ′| > |V ′′|,
we orient it from xx′′ to xk′. In case of |V ′| = |V ′′| we orient e towards the
root of T .

There must be a node xk from which no edges are oriented outward.
Indeed, should all vertices have positive out-degree, we would find a directed
cycle in T , but this is impossible because T is a tree. We claim that Sk

satisfies the requirements of the lemma. For any component Gi of G − Sk,
all of its vertices occur in the sets of just one and the same tree component
of T − xk. Let xk′ be any neighbor of xk, and consider the edge e = xkxk′.
By the choice of the orientation, at most n−|Ye|

2
vertices different from the

ones in Sk occur in the subtree containing xk′ in T − e. Thus, (n − 1)/2 is
an upper bound on the number of vertices in Gi. �

A node with the property described in the theorem does not always exist
in tree decompositions of disconnected graphs. Counterexamples occur when
the connected components can be grouped into two parts of n/2 vertices each.
On the other hand, for a disconnected graph G with c connected components
G1, . . . , Gc, a tree decomposition can be determined componentwise, and we
have

tw(G) = max
1≤i≤c

tw(Gi).

We prove one more result, showing that the tree T in the tree decompo-
sition can be chosen to be fairly small. This property is important in guar-
anteeing a linear upper bound on the running time of algorithms designed
for graphs of bounded treewidth.

Lemma 4.2 Every graph G on n vertices has a nice tree decomposition of
width tw(G) over a tree having fewer than 4n nodes.

Proof: It suffices to show the validity of the assertion for chordal graphs.
At the end of Section 3.2 we described a method to find subtrees T1, . . . , Tn

of a tree, whose intersection graph is a given chordal graph G. As one can
see, each step of that procedure requires at most one new node for the tree
T , and the newly inserted subtree has a single node. Moreover, there is a
natural correspondence between the collection (T1, . . . , Tn) of subtrees and
the system S = {S1, . . . , Sm} of associated sets. We can modify the steps in
a way that a nice tree decomposition is obtained at the end.

We view T as a rooted tree, already from the beginning of the process.
While handling vertex vi, one possibility is that T remains unchanged and
Ti is created on some node, say xk, which is already in T . For the tree
decomposition it means that the set Sk of node xk is extended as S+

k =

4.6. NOTES 109

Sk ∪ {vi}. Then we can modify T by replacing xk with the chain x′
k, x

′′
k, x

′′′
k

and assign the respective associated sets Sk′ = Sk, Sk′′ = S+
k , Sk′′′ = Sk. The

parent of x′
k is the original parent of xk, while the child(ren) of x′′′

k is (are)
the original child(ren) of xk. Then x′

k is a forget node, x′′
k is an introduce

node, and the type of x′′′
k is the same as that of the original xk. We have

inserted two nodes for the one vertex vi.
The modification is somewhat more complicated if vi requires a new node

xj for T with some set S ∪ {vi} (with |S| = d+(vi), the forward degree of vi
in the simplicial order of G). Say, xj becomes adjacent to xk, where S ⊆ Sk.
Since a join node has children assigned to the same subset of vertices, we
may assume that xk is not a join node.

We denote by xk′ the child of xk if xk is not a leaf in the current T . Hence,
for the moment, xk has either just one child xj or exactly two children xj

and xk′ . Next we insert one new node on each edge from xk to its child(ren),
with the same set Sk. If S = Sk, then this extension of T remains a nice tree
decomposition with at most three new nodes (xj and the at most two newly
inserted children of xk).

If S 6= Sk, then we select a vertex vℓ ∈ Sk \ S, and insert a further new
node as parent of xj , so that a path with nodes xk, x

′
k, x

′′
k, xj occurs; we assign

the nodes of this path to the sets Sk, Sk, Sk \ {vℓ}, and (Sk \ {vℓ}) ∪ {vi} in
this order. Hence, it may happen that a set with more than |S|+1 elements
is assigned to xj in this case; but the set is not larger than Sk, therefore the
width of the decomposition is not increased.

In this way, three new nodes have been inserted on a new branch starting
from xk: forget node x′

k, introduce node x′′
k, and start node xj ; moreover

there is possibly a fourth new node on the edge to the child of xk if xk is not
a start node. Then this fourth new node has the same type as xk originally
had, and the type of xk gets updated to join node.

For the first vertex v1, the three T has just one node x1, hence |V (T)| < 4n
holds if n = 1. Then, the assertion follows by induction on n. �

4.6 Notes

4.6.1 Traversing a rooted tree

A basic task in the area of graph algorithms is to traverse the nodes of a
rooted tree. In the algorithms of this chapter we applied two kinds of them:

postorder traversal: traverse a node after all its children are traversed;

preorder traversal: traverse a node before all its children are traversed.

110 CHAPTER 4. TREE DECOMPOSITIONS OF GRAPHS

Both ways can be implemented in time proportional to the number of nodes.
Applying the machinery of tree decompositions, we proceeded in post-

order while computing the optimum value, and after that in preorder while
determining an optimal solution.

4.6.2 Monadic logic

The algorithmic applicability of tree decomposition can be demonstrated
in the framework of logic. Within first-order logic — which is included in
most curricula — the universal and existential quantifiers ∀, ∃ can be used
on individual variables (variables that range over individuals) only. Second
order logic allows the use of quantifiers not only over individuals but also over
n-ary relations. Particularly, in monadic second-order logic quantifications
over individuals and over sets of individuals (unary/monadic relations) are
used.

When graphs are considered as logical structures, we are given a set V
of vertices (individuals) and a binary (adjacency) relation Adj(x, y) over V .
In the monadic second-order logic we can use individual variables x, y, z, . . .
referring to vertices, and set variables X, Y, Z, . . . referring to subsets of V .
For example, the condition that Y is an independent set in graph G = (V,E),
can be expressed as follows:

∀x∀y[((x ∈ Y) ∧ (y ∈ Y))→ ¬ Adj(x, y)].

In fact, this formalization still fits the framework of first-order logic, as ‘∀ ’
is applied just on the individual variables x and y. Note that testing whether
a given set is independent requires no more than linear time, even without
knowing anything about the structure of the graph. This kind of descrip-
tion, however, is not strong enough to deal with the maximum cardinality of
independent sets; we need higher-order logic for that.

A sufficient condition for the applicability of the algorithmic machinery
based on tree decompositions is given in the following general result.

Theorem 4.4 If a computational problem on graphs is expressible in monadic
second-order logic, then on any class of graphs with bounded treewidth it is
solvable in linear time, that is in Cn steps for some absolute constant C,
where n denotes the number of vertices in the input graph.

Among many further properties, 3-colorability can also be described in
terms of monadic second-order logic.

∃ X ∃ Y ∃ Z [∀x(x ∈ X ∨ x ∈ Y ∨ x ∈ Z) ∧
∀x∀y(((x ∈ X ∧ y ∈ X) ∨ (x ∈ Y ∧ y ∈ Y) ∨ (x ∈ Z ∧ y ∈ Z))

→ ¬Adj(x, y))].

4.6. NOTES 111

The optimization problem of determining the smallest possible number
of colors in a proper vertex coloring — that is, to determine the chro-
matic number — of a graph in a class of graphs of bounded treewidth
can also be expressed using monadic second-order logic. The reason is that
χ(G) ≤ tw(G)+1 holds for all graphs, therefore if treewidth is bounded then
chromatic number is bounded, too. Hence, k-colorability has to be tested for
a bounded range of k only, and this can be handled with a bounded number
of symbols in a logical formula.

One can see from these examples, however, that explicit algorithms are
more transparent than those derived from the framework of logic. Express-
ing an algorithmic problem within monadic second-order logic is useful in
a situation where we want to show that the problem in question admits an
efficient solution but we do not need to see an algorithm itself.

Chapter 5

Bipartite graphs

We recall that bipartite graphs have been defined as those graphs whose
vertex sets can be partitioned into two independent sets. This means that
the graph has a proper vertex coloring with two colors (or, with just one
color if the graph has no edges; but we will not deal with this trivial case in
the current section). An equivalent characterization can be given in terms of
cycle lengths.

Theorem 5.1 A graph is bipartite if and only if it contains no cycles of odd
lengths.

This characterization leads to an efficient recognition algorithm for bipar-
tite graphs.

Theorem 5.2 Bipartite graphs can be recognized in time proportional to the
number of vertices and edges.

Sketch of Proof: A graph G = (V,E) is bipartite if and only if so is each
of its connected components. There are many fast ways to traverse the
components of a graph; here we apply the one called Breadth-First Search.
It is known to admit a linear-time implementation, that is in at most constant
times |V |+ |E| steps.

If G is connected, we choose a starting vertex, say v, and create the set
V0 = {v}. The vertices of G will be listed in increasing order of their distance
from v. So, the set V1 consists of all neighbors of v. Further, recursively, if
V0, . . . , Vi−1 are already at hand and V0∪· · ·∪Vi−1 6= V , then let Vi be the set
of those vertices which are not in Vi−1 ∪ Vi−2 but have at least one neighbor
in Vi−1. If all those sets are independent, then G is bipartite; and if at least
one of them is not independent, then G contains an odd cycle and hence is
not bipartite. In the former case, we obtain a vertex bipartition into two

112

5.1. MAXIMUM MATCHINGS IN BIPARTITE GRAPHS 113

independent sets by taking the union of subsets whose indices have the same
parity; that is, V0 ∪ V2 ∪ · · · and V1 ∪ V3 ∪ · · · .

For disconnected graphs we run the same algorithm, starting from an
arbitrarily chosen vertex, as long as the next Vi is not empty. If the procedure
stops but not all vertices have been visited so far, we continue in the same
way with another arbitrarily chosen vertex which has not yet been taken. We
need to perform this as many times as the number of connected components
in G. �

Our main concern in this chapter is to find matchings which are optimal
under some criteria. We shall mostly deal with matchings of maximum size
in bipartite graphs; but a different kind of optimality will also be considered
in a more general model. Moreover, in one of the sections we present some
applications of the methods developed for maximum matchings.

5.1 Maximum matchings in bipartite graphs

We know from the early part of this course that the inequality

τ ≥ ν

between transversal number and matching number is valid in a very general
form, in every set system. It holds with equality in some cases (e.g. in interval
systems) but one can say that structure classes satisfying τ = ν are rare. One
simple infinite sequence for which τ > ν holds with strict inequality is that
of odd cycles. Indeed, τ(C2t+1) = t + 1, while ν(C2t+1) = t for all integers
t ∈ N.

It is quite interesting that the exclusion of odd cycles implies τ = ν in
graphs.1 This is expressed in the following important result.

Theorem 5.3 (Kőnig’s Theorem) If a graph G is bipartite, then τ(G) =
ν(G) holds. Moreover, a matching of maximum size and a transversal of
minimum cardinality can be found in bipartite graphs efficiently.

Proof: Let G = (V,E) be a bipartite graph with vertex bipartition A∪B =
V . The scheme of the algorithm is:

• Find a maximal matching.

1 In this way Theorem 5.3 leads to a characterization in the following sense: All sub-
graphs H of a graph G satisfy the equality τ(H) = ν(H) if and only if G contains no odd
cycles.

114 CHAPTER 5. BIPARTITE GRAPHS

• Enlarge the matching by a well-defined kind of transformation.

• When no more improvement is possible, prove that the matching found
is maximum and also a minimum transversal set can be determined
from it.

The crucial point is how we design the improving transformation. It will turn
out that the phase of generating a maximal matching can also be viewed as a
particular case of the second phase; but it is more transparent if we separate
the two from each other. At any moment of the algorithm, the currently
available matching will be denoted by M .

A non-extendable matching can be found in a very simple way. We can
take the vertices in the first vertex class A in any order, select an edge incident
with the first vertex and then for every subsequent vertex we select an edge
which does not meet any edges selected earlier, if such an edge incident with
the current vertex exists. At the end of this procedure we reach a matching
M which is maximal, but there is no guarantee that it is maximum.2

Assume that we have reached a non-extendable matching M . If the edges
of M cover the entire vertex class A, then of course M is a maximum matching
because there is no room for more than |A| mutually disjoint edges in G.
Also, the |A| vertices of A meet all edges of G. Hence, in this case we have
τ(G) = ν(G) = |A|, moreover the maximum matching M and the minimum
transversal set A have been found in at most |V |+ |E| steps. The situation
is similar if M covers the entire vertex class B.

If this is not the case, then we consider the set X ⊂ A of vertices not
contained in the edges of M , and the set Y ⊂ B of vertices not contained
in the edges of M . Since M is maximal, no edges connect X with Y ; but G
may have several edges from X to B \ Y , from Y to A \X, and also edges
different from those in M which connect A \ X with B \ Y . We introduce
the following important notions.

Definition 5.1 With respect to a matching M , an alternating path is a
path in which every second edge belongs to M and every other edge does not
belong to M . An augmenting path is an alternating path whose two ends
are not contained in the edges of M .

2 For example, if G is the graph with vertex set {a1, a2, b1, b2} and edge set
{a1b1, a1b2, a2b2} (which means the path b1a1b2a2 of length three), and we begin with
the edge a1b1, then greedy selection will find the matching M = {a1b1, a2b2} of two edges,
which is largest; but if we begin at a1 with the other edge, a1b2, then we end up with
the single-edge matching M = {a1b2}, which is non-extendable but certainly is not of
maximum cardinality.

5.1. MAXIMUM MATCHINGS IN BIPARTITE GRAPHS 115

For example, if ab ∈M is an edge of the matching for some vertices a ∈ A
and b ∈ B, and xb is an edge of G for some x ∈ X, then xb is an alternating
path of length one and xba is an alternating path of length two. Note that
the notion of alternating path heavily depends on the choice of M .

For our purpose, alternating paths from X to Y , that is x1x2 . . . xm with
x1 ∈ X and xm ∈ Y (for any m) are of great importance. The reason why
such a path is said to be augmenting is as follows. In this situation the
number m of vertices in the path is even, and the length of the path is odd.
We can then modify M to obtain a larger matching, by switching M-edges
and non-M-edges along the path:

M := (M \ {x2ix2i+1 | 1 ≤ i ≤ m/2− 1}) ∪ {x2i−1x2i | 1 ≤ i ≤ m/2}.

This transformation is illustrated in Figure 5.1.
During this transformation, the number of M-edges contained in the path

increases from m/2 − 1 to m/2, while X and Y shrink to X \ {x1} and
Y \{xm}, respectively. Observe further that M remains a matching, because
we removed from the original M all the edges incident with the internal
vertices of the path, and the two ends were not covered by M originally.

Suppose that no more improvements of this kind are possible; i.e., none
of the alternating paths with respect to the current M is augmenting. We
now find a transversal set T in the form T = TA ∪ TB, where TA ⊆ A and
TB ⊆ B. If M covers the entire vertex class A, then TA = A and TB = ∅.
Otherwise, if X 6= ∅, we define TB as the set of those vertices in B which can
be reached from X along alternating paths. Then, let TA be the set of those
vertices in A \X which cannot be reached from X along alternating paths.

Claim: We have |T | = |M |.
Proof: It suffices to prove — as T ∩ (X ∪ Y) = ∅ — that we have selected
precisely one vertex for T from each edge of M . This can be seen as follows.
Since G is bipartite, every B-vertex of an alternating path is reached along a
non-M-edge, and every A-vertex is reached along an M-edge. This is obvious
for the first edge, and then follows by the requirement of alternation. Hence,
if there exists an alternating path from X to the B-vertex of an edge e ∈M ,
then the path can be continued to the A-vertex of e, too (and this is the only
way to continue, i.e. the corresponding A-vertex did not occur in the path
before). Consequently, if some e ∈ M is reachable from X along alternating
paths, then precisely the B-vertex is selected for T ; and otherwise its A-
vertex is selected. This proves the claim. ♦

Moreover, we have:

Claim: The set T is a transversal.

116 CHAPTER 5. BIPARTITE GRAPHS

Figure 5.1: A matching M1 = {a2b1, a3b3, a4b4} with an augmenting
path a1b3a3b4a4b5 and the enlarged matching M2 = M1 \ {a3b3, a4b4} ∪
{a1b3, a3b4, a4b5}. (For M1 we have X = {a1} and Y = {b2, b5, b6}.)

5.1. MAXIMUM MATCHINGS IN BIPARTITE GRAPHS 117

Proof: We have to show that every edge of G has a vertex in TA or in
TB (or both). Let us use the temporary notation A′ = A \ (X ∪ TA) and
B′ = B \ (Y ∪ TB). Four kinds of edges have to be excluded:

• From X to Y :

Such edges have been eliminated already at the end of the first phase,
when M became non-extendable.

• From X to B′:

Such edges would be alternating paths of length one, therefore their
B-vertices would belong to TB rather than to B′.

• From A′ to Y :

A vertex a ∈ A belongs to A′ because there exists an edge ab ∈M such
that its other end b ∈ B is reachable from X along some alternating
path P . But then, extending P with ab and with an edge from a to Y
we would obtain an augmenting path from X to Y , which is impossible
because the improving (second) phase of the algorithm terminated.

• From A′ to B′:

As in the previous case, some vertex a ∈ A belongs to A′ because there
exists an edge ab ∈ M such that b is reachable from X along some
alternating path P . If there was an edge from a to some b′ ∈ B′, then
extending P with the edges ab and ab′ we would obtain an alternating
path to b′, therefore b′ should belong to TB rather than to B′.

♦

We are now in a position to complete the proof of the theorem. The algo-
rithm has found a matching M , its size cannot be larger than the matching
number ν(G); and we also determined a transversal set T , its cardinality
cannot be smaller than the transversal number τ(G). Thus, recalling that
τ ≥ ν always holds, we obtain

τ(G) ≤ |T | = |M | ≤ ν(G) ≤ τ(G).

Since the two ends of this sequence of inequalities are equal, all numbers
occurring in it must be equal; that is,

• |T | = τ(G), hence T is a transversal of minimum cardinality;

• |M | = ν(G), hence M is a matching of maximum size;

118 CHAPTER 5. BIPARTITE GRAPHS

• τ(G) = ν(G).

One can also observe that all steps of the algorithm can be implemented
efficiently. This completes the proof of the theorem. �

By the proof above a matching in a bipartite graph is maximum if and
only if no augmenting path exists. It is known that the analogue of this
condition is also necessary and sufficient for the general non-bipartite case.

Matchings which cover all vertices, and also graphs having such match-
ings, are of special interest. For illustration see Figure 5.2.

Figure 5.2: An example for perfect matching in a bipartite graph

Definition 5.2 A perfect matching in a graph G is a set of edges such
that each vertex is incident with precisely one edge.

Clearly, a perfect matching is always a matching of maximum cardinality.
Moreover, a necessary condition for admitting a perfect matching is that the
graph has even number of vertices. But this condition is far from being
sufficient; even if the graph is bipartite with partition classes of equal sizes,
it may not have a perfect matching. For the existence of perfect matchings in
this restricted class of graphs, the following famous condition will be shown
to be necessary and sufficient.

Hall’s Condition (HC): Let G be a bipartite graph with vertex classes A
and B. We say that G satisfies Hall’s Condition for the partite class A, if for
every subset X of A

|N(X)| ≥ |X|

5.1. MAXIMUM MATCHINGS IN BIPARTITE GRAPHS 119

holds, where N(X) denotes the neighborhood of X, that is

N(X) =
⋃

x∈X

N(x).

Theorem 5.4 (Hall’s Theorem, Hall’s Marriage Theorem) Let G be
a bipartite graph with vertex classes A and B of equal size |A| = |B|. Then,
G admits a perfect matching if and only if Hall’s Condition holds for A.

Proof: If G has a perfect matching M and S = {a1, a2, . . . , ak} is a subset
of A, we have k pairwise different vertices b1, b2, . . . , bk in B with aibi ∈ M
for every 1 ≤ i ≤ k. Therefore, N(S) ⊇ {b1, b2, . . . , bk} and |N(S)| ≥ k = |S|
holds.

The other direction is proved by contradiction. We assume that G has
no perfect matching and then prove that it cannot satisfy Hall’s Condition.
By Kőnig’s theorem, τ(G) = ν(G) holds, and by our present condition there
exits no perfect matching, i.e.

τ(G) = ν(G) < |A|.

Consider a minimum transversal T and introduce the notations TA = T ∩A
and TB = T ∩ B. Since |T | = τ(G) = |TA| + |TB| < n, we have |TB| <
n− |TA|. On the other hand, T contains at least one vertex from each edge
and consequently, if a vertex x is not in T , all the edges incident with x have
their other ends in T . In particular, for the set X = A\TA every vertex from
the neighborhood N(X) of X belongs to |T |. This implies |N(X)| ≤ |TB|,
and we conclude

|X| = n− |TA| > |TB| ≥ |N(X)|,
which proves that G does not satisfy Hall’s Condition for A. �

In fact, the proof above also verifies the following statement:

Theorem 5.5 A bipartite graph G with partition classes A and B has a
matching which covers all vertices of A, if and only if G satisfies Hall’s
Condition for A.

As we observed in the previous proof, the existence of a matching covering
all vertices of A equivalently means ν(G) = |A|.

120 CHAPTER 5. BIPARTITE GRAPHS

5.2 Systems of distinct representatives

In this section we turn back to set systems and consider the problem of
system of distinct representatives.

Definition 5.3 For set system S = {S1, S2, . . . , Sm}, where some members
are allowed to be identical, a system of distinct representatives (SDR)
is a set {x1, x2, . . . , xm} of m pairwise different elements which satisfies xi ∈
Si for each 1 ≤ i ≤ m.

For example, an SDR of system S = {{a, b}, {a, c}, {b, c}, {a, b, c, d}, {a, c, d, e, f}}
is {a, c, b, d, e}. But S ′ = {{a, b}, {a, c}, {b, c}, {a, b, c}, {a, c, d, e, f}} has no
SDR.

The problem of deciding whether there exists an SDR of a set system
or determining one if exists, may seem quite different from the problem of
maximum matching discussed in the previous section. Nevertheless via the
following notion we will find a close connection between them.

Definition 5.4 Given a set system S = {S1, S2, . . . , Sm} with underlying
set X =

⋃

1≤i≤m Si = {x1, x2, . . . , xn}, its incidence graph is the bipartite
graph G with partite classes A = {a1, a2, . . . , am} and B = {b1, b2, . . . , bn},
where aibj ∈ E(G) if and only if xj ∈ Si.

In other words, the incidence graph has one vertex for each member of the
system and one for each element of the underlying set; moreover, adjacency
in the incidence graph expresses incidence in the set system. An example is
shown in Figure 5.3.

Now, we are ready to reformulate Hall’s Theorem to give a necessary and
sufficient condition for the existence of an SDR.

Theorem 5.6 A set system S admits a system of distinct representatives if
and only if the union of any k members of S contains at least k elements,
for every 1 ≤ k ≤ |S|.

Proof: Necessity is obvious: if the union of k sets contains fewer than k
elements, we cannot select k different representatives for them.

To prove sufficiency, consider the incidence graph G of a set system
S = {S1, S2, . . . , Sm}, where also repetitions of sets are allowed. Let A =
{a1, a2, . . . , am} and B = {b1, b2, . . . , bn} be the partite classes of G, where a
vertex ai stands for the set Si and a vertex bj corresponds to the element xj

of the underlying set of S. Then, consider a k-element subset X of A. By
definition, N(X) contains a vertex bj ∈ B if and only if bj is adjacent to at

5.2. SYSTEMS OF DISTINCT REPRESENTATIVES 121

Figure 5.3: A set system and its incidence graph

122 CHAPTER 5. BIPARTITE GRAPHS

least one ai ∈ X. In the system S this means xj ∈ Si, or in other formulation
xj ∈

⋃

ai∈X
Si. Thus,

|N(X)| = |
⋃

ai∈X

Si|.

Then, together with the condition given in the theorem, we have

|X| = k ≤ |
⋃

ai∈X

Si| = |N(X)|,

which is exactly Hall’s Condition for A in G. Hence, Theorem 5.5 implies
that there exists a matching M which covers all vertices in A. This matching
naturally determines a system of distinct representatives, just choose for
every Si the representative element xj , if M contains the edge aibj . �

5.3 Consequences of the Kőnig-Hall theorem

5.3.1 Edge colorings and factorizations of bipartite graphs

Recall that edge coloring of a graph G is a color assignment to the edges
such that any two edges incident with a common vertex must have distinct
colors. Equivalently, the edges sharing a fixed color form a matching. As
observed in Chapter 1, ∆ ≤ χ′ holds for every graph. Vizing’s theorem says
that this trivial lower bound gives a good approximation, as the chromatic
number can exceed ∆ by at most 1.

Theorem 5.7 (Vizing’s Theorem) For every graph G,

χ′(G) ≤ ∆(G) + 1.

Hence, for every graph G either χ′(G) = ∆(G) or χ′(G) = ∆(G) + 1 is
valid. Still, deciding which one of these two equalities holds is an algorithmi-
cally hard problem in general.3 On the class of bipartite graphs, however, the
decision problem becomes easy to solve as for these graphs χ′ always equals
the maximum degree. In the first step, we prove the statement for regular
bipartite graphs, then the result is extended to bipartite graphs in general.
Recall that G is k-regular if each vertex v ∈ V (G) is of degree k.

Theorem 5.8 For every positive integer k and for every k-regular bipartite
graph G,

χ′(G) = k.

3 Furthermore, already on the class of non-bipartite graphs with all vertex degrees
equal to 3, it is NP-hard to decide whether χ′ = 3 or χ′ = 4 holds.

5.3. CONSEQUENCES OF THE KŐNIG-HALL THEOREM 123

Proof: Let A and B denote the two partite classes of G. As G is k-regular,
for the number of its edges |E(G)| = k|A| = k|B| holds implying |A| = |B|.

Further, for any subset X ⊆ A, the number of edges between X and B
i.e. that of edges between X and N(X) is precisely k|X|. Since each vertex
bj ∈ N(X) is incident with at most k such edges, we have

k|X| ≤ k|N(X)|.

So, we conclude that |X| ≤ |N(X)| is valid for every X ⊆ A, that is, Hall’s
Condition holds for G. Then, by Theorem 5.4, graph G must have a perfect
matching.

From now, we proceed by induction on k. If k = 1, the edge set is a
matching and all edges can have the same color 1; χ′ = 1. If k ≥ 2, take a
perfect matching M of G — which exists as proved above — and color the
edges in M with color k. Deleting the edges in M from G, each vertex degree
decreases by exactly 1. In this way the (k − 1)-regular bipartite graph G′ is
obtained. By the induction hypothesis, G′ can be edge-colored with colors
1, 2, . . . , k − 1, which yields a proper edge coloring of G. Extending G′ by
the edges in M (all of them were assigned to color k), a proper edge coloring
of G using k colors is obtained. This completes the proof. �

As a maximum matching in a bipartite graph can be found in polynomial
time, the proof above also shows that a k-coloring of edges can be determined
in polynomial time in any k-regular bipartite graph. We shall see that such
an algorithm can be designed also without assuming regularity.

Theorem 5.9 If G is a bipartite graph, then

χ′(G) = ∆(G).

Proof: Since χ′ ≥ ∆ holds for every graph, it suffices to prove that G has
an edge coloring with ∆ colors. The crucial point is the extension of G by
some edges and vertices to obtain a ∆-regular bipartite graph G′. Then, by
Theorem 5.8 there is an edge coloring of G′ with ∆ colors. Finally, we delete
some appropriately chosen edges and vertices, and we obtain a proper edge
coloring of G with ∆ colors.

The extension of G can be done in several ways. We propose the following
procedure.

1. If |A| > |B|, extend B with |A|− |B| new vertices. If |B| > |A|, extend
A with |B| − |A| new vertices.

124 CHAPTER 5. BIPARTITE GRAPHS

2. While we have nonadjacent vertex pairs (ai, bj) with ai ∈ A, bj ∈ B
and with degrees d(ai) < ∆ and d(bj) < ∆, extend G with the edge
aibj .

3. If Step 2 cannot be applied, the vertices with degree smaller than ∆
(if there exist some) induce a complete bipartite graph whose partite
classes are, say, SA and SB. It is clear that |SA| < ∆ and |SB| < ∆.
Then, put ∆ new vertices into A and B each (denote the newly inserted
vertex sets by NA and NB, respectively) and create some edges between
SA and NB such that every vertex in SA has degree ∆ and the degrees
in NB differ by at most one. A similar procedure is executed for SB

and NA.

4. Up to now, NA ∪NB is an independent set. To complete the construc-
tion we can order the vertices of B according to non-decreasing degrees,
say b1, b2, . . . , bℓ. Viewing this order cyclically (i.e., the successor of bℓ
is b1), we take the vertices v ∈ A one by one and draw edges from v to
the next ∆− d(v) vertices of B in the fixed cyclic order. When all the
degrees in NA become equal to ∆, then also the degrees in NB equal
∆, and we have a ∆-regular bipartite graph G′ with subgraph G.

�

The statement of Theorem 5.8 can be expressed in a different context as
well.

Definition 5.5 For an integer k ≥ 1, a k-factor of a graph G is a k-
regular spanning subgraph of it. A k-factorization of G is a decomposition
into mutually edge-disjoint k-factors. In particular, a 1-factor is just a
perfect matching and 1-factorization means a decomposition into perfect
matchings.

Of course, not all graphs have 1-factors. A 1-factorization always deter-
mines an edge coloring with minimum number of colors, but this is not true
conversely. One can see that if G has a 1-factorization, then it is k-regular
and χ′ = k must hold. In fact, this is true conversely as well: If G is k-regular
and has some edge coloring with k colors, this coloring naturally determines
a k-factorization of G.

Then, Theorem 5.8 immediately implies:

Corollary 5.1 Every regular bipartite graph has a 1-factorization.

5.4. STABLE MATCHINGS 125

5.3.2 Orientations and out-degrees

Theorem 5.10 Let t be a positive integer, and G = (V,E) a graph. If
any vertex subset Y ⊆ V induces at most t|Y | edges, then there exists an
orientation of G in which each vertex has out-degree not greater than t.

Proof: First, we reformulate the condition. If any vertex set Y spans at
most t|Y | edges, then any collection of k edges covers at least k/t vertices.
Then, construct a bipartite graph F in which the partite class A contains one
vertex for each edge of G, while the other class B contains exactly t copies
for each vertex of G. Let a vertex a ∈ A be adjacent to a vertex b ∈ B if
and only if the edge e(a) ∈ E(G) corresponding to a is incident with the
vertex v(b) ∈ V (G) one of whose copies is b. (This construction is similar
to the incidence graph of G, the only difference is that every vertex of G is
represented by t vertices in F .)

We will prove that F satisfies Hall’s Condition with partite class A. In-
deed, take any subset X ⊆ A and let us denote the number of vertices in
X by k. These k vertices correspond to k edges of G. By the reformulated
condition, these k edges together cover at least k/t vertices in G. These at
least k/t vertices are represented with at least t · k

t
= k vertices in F and

by construction, each of them is adjacent to a vertex in X. In fact, the
neighborhood N(X) consists of exactly these vertices. To sum up, |X| = k
implies |N(X)| ≥ k for any X ⊆ A. This corresponds to Hall’s Condition
and therefore we have a matching M in F which covers all vertices of A.

Now, define the orientation of G as follows. An edge uv ∈ E(G) is orien-
tated from u to v if and only if in matching M above the vertex representing
edge uv is paired up with one of the copies of u. Since u has t copies in
B and each one is covered by at most one edge in matching M , any vertex
u ∈ V (G) has out-degree at most t. �

5.4 Stable matchings

A matching in a bipartite graph expresses a pairing between the elements of
two sets. Up to this point we discussed problems where the purpose is to
find a matching which is of maximum cardinality, now we consider the case
when preferences are given and the goal is to find a matching which is stable.

• In this section, a bipartite graph G is meant to be given together with
preference lists. That is, for every vertex v ∈ A ∪ B, we have a bijec-
tive mapping {1, . . . , d(v)} → N(v) which orders the neighbors due to
preferences.

126 CHAPTER 5. BIPARTITE GRAPHS

The preference list of v assigns 1 to the most preferred neighbor and then a
neighbor x is preferred to a neighbor y if x is assigned to a smaller integer
than y; in this case we also say that at u, neighbor x has higher preference
than y, or simply u prefers x to y. In our discussion tie is not allowed, the
preference mappings must be bijective.

In this section we discuss matchings with the following property:

Definition 5.6 A stable matching in a graph G is a matching M such
that for every edge uv ∈ E(G) \M either

(i) u has a neighbor u′ such that uu′ ∈M and u prefers u′ to v, or

(ii) v has a neighbor v′ such that vv′ ∈M and v prefers v′ to u.

Related to a matching M , an edge uv ∈ E(G) \M which fails to satisfy
both (i) and (ii) is called a blocking edge. Hence, M is stable if and only
if it has no blocking edge.

By definition, a stable matching is necessarily maximal, as an edge uv
whose both ends are uncovered by M satisfies neither (i) nor (ii). Roughly
speaking, a stable matching is stable in the sense that there are no two
vertices (people, institutions) u and v such that for both of them it is advan-
tageous to conspire and to give the new edge uv to M and to drop out the
edges originally incident with u or v in M (if exist).

As a small example, consider the bipartite graph G with partite classes
A = {a1, a2, a3, a4} and B = {b1, b2, b3}, where the preference lists are (the
neighbors ordered due to decreasing preferences)

a1: b2, b1;

a2: b2, b3, b1;

a3: b3, b2;

b1: a2, a1;

b2: a1, a2, a3;

b3: a2, a3.

Then, matching M1 = {a1b2, a2b3} is stable as it can be checked. For G, this
is the only stable matching but later we will see examples where more than
one stable matching exists.

On the other hand, M2 = {a1b2, a2b1, a3b3} is a maximum matching in G
but it is not stable as the edge a2b3 is blocking: a2 prefers b3 to b1 and also,
b3 prefers a2 to its present pair a3.

5.4. STABLE MATCHINGS 127

Now, we prove an existence theorem by designing an algorithm which
determines a stable matching for every bipartite graph.

Theorem 5.11 (Stable Marriage Theorem) For any bipartite graph G
with any preference lists on its vertices, there exists a stable matching in G.

Proof: Consider a graph G with partite classes A and B and with preference
lists on its vertices. Each phase of the algorithm consists of two steps

1. Every uncovered vertex a ∈ A marks the edge connecting it to the
neighbor due to highest preference.

2. If there is more than one marked edge incident with a vertex b ∈ B,
we keep the one which is most preferred by b and the remaining ones
are rejected (unmarked). The choice of b is only temporary, as in a
later phase b can get a more preferred marked edge, and in this case b
chooses the new one.

In the new phase, every vertex from A whose proposal was rejected marks
the neighbor next on the preference list (if exists). The procedure is repeated
while there is a rejected vertex in A whose list contains a further neighbor.

In every phase, when the set of marked edges is changed, the preferences
on the vertices of B do not decrease, and on at least one vertex the preference
necessarily increases. On the contrary, the preferences on the vertices of A
do not increase and on at least one vertex it decreases.

When the algorithm terminates, we have some edges marked. Let M be
the set of these edges. It is clear that M is a matching, we prove that this is
stable. We have two cases for an edge aibj /∈M

• If aibj was not marked in any phases and the algorithm has terminated,
then aj is paired with a vertex bk which has higher preference than bj
on the list of aj . Hence, aibj is not a blocking edge.

• If aibj was marked in some phase but then was rejected by bj , then bj
has a more preferred pair and again, aibj is not a blocking edge.

Therefore, the algorithm produces a stable matching for every bipartite
graph and its running time is proportional to the number of edges (plus the
number of vertices). �

128 CHAPTER 5. BIPARTITE GRAPHS

5.5 Perfect graphs

Here, in the last section of this chapter, we study a class of graphs which
had a great influence on the development of structural graph theory. It
contains several previously discussed types of graphs as subclasses. Some of
the observations will be based on Kőnig’s theorem, this is the reason why we
include the topic here. It might be a separate section, too, but we do not
wish to discuss it in that much detail.

Our starting point is the trivial inequality χ ≥ ω, which is valid for every
graph. The graphs in the focus of our present interest satisfy this relation
with equality, but this alone would not be a very strong condition, since for
every graph G = (V,E) we have χ(G ∪ K|V |) = |V | = ω(G ∪ K|V |). For
this reason, we assume in addition that the equality χ = ω remains valid for
every induced subgraph as well.

Definition 5.7 A graph G is called perfect if for every induced subgraph
G′ ⊆ G the equality

χ(G′) = ω(G′)

holds.

It is easy to find examples for perfect graphs and for not perfect (i.e.,
imperfect) ones as well. First, we mention some simple ones.

• Every complete graph is perfect as χ(Kn) = n = ω(Kn) and its induced
subgraphs are also complete graphs. Similarly, every empty graph is
perfect as χ(En) = 1 = ω(En) holds for all n ≥ 1.

• A cycle of even length is always perfect, as χ(C2k) = 2 = ω(C2k) and
the equality χ ≥ ω remains valid for its non-empty induced subgraphs,
too. (Obviously, if the subgraph is edgeless, both parameters are equal
to 1.)

• A cycle of odd length not smaller than 5 is always imperfect as ω(C2k+1) =
2 and χ(C2k) = 3 hold for every k ≥ 2. On the other hand, the cycle
of length 3 is isomorphic to K3 and therefore it is perfect.

• One can check that the complement C2k+1 of an odd cycle of length
not smaller than 5 is also imperfect since ω(C2k+1) = k and χ(C2k+1) =
k + 1, if k ≥ 2.

Also, the following wider classes belong to perfect graphs. They are
commonly considered to be classical examples of fairly large perfect graph
classes. The next theorem can be proved by using some coloring constructions
and Kőnig’s Theorem with its consequences.

5.5. PERFECT GRAPHS 129

Theorem 5.12 Each of the following conditions implies that G is a perfect
graph:

(i) G is bipartite;

(ii) G is the complement of a bipartite graph;

(iii) G is the line graph of a bipartite graph;

(iv) G is the complement of the line graph of a bipartite graph;

(v) G is a chordal graph;

(vi) G is the complement of a chordal graph.

Proof: First, recall that χ = ω = 1 holds for empty graphs. From now on,
we assume that G contains at least one edge. Moreover, observe that if G is
contained in a class from (i)–(vi), then the deletion of some vertices always
yields an induced subgraph which belongs to the same class. This property is
valid also for graph classes derived from line graphs: If G = L(F), then every
vertex v of G corresponds to an edge e = ev of F , and so G− v = L(F − e)
holds. Therefore, although the definition of perfect graphs puts a requirement
on every induced subgraph, it suffices to prove χ(G) = ω(G) for each case of
(i)–(vi) for the graph G itself.

(i) By definition, χ(G) = 2 if G is bipartite. On the other hand, if G
is bipartite, it cannot contain K3 (which is the same as the 3-cycle),
hence the largest clique in G is K2. Then, χ(G) = ω(G) = 2 holds for
every bipartite G.

(ii) If G is the complement of a bipartite graph, then its complement G is
bipartite. A clique in G corresponds to an independent vertex set in G
and hence

ω(G) = α(G) = n− τ(G) = n− ν(G)

holds, where n denotes |V (G)| and the last equality is due to Kőnig’s
Theorem. Since χ(G) ≥ ω(G) is necessarily true, it is enough to prove
that there exists a coloring of G which uses n−ν(G) colors. To do this,
choose a maximum matching M in the bipartite G, and then define a
coloring in which any two vertices have different colors except if they
are the two ends of the same matching edge from M . No edge from
M belongs to graph G, hence no two vertices with the same color are
adjacent in G. This implies that the coloring is proper and additionally,
this is a coloring with precisely n−|M | = n−ν(G) colors. This verifies
χ(G) = ω(G).

130 CHAPTER 5. BIPARTITE GRAPHS

(iii) Assume that G = L(F) where F is a bipartite graph. The vertex col-
orings of the line graph L(G) are in one-to-one correspondence with
the edge colorings of F and hence χ(G) = χ′(F). Moreover, by Theo-
rem 5.9, the equality χ′(F) = ∆(F) is valid as F is bipartite. A further
consequence of bipartiteness is that F contains no cycle C3 and hence,
any three pairwise intersecting edges of F have a vertex in common.
As regards the line graph G = L(F), this implies ω(G) = ∆(F). Now,
we conclude χ(G) = ω(G).

(iv) Let G = L(F) for a bipartite F . By definition of complement and that
of line graph, we have

ω(G) = ω(L(F)) = α(L(F)) = ν(F).

To prove χ(G) = ω(G) we show a vertex coloring of G with ν(F)
colors. Let T be a minimum transversal of G. Each edge of F can be
assigned to a vertex v ∈ T which covers it. Then, the edge set of F
is decomposed into τ(F) intersecting subsystems. These intersecting
subsystems are represented by τ(F) cliques in the line graph L(F) and
hence, we have τ(F) independent vertex sets in G = L(F). Taking
these independent sets as color classes, a proper vertex coloring of G
with τ(F) colors is determined. By Kőnig’s Theorem, τ(F) = ν(F)
holds and consequently, χ(G) = ω(G) is valid, too.

(v) For chordal graphs, χ(G) = ω(G) was proved in Chapter 4.

(vi) Suppose that G = F and that F is chordal. A side product of the
algorithm given in Section 3.3.1 is that α(F) = θ(F) holds. Then, by
the complementarity of ω and α, and by that of χ and θ, we obtain the
validity of χ(G) = θ(F) = α(F) = ω(G). This completes the proof of
χ(G) = ω(G).

�

Finally, we mention two famous theorems concerning perfect graphs.
Both of them were stated as conjectures in the early 1960’s. The first one
was proved in an elegant way ten years later, but it took about three further
decades until a (rather long) proof of the second one was found.

Theorem 5.13 (Perfect Graph Theorem) A graph G is perfect if and
only if its complement G is perfect.

5.5. PERFECT GRAPHS 131

Theorem 5.14 (Strong Perfect Graph Theorem) A graph G is perfect
if and only if neither G nor G contains any induced odd cycles of length
greater than 3.

The Perfect Graph Theorem tells us a good reason why the six graph
classes in Theorem 5.12 are in three complementary pairs. On the other
hand, the Strong Perfect Graph Theorem gives a characterization of perfect
graphs in terms of forbidden induced subgraphs.

Of course, Theorem 5.13 immediately follows from Theorem 5.14. Nev-
ertheless, due to the substantial difference between their proofs, the former
definitely remains of independent interest.

Chapter 6

The Max-Cut problem

In this chapter we consider the problem of finding a large bipartite subgraph
in a graph. A more general version of this optimization problem is called
Max-Cut, therefore we shall use the word ‘cut’ in our terminology.

Definition 6.1 Let G = (V,E) be a graph and X ∪Y = V a partition of its
vertex set into two classes. The cut generated by (X, Y) is the set F ⊆ E of
all edges which have one end in X and the other end in Y . We denote the
largest possible cut size |F | in G by mc(G).

Notation 6.1 For any two disjoint sets of vertices, we denote by e(X, Y)
the number of edges with one end in X and the other end in Y . Hence,
mc(G) is the maximum value of e(X, Y) taken over all pairs X, Y ⊆ V with
X ∩ Y = ∅.

Keeping the usual meaning of cut in mind, it would be reasonable to
assume that both X and Y are non-empty. Nevertheless, it is meaningful to
say that the partition (V, ∅), one of whose two classes is empty, generates the
edge set F = ∅. Apart from this degenerate case, the graph

G− F = (V,E \ F)

obtained by the removal of the edges of the cut (i.e., the graph with the same
vertex set V as G, and with the edge set E \ F) surely is disconnected. We
note further that F = ∅ may occur also if X 6= ∅ 6= Y holds; namely, if G
is disconnected, then splitting its connected components into two non-empty
classes we obtain a non-trivial vertex partition which generates an edgeless
cut.

Remark 6.1 The value of mc(G) is equal to the maximum number of edges
in a bipartite subgraph of G. Indeed, it is immediate by definition that the

132

6.1. FIRST APPROACH: SEARCHING LOCAL OPTIMUM 133

largest number, say b(G), of edges in a bipartite subgraph of G is at least
mc(G) because the edges in every cut form a bipartite subgraph. That is,
b(G) ≥ mc(G). To prove that mc(G) ≥ b(G) also holds, consider a bipartite
subgraph H ⊆ G, say with vertex classes A and B, such that H contains
exactly b(G) edges. Let X := A and Y := V \ A. Then B ⊆ Y , hence all
edges of H are contained in the cut (X, Y). Consequently, b(G) = |E(H)| ≤
e(X, Y) ≤ mc(G).

Remark 6.2 An alternative way to think about cuts of G = (V,E) is to
select a vertex subset X ⊂ V and consider the set of edges which have ex-
actly one end in X. Equivalence with the original definition is established by
setting Y := V \X.

Remark 6.3 The equality mc(G) = |E| holds if and only if the entire edge
set E can be chosen for F , which happens precisely when G is bipartite.
Since bipartite graphs can be recognized by an efficient algorithm, we can also
determine the optimum value and the optimal solution on this restricted class
of graphs, and decide efficiently in general whether or not mc(G) < |E|.

Algorithmically it is a hard problem to determine the exact value of mc(G)
on an unrestricted graph G if it has many vertices. In fact, even to approxi-
mate mc(G) beyond a certain precision is hard.1 More formally, there exists
a constant c Here we prove the following general lower bound:

Theorem 6.1 For every graph G = (V,E), we have

mc(G) ≥ |E|
2

.

Equivalently, the theorem states that every graph can be made bipartite
by the removal of at most half of its edges.

It is remarkable that this result can be proved by quite different methods.
In the following sections we present three important techniques.

6.1 First approach: Searching local optimum

The idea of this approach is to reach a solution via a sequence of improve-
ments. We start with an arbitrary cut and make small local modifications as

1 It is known that there exists a constant c > 0 such that finding a lower bound, say
L = L(G) on mc(G) which satisfies the inequality L(G) ≥ (1− c) ·mc(G) for all graphs G
is NP-hard.

134 CHAPTER 6. THE MAX-CUT PROBLEM

long as the size of the cut can be increased. Once a non-improvable situation
is reached, we verify that it satisfies the inequality to be proved.

Consider an arbitrary vertex partition

V = X ∪ Y.

If some vertex x ∈ X has more neighbors in X than in Y , we move it from
X to Y , i.e. modify the partition to

X ′ := X \ {x}, Y ′ := Y ∪ {x}.
Then the edges joining x with its neighbors in Y get removed from the cut,
while the edges joining x with its neighbors in X become members of the
cut. The assumption on x implies that the number of the latter is larger
than the number of the former; thus, if such a vertex x exists in the original
partition (X, Y) then we obtain a cut (X ′, Y ′) of larger size. The same idea
applies if there is a vertex y ∈ Y having more neighbors in Y than in X.
After not more than |E| steps of this kind the procedure surely stops and no
more improvements are possible in this way. Let us denote the two vertex
classes in this final cut by X∗ and Y ∗.

In this situation every vertex v has at least half of its neighbors in the
cut, which means at least d(v)/2 where d(v) denotes the degree of v. Since
each of those edges has precisely one vertex in X∗ and one in Y ∗, we have

e(X∗, Y ∗) ≥
∑

v∈X∗

d(v)

2

and also

e(X∗, Y ∗) ≥
∑

v∈Y ∗

d(v)

2
.

Thus, taking the average of these two inequalities, we obtain

e(X∗, Y ∗) ≥ 1

2

∑

v∈X∗∪Y ∗

d(v)

2
=

1

4

∑

v∈V

d(v) =
1

4
(2 · |E|) = |E|

2

because the sum of vertex degrees is the double of the number of edges in any
graph. By definition, every cut has at most mc(G) edges, and consequently

mc(G) ≥ e(X∗, Y ∗) ≥ |E|
2

follows, proving the theorem.

The algorithm is illustrated step-by-step in Section A.4 through an ex-
ample.

6.2. SECOND APPROACH: FINDING A SOLUTION ONLINE 135

Algorithm 6.1 Algorithm to find locally maximal max cut

G := (V,E), X = V , Y = ∅
A := {v ∈ X | |N(v)∩X| > |N(v)∩Y |}∪{v ∈ Y | |N(v)∩X| < |N(v)∩Y |}
while A 6= ∅ do

Select v from A arbitrary
if v ∈ X then
X := X \ {v}, Y := Y ∪ {v}

else
X := X ∪ {v}, Y := Y \ {v}

end if
A := {v ∈ X | |N(v) ∩ X| > |N(v) ∩ Y |} ∪ {v ∈ Y | |N(v) ∩ X| <
|N(v) ∩ Y |}

end while
Cut size of the partition (X, Y) cannot be improved by switching the po-
sition of one vertex.

6.2 Second approach: Finding a solution online

In this model we consider the vertices in a sequence v1, v2, . . . , vn (according
to an arbitrarily chosen order) one by one, and make a decision concerning vi
(i = 1, 2, . . . , n) according to the subgraph induced by {v1, . . . , vi} without
using any information about vertices of larger index.

We shall maintain and sequentially update a pair (X, Y) of disjoint sets.
Initially we set X = Y = ∅. Then, for i = 1, . . . , n we modify (X, Y) as
follows:

• If vi has at least as many neighbors in Y as in X, then re-define X :=
X ∪ {vi}; otherwise re-define Y := Y ∪ {vi}.

Having processed all vertices, eventually (X, Y) is a partition of V . We prove
that the number of edges in this cut is sufficiently large.

The algorithm is illustrated step-by-step in Section A.5 through an ex-
ample.

For the proof, each edge vivj will be counted at its vertex of larger sub-
script, max(i, j). (This view may as well be considered as an edge decompo-
sition of G into stars S2, S3, . . . , Sn where for 2 ≤ j ≤ n the center of Sj is
vj and its edge set is {vivj ∈ E | 1 ≤ i < j}.) Denoting by d−j the number of
edges vivj with i < j, we see that

∑n
j=2 d

−
j = |E|. Moreover, at each vj , at

least half of the edges ending there belong to the cut (X, Y), that is at least

136 CHAPTER 6. THE MAX-CUT PROBLEM

Algorithm 6.2 Algorithm to find cut with the online aproach

G := (V,E), X = Y = ∅
Fix a vertex order v1, v2, . . . , vn arbitrarily
for i = 1 to n do

if |N(vi) ∩X| > |N(vi) ∩ Y | then
Y := Y ∪ {vi}

else
X := X ∪ {vi}

end if
end for
Vertex set of G is partitioned into X and Y with the online approach

d−j /2. Consequently,

mc(G) ≥
n
∑

j=2

d−j
2

=
|E|
2

.

6.3 Third approach: The probabilistic method

Among the three proofs, perhaps this is the most unexpected one. Contrary
to the other two, it is not constructive. We choose a partition X ∪Y = V at
random, by what we mean that we apply the rule

P(v ∈ X) =
1

2

for each vertex v ∈ V , where P(.) denotes probability. Of course, this
condition equivalently means that P(v ∈ Y) = 1/2 holds for each v ∈ V .
We apply this rule for each v independently of all the other vertices; i.e., no
matter how (X, Y) partitions V \ {v}, vertex v still has probability 1/2 to
be in X or in Y .

An edge vivj ∈ E belongs to the cut if and only if its two ends have been
placed into distinct classes, one of them into X and the other into Y . By our
rule on random choice, independently of whether vi has been placed into X
or Y , vj goes into the other class with probability 1/2. Consequently,

P(vivj is in the cut) =
1

2

for every single edge. Hence, for the expected number of edges in the cut we
obtain

E(e(X, Y)) =
∑

vivj∈E

P(vivj is in the cut) =
|E|
2

.

6.4. NOTES 137

Expected value of a random variable expresses a weighted sum, namely the
possible outcomes of the experiment weighted by the probabilities of the
outcomes. In other words, it is a weighted average, always being between the
minimum and maximum possible value of the random variable in question.
For this reason, at least one of the events has value not smaller than the
expectation of the random variable. In our case this implies

mc(G) ≥ E(e(X, Y)) =
|E|
2

.

6.4 Notes

We have stated and proved mc(G) ≥ 1
2
|E| for all graphs G = (V,E). In

fact, except for empty graphs, strict inequality holds here. This can be seen
from the online approach, because the first edge appearing in the fixed order
surely belongs to the cut, and at least half of the later edges also do so. Strict
inequality can be read out from the probabilistic proof, too: The empty cut
with zero edges has positive probability, and since its size is smaller than
average (the expected value of cut size), there must exist a cut whose size is
larger than average. Applying a more complex argument one can prove that

mc(G) ≥
⌈ |E|

2
+
|V | − 1

4

⌉

holds for all connected graphs G = (V,E). This lower bound is tight whenever
G is a complete graph.

6.4.1 Online algorithms

It is appropriate to say a few words about online algorithms here. The
context becomes clear by making a comparison with offline problems. In the
offline case of an optimization problem, complete information about the
entire problem instance is available already at the beginning, before starting
the computation.

The online scenario is different. The input is revealed piece by piece, and
we have to make a decision about the recently received piece before knowing
anything about later pieces, and it is not even known whether there will
be any further pieces; this becomes known only after the processing of the
current piece.

In this sense the second proof of Theorem 6.1 can be viewed as an online
algorithm because when we decide about the position of vj, we need not know
anything about the adjacencies from and between vertices of higher index.

138 CHAPTER 6. THE MAX-CUT PROBLEM

In practice, we often encounter “semi-online” problems, in which the input
arrives piece by piece, and we have to decide about the current piece while
we have partial information about later pieces.

6.4.2 Probabilistic methods

An interesting aspect of the third proof is that we conclude the existence of
a suitable cut without actually constructing it. From this proof we know for
sure that a solution with the required properties exists, but we cannot see
from the argument where it is in G. Such a situation often means that in fact
there exist many good solutions, because even their average is good enough.

Taking a decision with probability 1/2 is like flipping a (fair) coin. We
obtain the same result if we throw a dice and choose one decision if the
result is odd and choose the other decision if the result is even. As we have
seen, this works nicely for the general lower bound on mc(G). In some other
situations, however, it may be useful to distribute probabilities unevenly, for
example to take a particular decision only if the dice gave 6, or throwing the
dice two times and making a step only if the sum of the two is at least 11,
etc. (These variants correspond to probability 1/6 and 1/12, respectively.)
In other words, we flip a biased coin, for which head has probability p and
tail has probability 1 − p. Here p can be any real number between 0 and 1,
according to the nature of the problem to be solved. In some situations it
may even be useful to choose non-constant p that gets close to 0 or to 1 as
the input gets large.

Beside non-constructive existence proofs, a very important application of
non-deterministic selection is in the area of randomized algorithms. In that
way, the efficiency of some algorithms can substantially be improved with
high probability.

Chapter 7

Locally restricted colorings

The title of this chapter does not completely describe the contents; it just
refers to the type of problems we consider, and there are many variants of
coloring which belong to this category but we do not touch them here. On
the other hand, from our previous chapters proper vertex coloring is already
a local restriction: it means that if a 2-vertex subgraph contains an edge,
then two distinct colors have to occur in it. Similarly, proper edge coloring
requires that any two edges in a vertex triple must get two colors. Below we
consider more restricted variants of these notions.

7.1 Precoloring extension

Extending a partial solution is an idea that occurs in many kinds of con-
text. Precoloring extension, traditionally abbreviated as PrExt, means the
following algorithmic decision problem:

Input: Graph G = (V,E), color bound k ∈ N, partial coloring ϕW : W →
{1, . . . , k} that is a proper vertex coloring of the subgraph G[W] in-
duced by the precolored set W ⊂ V in G.

Question: Does G have a proper vertex coloring ϕ with at most k colors,
which extends ϕW , i.e. ϕ(v) = ϕW (v) holds for all v ∈ W ?

Example 7.1 Let G be the path uvxy of length 3, and assume that the color
bound is 2. We consider W = {u, y}. If ϕW (u) = 1 and ϕW (y) = 2, then the
precoloring is extendable to the optimal coloring with ϕ(v) = 2 and ϕ(x) = 1.
But if ϕW (u) = ϕW (y) = 1, then the precoloring is not extendable within the
prescribed color bound.

139

140 CHAPTER 7. LOCALLY RESTRICTED COLORINGS

There is a natural ‘search version’ of the problem, which, instead of just
asking whether the precoloring is extendable, also requires a proper k-coloring
of G as a solution if it exists.

It is clear that the answer to PrExt is ‘no’ whenever k is smaller than
the chromatic number of G. Hence, it is reasonable to assume that k is at
least as large as χ(G). But it should be emphasized that we do not require
equality, k may be any larger than χ(G).

Remark 7.1 If W = ∅, or W induces a complete graph in G, then the
answer to PrExt is ‘yes’ if and only if χ(G) ≤ k. In other words, PrExt

in these restricted cases is equivalent to the graph k-colorability problem.

Hence, in some cases PrExt and k-colorability are equally hard algo-
rithmically. On the other hand, in some other situations PrExt is provably
harder. We list some results for comparison.

• On bipartite graphs, with k = 2, PrExt is decidable efficiently.

• On bipartite graphs, with any k ≥ 3, PrExt is hard to decide.

• On complements of bipartite graphs, the search version of PrExt with
a general k is exactly as hard as finding largest matchings in bipartite
graphs; that is, solvable efficiently.

• On interval graphs, PrExt is hard.

• On interval graphs, if no color occurs more than once in the precolored
set W , then PrExt is solvable efficiently. The same is valid on chordal
graphs, too.

• On interval graphs, PrExt is hard even if we restrict the input to pre-
colorings in which each color occurs on at most two precolored vertices.

For some classes of well-structured graphs, beside deciding PrExt (or
solving its search version) is not only doable efficiently but also transpar-
ent necessary and sufficient structural conditions can be given for the posi-
tive/negative instances of the problem.

7.2 List coloring

A more expressive phrase for the problem considered here would be something
like “graph coloring from lists”; but the official term is the one given in the
subtitle.

7.2. LIST COLORING 141

Definition 7.1 Let G = (V,E) be a graph, and let L = {Lv | v ∈ V } be a
collection of sets which specify the colors allowed for every vertex v. A list
coloring of G is a color assignment ϕ : V → ⋃

v∈V Lv such that

• ϕ(v) ∈ Lv for all v ∈ V ;

• ϕ(u) 6= ϕ(v) whenever uv ∈ E.

If such a ϕ exists, we say that G is list colorable, or that G has an L-
coloring. The set Lv is termed the list of vertex v (although it is just a set,
no ordering is assumed among its elements).

Remark 7.2 Precoloring extension can be viewed as a subproblem of list
coloring: for vertices v ∈ W we have a list consisting of a single prescribed
color Lv = {ϕW (v)}, while for vertices v ∈ V \ W , the allowed set Lv =
{1, 2, . . . , k} is the set of all colors.

Example 7.2 Let G = Kn be a complete graph, with a given list assignment
L = {L1, . . . , Ln} on its vertices. Then G is list colorable if and only if the
sets in L satisfy Hall’s Condition. The reason is that no two vertices of Kn

can be assigned to the same color, hence its list colorings are in one-to-one
correspondence with the systems of distinct representatives of the set system
L = {L1, . . . , Ln}.

One can see, in particular, that if the lists are very long — e.g., if all
of them have at least as many colors as the number of vertices — then the
graph surely is list colorable. This leads to the following notions and a graph
invariant which is the list coloring analogue of chromatic number.

Definition 7.2 A k-assignment on a graph G = (V,E) is a list assignment
L = {Lv | v ∈ V } in which |Lv| = k for all v ∈ V . The choice number of
G — also called list chromatic number in some part of the literature —
is the smallest k such that G is L-colorable for every k-assignment L. We
shall denote the choice number of G by χ

ℓ
(G). (Its other standard notation

is ch(G).) We also say that G is k-choosable if it is list colorable for every
k-assignment.

The basic chain of inequalities for the graph invariants related to coloring
can be written as follows.

Proposition 7.1 Every graph G satisfies

ω(G) ≤ χ(G) ≤ χ
ℓ
(G) ≤ col(G).

142 CHAPTER 7. LOCALLY RESTRICTED COLORINGS

Proof: We have to prove that χ
ℓ

is sandwiched between χ and col. If
χ
ℓ
(G) = k, then G has to be list colorable for every k-assignment. In par-

ticular, setting Lv := {1, 2, . . . , k} for every vertex v, L-coloring precisely
means proper k-coloring. Its existence implies χ(G) ≤ k, as claimed.

For the rightmost inequality we consider a vertex order v1, . . . , vn of G
that attains max1≤i≤n(d

−(vi) + 1) = col(G), where d− denotes backward
degree in the given order. Assume that each of the lists of the vertices
contains at least col(G) colors. We can then color the vertices “from left to
right” in the order v1, v2, . . . , vn. While treating vi, we see that only at most
d−(vi) colors are excluded from its list because no vertices of higher index
are colored at that moment. Since the list is longer, there is a free color in
Lvi that we can assign to vi without creating a monochromatic edge. Hence,
G is list colorable. �

Many graphs have larger choice number than chromatic number.

Example 7.3 On six vertices there are two complete bipartite graphs (hence
having χ = 2) which are not 2-choosable:

• K2,4 — Let the vertices in the two partite sets be a1, a2 and b1, b2, b3, b4,
respectively. We construct the following 2-assignment:

La1 = {1, 2}, La2 = {3, 4}

Lb1 = {1, 3}, Lb2 = {1, 4}, Lb3 = {2, 3}, Lb4 = {2, 4}

• K3,3 — Let the vertices in the two partite sets be a1, a2, a3 and b1, b2, b3,
respectively. We construct the following 2-assignment:

La1 = Lb1 = {1, 2}, La2 = Lb2 = {1, 3}, La3 = Lb3 = {2, 3}

In either of them, no matter how we color the vertices ai from their lists,
there will be some bj the two allowed colors of which are already used, so that
we cannot complete the coloring on the entire graph.

In fact, χ
ℓ

can take any large value on bipartite graphs.

7.3 Kernels in directed graphs

In this section we consider a special type of vertex sets in directed graphs.

Definition 7.3 Let D = (V,A) be a digraph with vertex set V and arc set
A. A kernel of G is a set M ⊂ V satisfying the following two properties:

7.3. KERNELS IN DIRECTED GRAPHS 143

1. M is independent;

2. for every vertex u ∈ V \M there is a v ∈M such that uv ∈ A.

In other words, no arcs occur inside M , but from each vertex outside M
there is a direct arc into M .

Some digraphs have kernels, some others don’t.

Example 7.4 Consider the directed cycle ~Cn = v1v2 . . . vn, whose arcs are
v1v2, v2v3, . . . , vn−1vn, vnv1 (n ≥ 2). If n is even, then ~Cn contains kernels:
we can take the n/2 vertices of the same parity (all with odd indices or

all with even indices). If n is odd, however, then ~Cn does not have any
kernels. Indeed, since a kernel M should be independent, we can select at
most (n−1)/2 vertices into it. Then there must occur two non-selected ones
which are consecutive along the cycle, say vi and vi+1. But then vi violates
condition 2 because it is outside M , and its unique out-neighbor vi+1 is not
in M either.

Remark 7.3 If M is a kernel in D, and v is a vertex of out-degree zero,
then

• v ∈M ;

• u /∈M for all u ∈ V with uv ∈ A.

The reason is that v cannot be outside M because of condition 2, and once we
have v ∈M , the in-neighbors of v cannot be inside M because of condition 1.

This simple property determines some steps when searching a kernel un-
der some circumstances:

Theorem 7.1

1. If ~T is an oriented tree (i.e., no cycles occur in it, not even those of

length two), then ~T has a kernel, its kernel is unique, and can be found
by an efficient algorithm.

2. More generally, every bipartite directed graph has at least one kernel
(not always unique), and a kernel can be found efficiently.

Proof: 1. If every vertex had positive out-degree, then the (finite) graph

would contain a directed cycle. Consequently, if ~T is an oriented tree, then it
contains some vertex of out-degree zero. Certainly, such a vertex, say v, can
be found efficiently. In the construction of M we can perform the following
steps:

144 CHAPTER 7. LOCALLY RESTRICTED COLORINGS

• Insert v into M .

• Remove all vertices u from ~T such that uv is an arc.

Due to Remark 7.3, these steps are compatible with all kernels of ~T , hence
the kernels of ~T are in one-to-one correspondence with those of the reduced
graph. Indeed, the vertices u satisfy condition 2 because we have put v into
M . Moreover, the remaining vertices are non-adjacent to v, therefore any
kernel M ′ of the reduced graph yields a kernel M = M ′ ∪ {v} of ~T .

After the removal of v and its in-neighborhood, each connected compo-
nent of the graph remains an oriented tree. Thus, we can repeat the steps
above until we find the unique kernel of ~T . (If ~T has just one vertex, then
this vertex itself is the unique kernel.)

2. Let D be a bipartite digraph. It suffices to consider the ‘weak components’
of D, which are the connected components of the undirected graph obtained
from D by omitting the orientations (i.e., replacing ordered vertex pairs with
unordered pairs).

Hence, consider a connected bipartite digraph, say with vertex classes A
and B. If there is a vertex with zero out-degree, then we perform the steps
displayed above, and so reduce D to a smaller bipartite digraph. Then the
existence of a kernel follows by induction on the number of vertices.

On the other hand, if all vertices have positive out-degree, then all u ∈ B
have at least one out-neighbor in A, and similarly, all u ∈ A have at least
one out-neighbor in B. Since both vertex classes are independent sets, either
of A and B is a kernel in D. �

The algorithm is illustrated in Figure 7.1 in a concise way; instead of
selecting one vertex of out-degree zero at a time, all such vertices are marked
simultaneously, and then all their neighbors and the incident edges (indicated
with grey afterwards) are deleted before the next step.

The importance of kernels in connection with list coloring is shown by
the following result.

Theorem 7.2 Let D = (V,A) be an orientation of the undirected graph G =
(V,E), such that every induced subgraph has a kernel. If L = {Lv | v ∈ V }
is a list assignment on G where the list Lv of each vertex v ∈ V contains
more colors than the out-degree d+(v) of v in D, then G is list colorable.

Proof: Select an arbitrary color c, and consider the sub(di)graphs Gc ⊂ G
and Dc ⊂ D induced by precisely those vertices whose lists contain c. By
assumption, Dc contains a kernel M . We make the following modifications:

7.3. KERNELS IN DIRECTED GRAPHS 145

Figure 7.1: Finding the kernel of an oriented tree

146 CHAPTER 7. LOCALLY RESTRICTED COLORINGS

• Assign color c to the vertices of M .

• Delete color c from the vertices of Gc −M .

Since the kernel M is independent, we did not create any monochromatic
edges in this step. In the reduced lists of the smaller graph G′ := Gc −M ,
color c does not occur anymore, therefore no matter how we shall color its
vertices later, they will never create monochromatic edges with vertices of
M . Thus, the proof will be done if we show that G′ is list colorable.

We are going to verify that the conditions of type |L| > d+ concerning
the reduced lists and the out-degrees remain valid in the reduced digraph
D′ := D −M , too. Then the theorem follows by induction on the number
of vertices. No out-degrees have been increased, and the lists have not been
modified outside Gc, therefore the condition remains valid for all vertices
in G − Gc. Moreover, the list of a vertex in Gc −M has been reduced by
precisely one color. But M is a kernel in Gc, and consequently if we remove
M , the out-degrees of all vertices in Gc −M decrease by at least 1. Thus,
the conditions |L| > d+ remain valid for all vertices in the reduced graph.
This completes the proof of the theorem by induction. �

We note that the proof also leads to an efficient algorithm to find a list
coloring, provided that a kernel can be found efficiently in each induced
subgraph of G.

It is important to emphasize that the conditions |Lv| > d+(v) alone do
not imply list colorability. For example, the complete graph K2s+1 admits an
orientation with maximum out-degree s for any s ∈ N, but its choice number
is 2s+ 1. The presence of kernels is essential in this method.

7.4 Line graphs of bipartite graphs

In the main result of this section we will prove that the line graphs of bipartite
graphs satisfy the equality χ

ℓ
= χ = ω. In fact we know χ = ω from the

chapter on bipartite graphs: we have proved that these graphs are perfect. So
the result mentioned first can also be stated in the form that bipartite graphs
are list edge-colorable from any lists whose size is equal to the maximum
degree.

Before proving the main theorem, we formulate an assertion; although
it looks quite different, it will turn out to be equivalent to the Stable Mar-
riage Theorem. Among the assumptions of the next lemma, the exclusion
of 3-cycles equivalently means that every 3-cycle is oriented transitively, like
the triangle with vertices a, b, c and arcs ab, bc, ac.

7.4. LINE GRAPHS OF BIPARTITE GRAPHS 147

Lemma 7.1 Let H be a bipartite graph, G be the line graph of H, and D
be any orientation of G such that no (cyclically) directed 3-cycle occurs in
D. Then every induced subgraph of D has a kernel.

Proof: We first note that the induced subgraphs of D are precisely the line
graphs of the subgraphs of H , because vertex removal from G (as well as from
D) means edge removal from H . Consequently, if we prove that the entire
D itself has a kernel for a generic bipartite graph H , then we automatically
obtain the result for all induced subgraphs of D, too.

Now, consider any orientation of D in which all triangles are transitively
oriented. Since H is bipartite, there is only one way to obtain a triangle in
its line graph: to take three edges of H which are incident with the same
vertex. This is because any edge vv′ of the line graph corresponds to two
edges e, e′ sharing a vertex in H . Then a third edge can intersect both of
them only in their common vertex, otherwise H would not be bipartite.

Looking from the other side, the edges incident with a vertex of H cor-
respond to a complete subgraph of G and to an oriented complete subgraph
of D. The latter cannot contain any directed cycles: should ~C be any di-
rected cycle, we would choose one of minimum length, and then it should be
a triangle because inserting a diagonal of any orientation in a directed cycle
always yields a shorter directed cycle. This implies that every complete sub-
graph of D contains a vertex of zero out-degree, from which it follows that
the complete subgraphs are oriented transitively in a linear order.

This corresponds to an ordering of the edges incident with a vertex in
H . We interpret the ordering as a preference order, where orientation e→ e′

means that e′ has higher preference than e. By the Stable Marriage Theorem
(Theorem 5.11) there exists a stable matching M ′ in H with respect to any
collection of such preference orders at the vertices. The edges occurring in
M ′ are represented with a set M of vertices in both G and D. Since the
edges in the matching M ′ are mutually vertex-disjoint, the vertices in M are
independent. Moreover, stable matching means that every edge outside M ′

meets some edge of M ′ such that the latter has higher preference at their
common vertex. Translating this to line graphs, every vertex outside M has
an out-neighbor in M . Hence, the conditions for a kernel are satisfied by M ,
implying the validity of the lemma. �

Theorem 7.3 If G is the line graph of a bipartite graph H, then χ
ℓ
(G) =

χ(G) = ∆(H).

Proof: We know from Theorem 5.9 that χ(G) = ∆(H) holds; hence we need
to prove that every ∆-assignment on G admits a list coloring.

148 CHAPTER 7. LOCALLY RESTRICTED COLORINGS

We begin with an auxiliary coloring, which has nothing to do with the
lists but nevertheless will be very useful. We take a proper edge coloring
c′ of H with the colors 1, 2, . . . ,∆. Then c′ corresponds to a proper vertex
coloring c of G in the natural way: if vertex v of G represents edge e of H ,
we define c(v) = c′(e). From this coloring we derive an orientation on the
edges of G as follows. Denote by A and B the two vertex classes of H . If vv′

is an edge in G, then the corresponding edges e and e′ of H meet either in A
or in B. If they meet in A, then we orient the edge vv′ from smaller color to
larger; and if they meet in B, then we orient vv′ from larger color to smaller.

Claim: In this orientation, every out-degree is at most ∆− 1.

Proof: Suppose that c(v) = i for vertex v. Then v can have at most ∆− i
out-neighbors with colors higher than i (they correspond to edges of H that
meet the edge of e in A), and at most i− 1 out-neighbors with lower colors
(these are the vertices whose edges meet the edge of e in B). These are at
most ∆− 1 neighbors for v altogether. ♦

Now we can put the pieces together. We see from Lemma 7.1 that every
induced subgraph of D has a kernel. So, the kernel precondition in Theorem
7.2 is satisfied, therefore G is list colorable whenever we have |Lv| > d+(v)
for all v ∈ V in the current orientation. This is ensured by the previous claim
and the assumption that the lists have cardinality ∆. �

7.5 Planar graphs

Planar graphs are defined as the graphs which admit a drawing in the Eu-
clidean plane in such a way that the vertices are points and the edges are
non-crossing closed curves. If a graph is planar, then it also has a planar
drawing where the edges are straight-line segments. Euler’s formula states
that every planar embedding of a connected planar graph with v vertices, e
edges and f faces (regions) satisfies the equality

v + f = e + 2.

This formula can be applied in many computations; for instance, it implies
the following upper bounds.

Lemma 7.2

1. A planar graph on n vertices can have at most 3n− 6 edges.

2. A planar graph on n vertices and not containing K3 as a subgraph can
have at most 2n− 4 edges.

7.5. PLANAR GRAPHS 149

Since the sum of vertex degrees is the double of the number of edges,
it follows that every planar graph contains a vertex of degree at most five,
and every planar graph without triangles contains a vertex of degree at most
three. This implies the respective upper bounds 6 and 4 on the choice number
of such graphs. The latter bound is tight, but the former isn’t: every planar
graph is 5-choosable, and there exist planar graphs which are not 4-choosable.

Here we apply some of the previous results, to prove the following upper
bound.

Theorem 7.4 Every planar bipartite graph is 3-choosable.

Proof: Let G be a planar bipartite graph. Every subgraph of G, too, is
planar; therefore Lemma 7.2 implies that any t vertices of G induce fewer
than 2t edges, for any value of t. Thus, by Theorem 5.10 we obtain that the
edges of G can be oriented in a way that yields a digraph D with maximum
out-degree at most 2. We also see from part 2 of Theorem 7.1 that D and all
of its subgraphs contain kernels. Consequently, Theorem 7.2 implies that G
is list colorable whenever the list sizes exceed the out-degrees of the vertices
in D. In particular, we obtain that G is 3-choosable. �

Remark 7.4 The upper bound 3 in the theorem is tight: we have seen that
the planar graph K2,4 is not 2-choosable.

Remark 7.5 Lemma 7.2 implies that every planar graph admits an orien-
tation with maximum out-degree at most 3. This cannot be applied to prove
via Theorem 7.2, however, that all planar graphs are 4-choosable (this is not
even true) because many planar graphs have no kernels.

Chapter 8

Edge decompositions of graphs

Decomposition techniques are widely used; we have already seen the ex-
ample of tree decomposition which was an extremely useful tool in solving
algorithmic problems on a large class of combinatorial structures. The kind
of decompositions considered here is quite different, however, requiring a dif-
ferent way of thinking, and a first warning should say that one must not mix
the two.

Definition 8.1 An edge decomposition of a graph G = (V,E) is a par-
tition of its edge set into some subgraphs F1, . . . , Fm where Fi = (Vi, Ei),
Vi ⊆ V for all 1 ≤ i ≤ m, the sets Ei are mutually disjoint and their union
is E. In other words, each edge of G occurs in precisely one of the subgraphs
Fi.

Example 8.1 In every proper edge coloring, the color classes (the monochro-
matic sets of edges) form a decomposition into matchings. In particular,

1. The edge coloring of a d-regular bipartite graph with d colors is a de-
composition into perfect matchings.

2. Putting each edge of any graph G into a singleton class we trivially
obtain a decomposition into copies of K2.

In the two numbered sub-examples above, the subgraphs of the decom-
position are isomorphic (to a perfect matching and to an edge, respectively),
while in the general concept of proper edge coloring all subgraphs of the de-
composition belong to a given type (matching). Both versions are of interest
and we shall see results of both types.

Definition 8.2 Let F be a fixed graph. An F -decomposition of a graph
G is an edge decomposition F1, . . . , Fm of G such that all subgraphs Fi are

150

8.1. PERFECT MATCHINGS, HAMILTONIAN SUBGRAPHS 151

isomorphic to F . If G admits an F -decomposition, we also say that F
decomposes G, or G is decomposable into F .

We shall mostly deal with edge decompositions of complete graphs; but
before that, we mention the following theorem.

Theorem 8.1 A connected graph is decomposable into paths of length two if
and only if it has an even number of edges.

One way to prove this result is to start with an arbitrarily chosen spanning
tree, and to show that it has a leaf such that either it has degree at least two
in the original graph, or the unique edge incident to the leaf together with an
edge incident to its neighbor induce a P3 whose edge-removal keeps the rest
of the graph connected. Along these lines, the theorem follows by induction
on the number of edges.

8.1 Perfect matchings, Hamiltonian subgraphs

The decompositions of complete graphs presented in this section can be de-
scribed in a geometric way, applying the idea of symmetry. We shall take
regular polygons, for which we introduce the following occasional notation.

Notation 8.1 For k ≥ 3 we denote the regular k-gon by Rk.

We give three constructions, the second and third of them being closely
related.

Theorem 8.2 The complete graph on n ≥ 2 vertices is decomposable into
perfect matchings if and only if n is even.

Proof: Since a perfect matching puts the vertices into pairs, a graph (not
only a complete one) can have a perfect matching only if the number of its
vertices is even. Hence the parity condition is necessary.

To prove decomposability for Kn with n ≥ 4 even, we arrange n − 1
vertices v1, . . . , vn−1 in the shape of a regular (n − 1)-gon Rn−1 and put
the last vertex vn in its geometric center. The vertex degrees are equal to
n− 1, therefore we need to find exactly n− 1 mutually edge-disjoint perfect
matchings.

The idea is to specify one perfect matching Mi for each edge vivn (i =
1, . . . , n − 1). The geometric representation will make this transparent: for

152 CHAPTER 8. EDGE DECOMPOSITIONS OF GRAPHS

vivn we take those diagonals of Rn−1 which are orthogonal to vivn (also
including one side of Rn−1 for each i). Formally one can write

Mi = {vivn} ∪ {vi−jvi+j | 1 ≤ j ≤ n/2− 1}

where subscript addition is taken modulo n− 1, i.e. v−k = vn−1−k for k ≤ 0
and vn−1+k = vk for k > 0, wherever applicable. In this way each Mi+1

is obtained from Mi by a rotation of 2π
n−1

(that is, 360
n−1

degrees) clockwise or
counterclockwise, depending on the direction of labeling the vertices in Rn−1.

Figure 8.1: Perfect matching decomposition of K6

The only missing even number is n = 2, which is trivial because K2 has
just one edge and it forms itself a trivial “decomposition” into one perfect
matching. �

Theorem 8.3 The complete graph Kn on n ≥ 2 vertices is decomposable
into Hamiltonian paths if and only if n is even.

8.1. PERFECT MATCHINGS, HAMILTONIAN SUBGRAPHS 153

Proof: Since Kn has
(

n
2

)

= n(n−1)
2

edges and each Hamiltonian path con-
tains n− 1 edges, the decomposition has to contain exactly n/2 subgraphs;
this number should be an integer, therefore n must be even whenever a Pn-
decomposition exists.

Suppose that n ≥ 2 is even. The case n = 2 is trivial because K2 has just
one edge, therefore the graph itself forms a “decomposition” with one class.
Hence, from now on we only have to deal with n ≥ 4.

We now arrange the n vertices v1, . . . , vn to form a regular n-gon Rn. To
simplify the formulas, let us write k = n/2 ; we need to find k edge-disjoint
Hamiltonian paths. Note that Rn has k long diagonals, and 2k diagonals from
any other length (including the sides, too). Viewing them geometrically, the
diagonals are in 2k parallel classes: k of their directions are determined by
the sides vivi+1 (i = 1, . . . , k), for example the side vk+1vk+2 is parallel to
v1v2; and the other k directions are determined by the short diagonals vivi+2

(again i = 1, . . . , k). Therefore, it will suffice to show that a suitable coupling
of those parallel classes creates a Pn-decomposition. This can be done by the
observation that

v1v2vnv3vn−1 . . . vkvk+2vk+1

is a Hamiltonian path composed from the classes of the side v1v2 and of the
short diagonal vnv2. The suitably chosen k positions (rotations) of such paths
decompose Kn. Namely, putting the classes of vivi+1 and vi−1vi+1 together
(i = 1, . . . , k) we obtain a Pn-decomposition. Formally, for i = 1, . . . , k we
consider

{vi−jvi+1+j | 0 ≤ j ≤ k − 1} ∪ {vi−jvi+j | 1 ≤ j ≤ k − 1}

where subscript arithmetics are now meant modulo n (by the convention
v−ℓ = vn−ℓ and vn+ℓ = vℓ for every ℓ ≥ 0). The first set in the union above is
the parallel class containing the side vivi+1 while the second set is the parallel
class containing the short diagonal vi−1vi+1. �

Theorem 8.4 The complete graph Kn on n ≥ 3 vertices is decomposable
into Hamiltonian cycles if and only if n is odd.

Proof: Since Kn has
(

n
2

)

= n(n−1)
2

edges and each Hamiltonian cycle contains
n edges, the decomposition has to contain exactly n−1

2
subgraphs; this number

should be an integer, therefore n must be odd whenever a Cn-decomposition
exists.

Suppose that n ≥ 3 is odd. The case n = 3 is trivial because K3 is isomor-
phic to C3, therefore itself is a Hamiltonian cycle, forming a “decomposition”

154 CHAPTER 8. EDGE DECOMPOSITIONS OF GRAPHS

Figure 8.2: Hamilton path decomposition of K6

with one class. If n is larger, we take the previous decomposition into Hamil-
tonian paths over n − 1 vertices and extend it with one further vertex vn.
The former construction is composed of paths whose ends are vi and vk+i,
for i = 1, . . . , k. Each of these paths can be extended to a Hamiltonian cycle
of Kn by adjoining the edges vivn and vk+ivn. �

Figure 8.3: Hamilton cycle decomposition of K7

Below we give a more detailed explanation for Hamiltonian cycles, which
is self-contained, not using the decomposition into paths. We arrange n− 1
vertices v1, . . . , vn−1 to form a regular (n − 1)-gon Rn−1 and place vn into
its center. To simplify the formulas, let us write k = n−1

2
; we need to find

8.2. COMPLETE BIPARTITE GRAPHS 155

k edge-disjoint Hamiltonian cycles. Now our view is that Rn−1 has exactly
k long diagonals, which are split into two segments by the geometric center.
The Hamiltonian cycles to be constructed will be organized along those long
diagonals.

Recall that n− 1 = 2k, hence vi and vk+i are antipodal vertices of Rk−1.
The first cycle will contain the edges vnv1 and vnvk+1, the short diagonal
v2v2k together with all diagonals parallel to it (they are orthogonal to the
long diagonal v1vk+1, but this diagonal is not taken for the cycle), moreover
the side v1v2 and all diagonals parallel to it, also including the opposite side
vk+1vk+2.

One can verify that these edges form a Hamiltonian cycle of Kn. We ob-
tain the further k−1 cycles by geometric rotation with angle π/k. Formally,
for i = 1, . . . , k we consider

{vnvi, vnvk+i} ∪ {vi−jvi+j | 1 ≤ j ≤ k − 1} ∪ {vi−jvi+1+j | 0 ≤ j ≤ k − 1}

where again subscript arithmetics are meant modulo n − 1. These are 2 +
(k − 1) + k = 2k + 1 = n edges for each cycle.1

8.2 Complete bipartite graphs

So far we considered decompositions into one particular graph F . In this
section the view will be somewhat different, we specify only the type of graphs
into which Kn should be decomposed. That is, we consider the family

F = {Ka,b | a ≥ 1, b ≥ 1}

of complete bipartite graphs. We want to find edge decompositions F1, . . . , Fm

of Kn in which every subgraph is isomorphic to some member of F .

Example 8.2 Let {v1, v2, . . . , vn} be the vertex set of Kn. We can get a
decomposition into n − 1 stars, one with i edges for each i = 1, . . . , n − 1,
for example with edge set

{vivj | i < j ≤ n}.

This subgraph is isomorphic to K1,n−i.

1 Each cycle contains one long diagonal, namely vi−k/2vi+k/2 if k is even (i.e., if n− 1
is a multiple of 4) and vi−(k−1)/2vi+(k+1)/2 if k is odd (i.e., if n+ 1 is a multiple of 4).

156 CHAPTER 8. EDGE DECOMPOSITIONS OF GRAPHS

Example 8.3 More generally, we can apply the following recursive construc-
tion. Let n = n1 + n2, with positive integers n1, n2. Partition the vertex set
into two subsets V1, V2 of cardinalities |V1| = n1 and |V2| = n2. Decompose
the edge set inside Vi (i = 1, 2) into ni − 1 complete bipartite subgraphs.
The non-covered edges form a complete bipartite subgraph Kn1,n2 with vertex
classes V1 and V2. In this way we recursively obtain a decomposition into

(n1 − 1) + (n2 − 1) + 1 = n− 1

complete bipartite subgraphs. (The previous example is the particular case
|V1| = 1, applied recursively in each step.)

Hence the number of decompositions of Kn with exactly n− 1 complete
bipartite subgraphs grows very fast as n gets large. Interestingly enough,
decomposition with fewer subgraphs is not possible. The proof of this result
is kind of magic, a very nice application of linear algebra. It is worth noting
that no combinatorial proof is known for the theorem so far.

Theorem 8.5 If F1, . . . , Fm is a decomposition of Kn into complete bipar-
tite subgraphs, then m ≥ n− 1.

Proof: We represent the vertices of Kn with real variables x1, . . . , xn. An
edge vivj will be represented with the product xixj . If H is a subgraph of
Kn with edge set E, we associate with H the sum of its edges,

s(H) =
∑

vivj∈E

xixj ,

taking one term for each edge.
Let us compute the s-value for a complete bipartite subgraph. If Fℓ has

vertex classes Aℓ and Bℓ, then Fℓ has the edge set

{vivj | vi ∈ Aℓ, vj ∈ Bℓ}.

Hence, the corresponding sum is

s(Fℓ) =
∑

vi∈Aℓ, vj∈Bℓ

xixj =

(

∑

vi∈Aℓ

xi

)(

∑

vj∈Bℓ

xj

)

.

On the other hand, with a little algebraic manipulation from the multinomial
theorem, we obtain that the sum associated with the complete graph Kn is

s(Kn) =
∑

1≤i<j≤n

xixj =
1

2

(

n
∑

i=1

xi

)2

−
(

n
∑

i=1

x2
i

)

 .

8.2. COMPLETE BIPARTITE GRAPHS 157

If F1, . . . , Fm is a decomposition of Kn into complete bipartite subgraphs Fℓ

with vertex classes Aℓ and Bℓ, then by definition we have

s(Kn) =

m
∑

ℓ=1

s(Fℓ)

from what, by substitution, the observations above yield:

1

2

(

n
∑

i=1

xi

)2

− 1

2

(

n
∑

i=1

x2
i

)

=

m
∑

ℓ=1

(

∑

vi∈Aℓ

xi

)(

∑

vj∈Bℓ

xj

)

. (8.1)

Now the great trick comes. Consider the following system of m + 1 ho-
mogeneous linear equations over n variables:

x1 + · · ·+ xn = 0
∑

vi∈A1

xi = 0

∑

vi∈A2

xi = 0 (8.2)

...
∑

vi∈Am

xi = 0

Look what this means for Equation (8.1) if the real numbers xi satisfy all
equations in (8.2). The right side is zero because the term for each Fℓ is a
product of two sums, the first of them being zero by the assumption that we
took a solution of (8.2). Also the first term on the left side of (8.1) is zero, by
the first equation of (8.2). Consequently, every solution of (8.2) must satisfy

x2
1 + · · ·+ x2

n = 0.

Thus, we obtain
x1 = · · · = xn = 0,

i.e. the system (8.2) has the trivial solution only.
We know from the theory of homogeneous linear equations that if nothing

but the trivial solution exists then the number of equations has to be at least
as large as the number of variables.2 In our case this means

m+ 1 ≥ n

and this is what we had to prove. �

2 In general: if there are p variables, q linearly independent homogeneous equations,
and p ≥ q holds, then the space of solutions has dimension p− q.

158 CHAPTER 8. EDGE DECOMPOSITIONS OF GRAPHS

8.3 Complete subgraphs

For complete subgraphs we consider both kinds of decompositions: F -decom-
position into copies of a fixed graph F and F -decomposition into members
of a family F of graphs; more precisely, with the complete graph F = Kp

with a fixed p ≥ 3 or with the family

F = {Kp | p ≥ 2}.

Of course, Kn “decomposes” Kn into one complete subgraph; we are interested
in the other (nontrivial) decompositions.

8.3.1 Complete subgraphs of variable size

We first consider the problem of F -decompositions, where the number of
vertices in the complete subgraphs is not fixed.

Example 8.4 Every complete graph Kn on n vertices can be decomposed
into the same number n of complete subgraphs in the following way. Denoting
the vertices by v1, v2, . . . , vn we take the complete subgraph of order n− 1 on
the vertex set {v1, v2, . . . , vn−1}, and n − 1 further complete subgraphs of
order 2 which are the edges v1vn, v2vn, . . . , vn−1vn.

This construction is optimal, as shown by the following result.

Theorem 8.6 If F1, . . . , Fm is a decomposition of Kn into m ≥ 2 complete
subgraphs each having at least two vertices, then m ≥ n.

Proof: We shall assume that the inequality is not valid, and derive a contra-
diction from it. Before that, we need some preparation. Let Fj have vertex
set Vj, and let us denote nj = |Vj| for j = 1, 2, . . . , m. Further, for vertex vi,
let us denote by di the number of subgraphs Fj containing vi.

Claim: If vi /∈ Vj, then di ≥ nj.

Proof: For each vℓ ∈ Vj, the vertex pair vivℓ is contained in precisely one
subgraph of the decomposition. This subgraph is different from Fj because
vi /∈ Vj , and also for any two different vertices of Fj these subgraphs are
different because the edge connecting the two vertices is already contained in
Fj. Hence, at least as many subgraphs contain vi as the number of vertices
in Fj . ♦

Now we are in a position to prove the theorem. Assume, for a contradic-
tion, that n > m holds. If di ≥ nj also holds for a pair (i, j) of subscripts

8.3. COMPLETE SUBGRAPHS 159

— which is the case by the Claim above if vi /∈ Vj — then we see that
n · di > m · nj is valid (because nj > 0). It is a matter of routine to check
that this latter inequality is equivalent to the following one:

1

n(m− di)
>

1

m(n− nj)
.

We sum up this for all pairs (i, j) such that vi /∈ Vj. It follows that

∑

i,j
xi /∈Vj

1

n(m− di)
>
∑

i,j
xi /∈Vj

1

m(n− nj)
.

The proof will be done if we show the surprising fact that both sides of this
inequality are equal to 1. Once we prove this, the contradiction 1 > 1 will
follow immediately.

For the left side:

∑

i,j
xi /∈Vj

1

n(m− di)
=

n
∑

i=1

∑

j
xi /∈Vj

1

n(m− di)
=

n
∑

i=1

(m−di) ·
1

n(m− di)
=

n
∑

i=1

1

n
= 1

because, by definition, di of the m subgraphs contain vi, hence exactly m−di
do not contain it; this fact verifies the equality in the middle.

For the right side:

∑

i,j
xi /∈Vj

1

m(n− nj)
=

m
∑

j=1

∑

i
Vj 6∋xi

1

m(n− nj)
=

m
∑

j=1

(n−nj)·
1

m(n− nj)
=

m
∑

j=1

1

m
= 1

because each Fj has nj vertices, hence exactly n− nj vertices are outside it.
Thus, the contradiction 1 > 1 implies that the assumption n > m was

false and the theorem is true. �

8.3.2 Complete subgraphs of fixed size

Here we consider Kp-decompositions of complete graphs. There are some
number-theoretic conditions which are necessary for the existence of such
decompositions.

Proposition 8.1 (Integrality Conditions) If Kp decomposes Kn, then

•
(

n
2

)

is a multiple of
(

p
2

)

,

160 CHAPTER 8. EDGE DECOMPOSITIONS OF GRAPHS

• n− 1 is a multiple of p− 1.

Proof: The first condition follows from the fact that Kn and Kp have
(

n
2

)

and
(

p
2

)

edges, respectively, therefore the decomposition has to contain ex-
actly

(

n
2

)/(

p
2

)

subgraphs, which must be an integer. The second condition is
obtained by comparing vertex degrees: they are n−1 in Kn and p−1 in Kp,
therefore each vertex has to occur in precisely n−1

p−1
of the subgraphs. �

These conditions are not always sufficient for the existence of Kp-decom-
position, but they are “almost sufficient”, as expressed in the following result.

Theorem 8.7 For every integer p ≥ 3 there exists a threshold value n0 =
n0(p) such that, for every n > n0, Kp decomposes Kn if and only if the
Integrality Conditions are satisfied.

Example 8.5 For p = 3 — that is, F = K3, decomposition into triangles
— the Integrality Conditions mean:

•
(

n
2

)

is divisible by 3,

• n− 1 is even.

Simple analysis of cases modulo 6 yields that these conditions are satisfied if
and only if n is of the form 6k+1 or 6k+3. It can be proved that all those
values of n admit decompositions into K3, i.e. the conditions are not only
necessary but also sufficient for p = 3. In such a decomposition, the vertex
sets of the copies of K3 yield a 3-uniform set system called Steiner Triple
System.

8.4 Notes

We have seen that both inequalities m ≥ n − 1 and m ≥ n (for complete
bipartite subgraphs and for complete subgraphs, respectively) are tight, but
for the former there has been a much richer family presented which attains
equality. Actually, the complete bipartite decompositions with m = n −
1 have not been characterized so far, this would be an open problem for
research. On the other hand, conditions are known which are necessary
and sufficient for the complete subgraph decompositions with m = n; it
turns out that, beside the simple construction given above, there is only
one further family of decompositions. We shall see them in the chapter on
finite projective planes; they require far more elaborated methods than the
previous ones.

8.4. NOTES 161

8.4.1 Double enumeration

In the proof of Theorem 8.5 we took the sum of inequalities over all pairs
(i, j) such that vi /∈ Vj, and then we manipulated with the sums on the two
sides. The idea behind this way of computation can be represented with a
bipartite graph, say B, where the vertices v1, . . . , vn of Kn are put in the first
vertex class of B, and the subgraphs F1, . . . , Fm correspond to the vertices in
its second vertex class. Edges ei,j of B represent the terms in the sum; i.e.,
viFj is an edge in B if and only if vi /∈ Vj. Each edge ei,j has a value say ai,j
at its end in the first class and a value say bi,j at its end in the second class;
these are the corresponding terms of the inequality on the left and right side,
respectively. In our case ai,j > bi,j holds for all pairs (i, j), from what we see
immediately that the sum of the a-values is larger than that of the b-values.

One key point in the proof was how to evaluate the two sums. In this
bipartite representation, each term corresponds to exactly one edge, and so
one may say that the summation is taken over the edges of B. We simplified
the computation by grouping the terms in a convenient way. The reader can
observe that each group of terms corresponds to the edges incident with a
vertex vi for the left-side sum, and to those incident with a subgraph Gj for
the right-side sum. Since each edge has exactly one end in each vertex class
of B, this grouping ensures that each term has been counted exactly once on
both sides.

Chapter 9

Finite projective planes

In this chapter we consider a very special kind of finite set systems, which
have many nice structural properties. The name “projective plane” refers to
strong analogy with geometry, which we shall comment at the end of the
chapter. We shall use the terms point for the elements of the underlying set
and line for the sets of the set system.

Definition 9.1 (Axioms of finite projective planes of order q)

A1 Any two points are contained together in exactly one line.

A2 Any two lines intersect in exactly one point.

A3 There is a line with exactly q + 1 points.

A4 There are four points, no three of which are on the same line.1

A pair (P,L) is a projective plane of order q if L is a set system over
the set P , and the elements p ∈ P as points and the sets L ∈ L as lines
satisfy the four “axioms” A1–A4 above. As for terminology, if p ∈ L, then
we say that point p and line L are incident, or p lies on L, or L passes
through p.

Although these four axioms look simple, lots of structural properties can
be derived from them. Quantitatively, one can prove the facts below.

Theorem 9.1 Every projective plane of order q has the following parame-
ters.

1 This requirement is often formulated in the way that there is a quadrangle in the
plane. If no three of a set of points are on the same line, those points are usually said to
be in general position. Hence, a quadrangle means four points in general position, and A4
requires that such a 4-tuple must occur in every finite projective plane.

162

163

1. The number of points is q2 + q + 1.

2. The number of lines is q2 + q + 1.

3. Every line has exactly q + 1 points.

4. Every point is incident with exactly q + 1 lines.

Sketch of Proof: Choose line L0 with exactly q + 1 points, say p1, . . . , pq+1

(by A3). If p /∈ L is a point outside L, then each pi (1 ≤ i ≤ q+1) determines
precisely one line with p (by A1) and those lines are mutually distinct (by
A2, investigating their intersection with L). No more lines can pass through
p because they would meet L (by A2) in points different from the previous
q+1 ones (by either of A1 and A2). Hence, all points outside L — or outside
any line with exactly q + 1 points — are incident with exactly q + 1 lines.
Switching the role of “point” and “line” in this argument we obtain that if p
is any point incident with exactly q + 1 lines and L is any line not passing
through p, then L has exactly q+1 points. The four points in general position
(A4) ensure that there are at least two points p, p′ outside L, both contained
in exactly q+1 lines, only one of which — say, L′ — is passing through both
of them. All of the 2q other lines meeting {p, p′} have exactly q + 1 points,
and no point is contained in all of them. Therefore all points lie on exactly
q + 1 lines and all lines have exactly q + 1 points.

Each pi (1 ≤ i ≤ q+1) is incident with q lines different from L, those lines
are mutually distinct and together with L they include all lines. Similarly,
each of the q + 1 lines passing through p contain exactly q points different
from p, and their union covers all points. This yields the validity of the
assertions concerning q2 + q + 1. �

Remark 9.1 Since any two points belong to exactly one line, we may also
view projective planes as edge decompositions of complete graphs into com-
plete subgraphs. Moreover, by the previous result, the number of points and
lines is the same, therefore every finite projective plane provides us with an
example of edge decomposition of Kq2+q+1 in which the number of Kq+1

subgraphs is equal to the number of vertices. Conversely, however, the con-
struction given in Example 8.4 with m = n cannot be viewed as a projective
plane. Indeed, the large subgraph with n − 1 vertices in the decomposition
meets every 4-tuple in at least three elements and therefore axiom A4 does
not hold for this structure, although A1 and A2 are valid. As a matter of fact,
the goal of introducing A4 as a requirement is to exclude the non-symmetric
decomposition from the class of finite projective planes.

164 CHAPTER 9. FINITE PROJECTIVE PLANES

Example 9.1 The Fano plane is the smallest example of finite projective
planes, with q = 2. It has 7 points and 7 lines, they can be drawn in a
convenient way in an equilateral triangle T . The points are the three vertices,
three midpoints of sides, and the geometric center of T . Three of the lines
are the sides, three others are the medians, while the seventh line of the Fano
plane is represented with the incircle of T .

Figure 9.1: Fano plane with q = 2

It is a major open problem in combinatorics to characterize the values of
q for which a projective plane of order q exists. Prime powers q = pα (where
p is a prime number and α is a positive integer) play a central role in this
problem.

Conjecture 9.1 If there exists a projective plane of order q, then q is a
prime power.

Theorem 9.2 If q is a prime power, then there exists a projective plane of
order q.

We shall prove this fact in the sequel. For small orders we also know
that the conjecture is true: while prime powers 2, 3, 4, 5, 7, 8, 9, 11,... admit
constructions, while there do not exist any projective planes of orders 6
and 10. Non-existence for 6 was known (in a different but equivalent form)
already in the 18th century, but a proof for 10 was given only in the 1970’s
with extensive use of computer.

We shall prove Theorem 9.2 using abstract algebra. The necessary pre-
requisites are given in the next section.

9.1. FINITE FIELDS 165

Remark 9.2 Some values of q admit a unique projective plane of order q,
namely the one which is constructed below. There exist some other values
of q, however — the smallest one being q = 9 — for which it is known that
several different projective planes exists.

9.1 Finite fields

We recall from earlier studies (first-year course) that the algebraic structure
called field has a set X of elements and is equipped with two algebraic
operations, addition and multiplication, for which we shall use the standard
symbols + and ×. Both operations are required to be commutative (a+ b =
b+ a, a× b = b× a) and associative (a+ (b+ c) = (a+ b) + c, a× (b× c) =
(a×b)×c) and satisfy the rule of distributivity (a×(b+c) = a×b+a×c) for
all elements a, b, c ∈ X. The neutral elements of addition and multiplication
are traditionally denoted by 0 and 1 (a + 0 = a, a× 1 = a); moreover, each
a ∈ X is required to have an additive inverse (a + x = 0) and, except for
a = 0, also a multiplicative inverse (a× y = 1).

We are now interested in fields over finite sets. In this area, the funda-
mental theorem of Galois states:

Theorem 9.3 A finite field over q ≥ 2 elements exists if and only if q is a
prime power.

From this very important result, we shall apply the ‘if’ part; i.e., that for
every prime power q there exists a field of order q. This field, which is unique
(up to isomorphism) for every q, is called the Galois field of order q.

Notation 9.1 The Galois field of order q is denoted by GF (q).

One way to describe the Galois field of a given order is to list the results
of its operations. This can be done, e.g., by giving its additive table for the
results of addition and multiplicative table for those of multiplication. The
simplest case, q = 2 yields2

+ 0 1

0 0 1
1 1 0

× 0 1

0 0 0
1 0 1

2 There is a natural interpretation of these binary tables in terms of set-theoretic
operations, too: + corresponds to the symmetric difference (A \B) ∪ (B \A), whereas ×
corresponds to the intersection A ∩B.

166 CHAPTER 9. FINITE PROJECTIVE PLANES

In general, if we represent the elements of GF (q) with nonnegative integers
0, 1, . . . , q − 1 then the results of the two operations can be computed as
addition and multiplication modulo q. For example, if q = 3 then we have

+ 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

× 0 1 2

0 0 0 0
1 0 1 2
2 0 2 1

while for q = 5 the tables are

+ 0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

× 0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

If q is not a prime, however, then computing modulo q does not work. For
example, if q = 4 then 2 times 2 modulo 4 would yield zero and we cannot
accept this, because then 2 would not have a multiplicative inverse. Also,
taking the analogous cyclic table for addition modulo 4 would not allow a
multiplicative table that satisfies the rule of distributivity.3 Hence, for q = 4
— which is a prime power but not a prime — the tables are different from
the previous examples:

+ 0 1 2 3

0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

× 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 3 1
3 0 3 1 2

In this case the additive table, viewed as a square matrix, is composed of 2
by 2 submatrices whose arrangement and structure follows that of GF (2).

9.2 Galois planes

In the construction of the projective plane of order q we apply here Galois
fields. The plane built upon GF (q) is called the Galois plane of order q.

We represent the points and lines with homogeneous coordinate triples:

3 One can observe that the rules 0× a = 0 and 1× a = a (for all a ∈ GF (4) uniquely
determine the multiplicative table. And then, if the additive table is computed modulo 4,
there occur triples a, b, c of elements violating the distributive rule.

9.2. GALOIS PLANES 167

• (a, b, c) for a point,

• [x, y, z] for a line,

none of them being the all-zero triple 0, 0, 0. By ‘homogeneous’ we mean
that, for every nonzero element λ ∈ GF (q) \ {0}, the triples

• (a, b, c) and (λ× a, λ× b, λ× c) mean the same point,

• [x, y, z] and [λ× x, λ× y, λ× z] mean the same line.

Point (a, b, c) and line [x, y, z] are incident if and only if

a× x+ b× y + c× z = 0

where all operations are calculated in GF (q). Hence, point-line incidence
means that the scalar product of their coordinate vectors is zero, exactly in
the same way as in analytic geometry.

Since GF (q) has q elements, we can compose q3 ordered triples of coor-
dinates over it, from which we have excluded (0, 0, 0) from the points and
[0, 0, 0] from the lines. Homogeneousness means identification of triples in
(q − 1)-tuples. Therefore, the number of points and lines we have defined in
this way is equal to

q3 − 1

q − 1
= q2 + q + 1.

We have to check that the axioms A1–A4 are satisfied. To do this, we
apply linear algebra. Let (a, b, c), (a′, b′, c′) be two distinct points; this means
that the two triples are linearly independent over GF (q). A line [x, y, z]
passes through these two points if and only if it is incident with both of
them, i.e. precisely when it satisfies the following system of linear equations:

a× x+ b× y + c× z = 0

a′ × x+ b′ × y + c′ × z = 0

Since the two equations are linearly independent, and we have three variables
and two equations, the solution space has dimension 1. That is, from a basic
nonzero solution [x0, y0, z0] 6= [0, 0, 0] all solutions are obtained as

[λ× x0, λ× y0, λ× z0]

where λ runs over the q−1 nonzero elements of GF (q). Since we have repre-
sented the lines with homogeneous triples, those q−1 solutions correspond to
the same one line. This proves A1. The proof of A2 is completely analogous,

168 CHAPTER 9. FINITE PROJECTIVE PLANES

we just begin with two lines [x, y, z], [x′, y′, z′] and search for a point (a, b, c)
which is incident with both of them.

If we want to determine the number of lines passing through any one
point (a, b, c), we need to compute the number of solutions of the equation

a× x+ b× y + c× z = 0.

Since we have three variables and just one equation, the solution space has
dimension 2, that means q2 triples from which only q2 − 1 remain because
[0, 0, 0] is excluded. Multiplying with any λ 6= 0 the triple represents the
same line, therefore the solutions are split into (q− 1)-tuples. Consequently,
the number of lines incident with any point is

q2 − 1

q − 1
= q + 1.

In a completely analogous way, starting from a line [x, y, z] and searching for
triples [a, b, c] whose scalar product with [x, y, z] is zero, we can derive that
each line contains exactly q + 1 points. This verifies A3.

Finally, a quadrangle required by A4 is, for example, the following quadru-
ple of points:

(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1).

One can check that any three of these vectors are linearly independent over
any field. Hence, picking any three of these four points, say (a, b, c), (a′, b′, c′),
(a′′, b′′, c′′), the system of equations

a× x+ b× y + c× z = 0

a′ × x+ b′ × y + c′ × z = 0

a′′ × x+ b′′ × y + c′′ × z = 0

has just the trivial solution x = y = z = 0. This all-zero triple does not cor-
respond to any lines, therefore the four points above are in general position,
as required by A4.

Notation 9.2 The Galois plane of order q is denoted by PG(2, q).

9.3 Projective plane, Euclidean plane

The Euclidean plane — which is the geometry of dimension 2 taught in
standard curriculum — has its theory built from the undefined basic notions

9.3. PROJECTIVE PLANE, EUCLIDEAN PLANE 169

Figure 9.2: Galois plane of order 3

170 CHAPTER 9. FINITE PROJECTIVE PLANES

point and line, and from the axioms: properties which we assume to be
true without proof. All theorems of planar geometry are derived from those
axioms.

One of the axioms requires that any two points determine a straight line.
It follows that any two lines meet in at most one point. There also exist
parallel lines, however. The ‘parallel postulate’ ensures that for every line L
and every point p outside L there is a unique line passing through p and not
meeting L. Based on this axiom, the lines are in parallel classes: two lines
belong to the same class if and only if they are parallel.4

The projective plane is an extension of the Euclidean plane, in the follow-
ing way. For each parallel class P we take one further “point”, say xP, which
we call an “ideal point”. Each line L ∈ P is extended with this xP, hence
any two extended lines meet: in a “real” point if they are not parallel, and
in an ideal point if they are parallel. In order to ensure that any two points
determine a line, we define the “ideal line” to be the set of all ideal points.

Despite that extension with ideal points and with ideal line may look a bit
artificial for first sight, the projective plane has many remarkable properties.
One of them is point-line duality, which originates from the fact that its
incidence axioms are symmetric: not only any two points determine exactly
one line, but also any two lines determine exactly one point.

The theory of finite projective planes took much inspiration from that
of the real projective plane. This also includes the way we introduced the
coordinate triples for the points and lines over the Galois field. We have also
seen some quantitative aspects of point-line duality in the finite case: the
number of points and lines is the same, and the number of incidences on a
point and on a line is the same.

4 The relation of being parallel is an equivalence relation on the set of lines, therefore
its equivalence classes form a partition, its classes consist of the mutually parallel lines.

Chapter 10

Extremal problems

Generally speaking, an extremal combinatorial problem asks for the (global)
maximum or minimum of a function on a class of structures. The corre-
sponding value is called extremum, and the structures on which this value is
attained are called extremal.

In this chapter we consider extremal problems on graphs in which the
number of edges has to be maximized or minimized. One classical kind
of these questions are commonly termed as Turán-type problems, giving a
tribute to the paper published by Pál Turán in 1941. We shall also discuss
a recent optimization problem concerning communication networks, which
turns out to be closely related to a case of the problem class just mentioned.

10.1 Forbidden subgraphs

The general question addressed here can be formulated as follows.

Problem 10.1 Let F be a fixed “forbidden” subgraph. Determine the maxi-
mum number ex (n, F) of edges, as a function of n, in graphs on n vertices
which do not contain F as a subgraph.

As long as n < |V (F)|, we certainly have ex (n, F) =
(

n
2

)

. It is also trivial
that ex (n,K2) = 0. Below we disregard from these cases. One can also
observe immediately that ex (n, P3) = ⌊n

2
⌋, because in a graph without P3,

any two edges must be vertex-disjoint. The first classical result concerning
ex (n, F) is the following one.

Theorem 10.1 If a graph G = (V,E) on n vertices contains no K3 as a
subgraph, then |E| ≤ ⌊n2/4⌋. Equality holds if and only if G is the complete
bipartite graph K⌈n/2⌉,⌊n/2⌋.

171

172 CHAPTER 10. EXTREMAL PROBLEMS

This result can be generalized for any F = Kp. In order to emphasize the
structural aspects, we first state the assertion concerning extremal graphs
rather than on extremum.

Theorem 10.2 (Turán’s theorem) For n ≥ p, the graph having the largest
number of edges without containing Kp as a subgraph is obtained by parti-
tioning the vertices into p− 1 classes V1, . . . , Vp−1 as equally as possible and
join two vertices by an edge if and only if they belong to distinct classes Vi, Vj

(1 ≤ i < j ≤ p− 1) In particular, we have

ex (n,Kp) =

(

n

2

)

−
p−2
∑

i=0

(⌊n+i
p−1
⌋

2

)

.

Interestingly enough, for every fixed p ≥ 3, the difference between this
expression and the value of ex (n,G) grows more slowly than n2 when n gets
large. Using asymptotic notation one can write this in the form

ex (n,G) =
χ(G)− 2

2(χ(G)− 1)
n2 + o(n2).

The formula in Theorem 10.2 may look somewhat complicated. Never-
theless, beside the particular case p = 3 of Theorem 10.1 it also gives a nice
formula for p = 4 :

Theorem 10.3 For every n ≥ 4 we have ex (n,K4) = ⌊n
2

3
⌋.

We have to note, however, that if G is bipartite, then the numerator
χ(G)− 2 and hence also the coefficient of n2 in the formula above becomes
zero. This is called the ‘degenerate case’ of Turán’s problem, and its asymp-
totic analysis is much harder than that for χ(G) ≥ 3. We shall see the
interesting example of C4 later.

10.2 A generalization and some proofs

There are many proofs known for Turán’s theorem, and they apply quite
different approaches. Hence this area also offers an instructive study for
methodology. Below we present some typical arguments.

One way to extend the theorem to a more sensitive formula is to observe
that an alternative summary of its message is:

If a graph has many edges, then its clique number is large.

10.2. A GENERALIZATION AND SOME PROOFS 173

The meaning of ‘many’ and ‘large’ can exactly be read out from the numer-
ical formulation of the theorem. Switching to complementary graphs, this
summary yields:

If a graph has few edges only, then its independence number is
large.

This version offers us the possibility to replace the global condition of ‘few
edges’ with a more sensitive bound which uses the degree sequence.1

Theorem 10.4 In any graph G = (V,E) we have

α(G) ≥
∑

v∈V

1

d(v) + 1
. (10.1)

First proof: Greedy selection of vertices. We apply the following algorithm:

• Initialize S := ∅.

• While V (G) 6= ∅, select a vertex v of minimum degree in G.

• Update S := S ∪ {v}.

• Update G := G− v −N(v).

That is, we delete all vertices adjacent to a selected vertex of minimum
degree. At the end of this procedure we have |S| at least as large as the
right-hand side of (10.1). Since S is independent, the theorem follows.

Second proof: Greedy deletion of vertices. We apply the following algorithm:

• While G is not edgeless, identify a vertex v of maximum degree in G.

• Update G := G− v.

At the end of this procedure we have an edgeless graph — that is, an inde-
pendent set — which has at least as many vertices as the right-hand side of
(10.1). Hence, the theorem follows.

Third proof: Probabilistic method. We take an ordering v1, v2, . . . , vn of
the vertices at random. That is, all permutations are taken with probability
1/n! . Define

vi ∈ S ⇐⇒ vivj /∈ E(G) for all 1 ≤ j < i.

1 Recall that the sum of vertex degrees is equal to the double of the number of edges.

174 CHAPTER 10. EXTREMAL PROBLEMS

We then have the probability

P(vi ∈ S) =
1

d(vi) + 1
.

Thus, the expected value of |S| is equal to the right-hand side of (10.1). We
can also observe that S is independent. Since expected value means weighted
average, the theorem follows. �

10.3 Routing

The problem discussed in this section has its motivation in sending messages
between nodes of a communication network. We assume throughout that
G = (V,E) is a connected graph (network). Messages have to be sent from
each vertex to every other vertex.

Notation 10.1 We denote by n the number of vertices and by m the number
of edges. The vertices of G are denoted by v1, . . . , vn.

Definition 10.1 A routing R is a collection of n(n − 1) paths Pi,j, one
path for each ordered pair (vi, vj) of vertices. Path Pi,j starts in vi and ends
in vj.

Remark 10.1 If G is a tree, then any vi, vj are connected by a unique path,
therefore R is completely determined by G. But if G contains at least one
cycle, then there are pairs vi, vj of vertices for which Pi,j can be specified in
more than one possible way.

Definition 10.2 Given a routing R on G = (V,E), the load of vertex vk ∈
V is the number of paths passing through vk but not having vk as an end;
that is, the number of ordered pairs (i, j) such that vk is an internal vertex
of Pi,j. The load of vk with respect to R is denoted by ξR(vk).

We measure the quality of a routing by the largest vertex load occurring
in it; the larger this value is, the higher forwarding capacity some vertices
of the network must have. For this reason our goal is to find routings in
which no vertex has very large load; and to design networks which admit
such routings.

Definition 10.3 The forwarding index of G, denoted by ξ(G), is the
smallest possible value of the largest vertex load, taken over all routings R of
G:

ξ(G) = min
R

max
1≤k≤n

ξR(vk).

10.3. ROUTING 175

We derive a general lower bound in terms of the distances d(vi, vj) between
the vertices.

Theorem 10.5 For every connected graph G with n vertices and m edges,

ξ(G) ≥ 2

n

∑

1≤i<j≤n

(d(vi, vj)− 1) ≥ n− 1− 2m

n
(10.2)

Proof: Let R be any routing. We first give a lower bound on the total
vertex load. If two vertices vi, vj ∈ V are at distance d(vi, vj) apart, then
every path connecting them — including Pi,j, too, that has been selected for
R — has at least d(vi, vj)− 1 internal vertices and hence contributes with 1
to the load of each of them. Moreover, each pair of vertices is connected by
two paths in R, one from vi to vj and one from vj to vi. Thus,

n
∑

k=1

ξR(vk) ≥ 2
∑

1≤i<j≤n

(d(vi, vj)− 1) .

Each term in the sum of the right side is nonnegative, and the term for (i, j)
is zero only if vivj is an edge. Therefore all the

(

n
2

)

unordered pairs i, j but
the m edges of G contribute with at least 1 to the sum, hence

2
∑

1≤i<j≤n

(d(vi, vj)− 1) ≥ n(n− 1)− 2m.

These inequalities are valid for all routings, moreover the largest vertex load
is not smaller than the average load, which is equal to 1/n times the sum
of loads. Consequently, lower bounds are obtained on ξ(G) if we divide the
expressions above by n. Thus, ξ(G) is at least as large as claimed in the
theorem. �

The second inequality in (10.2) holds with equality if and only if G has
diameter two. Indeed, otherwise the pairs of vertices at large distance apart
contribute to the sum of loads with large numbers.

Disregarding the constant −1, the rightmost side of inequality (10.2) tells
us that in order to have the forwarding index as small as about (1− c)n for
some constant c > 0 as n gets large, the network has to contain as many
as about cn2/2 direct connections, which means a dense structure. We now
prove that much fewer edges — namely, a little fewer than n3/2/2 + n/4 —
still suffice in order to keep ξ(G) under n.

Theorem 10.6 There exist graphs on n vertices, for infinitely many values
of n, which have maximum degree less than

√
n+ 1

2
and satisfy ξ(G) < n.

176 CHAPTER 10. EXTREMAL PROBLEMS

Proof: We apply a method very similar to the one which we used in the
construction of Galois planes. We consider n = q2 + q+1 vertices where q is
a prime power. We represent the vertices of G with homogeneous coordinate
triples (a, b, c) 6= (0, 0, 0) where a, b, c are elements of the Galois field GF (q).
For any (a, b, c) and any λ ∈ GF (q) \ {0}, the triples (a, b, c) and (λ ×
a, λ× b, λ× c) mean the same vertex. Two vertices (a, b, c) and (a′, b′, c′) are
adjacent in G if and only if

a× a′ + b× b′ + c× c′ = 0

holds in GF (q). We prove two properties of G, stated in separate Claims,
which are important in connection with the theorem to be proved.

Claim: Every vertex of G has degree q or q + 1.

Proof: We know from Chapter 9 on projective planes that the equation

a× x+ b× y + c× z = 0

has precisely q2 − 1 nontrivial solutions in (x, y, z), and they correspond to
(q2−1)/(q−1) = q+1 vertices. If all of them are different from (a, b, c) then
the vertex represented by (a, b, c) has degree precisely q +1 in G. Otherwise
— i.e., if a2 + b2 + c2 = 0 holds in GF (q) — the vertex has degree q. ♦

Claim: Graph G has diameter two.

Proof: Consider any two distinct vertices (a, b, c) and (a′, b′, c′). We view
them as points in the Galois plane PG(2, q). By axiom A1 of finite projective
planes we know that there exists a line [x, y, z] passing through these two
points. Then the vertex (a′′, b′′, c′′) defined by a′′ = x, b′′ = y, c′′ = z is
adjacent to both vertices (a, b, c) and (a′, b′, c′). Hence, any two vertices of G
are at distance at most two apart. ♦

Now we are in a position to complete the proof of the theorem. Denote by
v1, . . . , vn the vertices of G (which we represented by homogeneous triples).
Let vi, vj be any two vertices of G If vivj is an edge of G, let the paths Pi,j

and Pj,i be just the edge vivj in both directions; it does not load any vertex.
On the other hand, if vivj is not an edge, we can choose a common neighbor
vk of the two vertices and take the paths

Pi,j = vivkvj , Pj,i = vjvkvi.

These two paths load vk.
In this way a routing R has been defined. The load of a vertex is at most

the number of ordered pairs of vertices in its neighborhood, thus we have

ξ(G) ≤ (q + 1)q = n− 1.

10.4. THE TURÁN PROBLEM FOR 4-CYCLES 177

Moreover, all vertices have degrees at most

q + 1 <
√

q2 + q + 1 +
1

2
=
√
n+

1

2
.

This completes the proof of the theorem. �

Example 10.1 We illustrate the method with the case q = 2. The coordi-
nates of the vertices are then taken over GF (2), that means coordinates 0
and 1, with the exclusion of (0, 0, 0). Two vertices are adjacent if and only
if the number of positions where both of them have coordinate 1 is even (i.e.,
0 or 2).2 The graph obtained is exhibited in Figure 10.1.

Figure 10.1: Routing example for the q = 2 case

Remark 10.2 The routing defined in the proof of Theorem 10.6 for the graph
of Figure 10.1 is not optimal: it loads (1, 1, 1) with 6, its neighbors with 2,
and the vertices of the triangle with 4. Hence, if we replace one of the paths
of length 2 passing through (1, 1, 1) with a path of length 3 which then loads
two vertices of the triangle, we can reduce the maximum load from 6 to 5.
Nevertheless, those routings are nearly optimal for any large n because, by
(10.2), the lower bound ξ(G) ≥ n−√n− 3/2 is valid.

10.4 The Turán problem for 4-cycles

Interestingly enough, the previous construction gives a strong bound on
ex (n, C4), too. This is remarkable because in routings our goal is to min-
imize the number of edges, whereas in a Turán-type problem one wants to
determine the maximum.

2 This is because 0 + 1 = 1 and 1 + 1 = 0 in GF (2).

178 CHAPTER 10. EXTREMAL PROBLEMS

Theorem 10.7

lim
n→∞

ex (n, C4)

n3/2
=

1

2
.

Proof: We have to prove that, for every ε > 0, the quotient ex (n, C4) /n
3/2

is between 1
2
− ε and 1

2
+ ε if n is sufficiently large.

Upper bound: Let G = (V,E) be any graph on n = |V | vertices and m = |E|
edges, not containing C4 as a subgraph. The upper bound is based on the
following simple observation: If two distinct vertices v, w belonged to the
common neighborhood of two vertices x, y, then vxwy would be a 4-cycle in
G. Since this is excluded, for the number of vertex pairs in the neighborhoods
of the vertices we have

∑

v∈V

(

d(v)

2

)

≤
(

n

2

)

.

In the algebraic manipulations below we apply the well-known facts that
a21+···+a2n

n
≥
(

a1+···+an
n

)2
holds for all n-tuples of nonnegative real numbers (the

inequality between quadratic and arithmetic means) and that the degree sum
in every graph equals the double of the number of edges. Then we obtain

n(n− 1) ≥
∑

v∈V

d(v) · (d(v)− 1)

=
∑

v∈V

(

d(v)
)2 −

(

∑

v∈V

d(v)

)

≥ 1

n

(

∑

v∈V

d(v)

)2

− 2m

=
4

n
m2 − 2m.

This leads to the quadratic inequality

m2 − n

2
m− 1

4
n2(n− 1) ≤ 0

on m, from which we get the upper bound

m ≤ 1

2

√

n3 − 3

4
n2 +

1

4
n <

1

2
n3/2 +

1

4
n.

Lower bound: First we assume that n is of the form n = q2 + q + 1, where
q is a prime power. In this case we can take the graph G constructed in the

10.4. THE TURÁN PROBLEM FOR 4-CYCLES 179

proof of Theorem 10.6. Every vertex of G has degree at least q, which is
larger than

√
n− 1. Thus, the number of edges in G is at least 1

2
(n3/2 − n).

Claim: Graph G contains no 4-cycles.

Proof: Suppose for a contradiction that v1v2v3v4 is a 4-cycle in G. Recall
that the vertices are represented with homogeneous coordinate triples. In
this way we may associate them with points and lines of the Galois plane
PG(2, q). Let us assume without loss of generality that v1 and v3 are points,
while v2 and v4 are lines; say,

v1 = (a, b, c) = P1, v3 = (a′, b′, c′) = P2,

v2 = [x, y, z] = L1, v4 = [x′, y′, z′] = L2.

Due to the assumed adjacencies v1v2, v2v3, v3v4, v4v1 we can see that the scalar
products of all the four pairs of triples belonging to (Pi, Lj) with i, j ∈ {1, 2}
are equal to zero in GF (q). This implies, however, that the two points P1, P2

are contained together in both lines L1, L2. This contradicts the axioms of
finite projective planes. ♦

In this way the lower bound on ex (n, C4) follows if n is of the form q2+q+1
where q is a prime power. To handle the intermediate values of n we recall
a deep result from number theory. It is known that, for some appropriately
chosen constant c, every interval (x, x+cx0.525) contains a prime. If n is large,
we can simplify formulation by putting a somewhat larger exponent and then
we can disregard c. So, if q is a sufficiently large prime (or prime power),
then the interval (q, q+ q3/5) contains another prime, say q′. Performing the
analogous graph construction for q′, we have some number n′ > q2 + q+1 of
vertices, while the number of edges is less than

1

2
(q′ + 1)(q′2 + q′ + 1) <

1

2
(q + q3/5 + 1)((q + q3/5)2 + q + q3/5 + 1)

<
1

2
q3 + C · q13/5

for some constant C if q is large. Thus, if we add n′ − q2 − q − 1 isolated
vertices to G, we still have sufficiently many edges for this larger n′. This
completes the proof. �

Further reading

There are many textbooks on graph theory, and also the internet offers a
practically infinite source of related material. Here we mention only a couple
of books which are entirely free to download.

• J. A. Bondy and U. S. R. Murty, Graph Theory with Applications,
North-Holland (New York, Amsterdam, Oxford), 1976.

After some decades the authors made this book freely available and nowadays
it can be accessed at several sites, for example

http://cs.bme.hu/fcs/GTWA.pdf

(Accessibility of the original French site seems to be restricted at the time of
writing these notes.)

A more detailed textbook is

• R. Diestel, Graph Theory, Graduate Texts in Mathematics, Vol. 173,
Springer-Verlag (Heidelberg), 2005, 4th edition 2010.

http://diestel-graph-theory.com/index.html

The theory of directed graphs is thoroughly treated in

• J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Ap-
plications, Springer-Verlag (London), 2008.

http://www.cs.rhul.ac.uk/books/dbook/

Finally we mention the following textbook on combinatorial optimization,
which also contains some graph problems discussed in the present work:

• A. Schrijver, A Course in Combinatorial Optimization, 2013.

http://homepages.cwi.nl/ lex/files/dict.pdf

180

Index

Cn, 23
En, 22
Kn, 24
Kp,q, 24
L(G), 20
N(v), 12, 51
N+(v), 51
N+(v) in digraph, 52
N−(v), 51
Pn, 22
∆(G), 28
α(G), 33
χ′(G), 46
χ(G), 41
χ
ℓ
(G), 141

col(G), 75
δ(G), 28
ν(G), 43
ω(G), 29
G, 20
τ(G), 36
θ(G), 31
d+(v), 85
d−(v) in digraph, 52
k-choosable, 141
k-factor, 124
mc(G), 132
G[V ′], 12
PrExt, 139

adjacent, 11
adjacent vertices, 11

alternating path, 114
arc, 50

augmenting path, 114

binary tree, 19
bipartite graph, 17, 112, 129
blocking edge, 126

child, 19
choice number, 141
chordal graph, 79, 129
chordal supergraph, 87
chromatic index, 46
chromatic number, 41
clique, 28
clique covering, 31
clique covering number, 31
clique number, 29
color class, 41
coloring, 39
coloring number, 75
complement, 20
component, 16
connected graph, 16
cut, 132
cycle, 16

decomposition, 150
degree, 15, 52, 55

forward degree, 85
in-degree, 52
out-degree, 52

digraph, 50
strongly connected digraph, 52

directed cycle, 52
directed edge, 50

181

182 INDEX

directed graph, 50
directed path, 52
disconnected graph, 16

edge coloring, 46
proper edge coloring, 46

Euler’s formula, 148

factorization, 124
Fano plane, 164
finite field, 165
First Fit, 64, 75, 86
forwarding index, 174

Galois plane, 166
Galois’ theorem, 165
graph, 10

complete bipartite graph, 24
complete graph, 24
connected graph, 16
cycle graph, 23
directed graph, 50
disconnected graph, 16
empty graph, 22
path graph, 22
planar graph, 148
simple graph, 10
undirected graph, 10

Hall’s Condition, 118
Hall’s Theorem, 119
HC, 118
head of an arc, 50
Helly property, 58, 78

Helly property for intervals, 58
Helly property for subtrees, 78

in-degree, 52
in-neighbor, 51
incidence graph, 120
independence number, 33, 55
independent set, 55

independent vertex set, 33
induced subdigraph, 51
induced subgraph, 12
Integrality Conditions, 159
intersecting set system, 63
intersection graph, 70
interval graph, 71
interval system, 58
isolated vertex, 15
isomorphic graphs, 12
isomorphism, 12

Kőnig’s theorem, 113
kernel, 142

leaf, 19
length, 15, 16
levels of tree-like layouts, 17
line graph, 20
list coloring, 141
loop, 50

matching, 43, 55
maximum matching, 113
perfect matching, 118
stable matching, 126

matching number, 43, 55
maximum degree, 28, 55
minimum degree, 28, 55
monadic logic, 110

neighborhood, 12
nice tree decomposition, 94
node, 10, 88

forget node, 95
introduce node, 95
join node, 95
start node, 95

null graph, 11

offline algorithm, 137
online algorithm, 137

INDEX 183

order of a graph, 10
orientation, 53
oriented graph, 53
out-degree, 52
out-neighbor, 51

parent, 19
partite set, 17
path, 15
perfect graph, 128
Perfect Graph Theorem, 130
postorder traversal, 109
precoloring extension, 139
preorder traversal, 109
projective plane, 162
proper edge coloring, 46
proper vertex coloring, 41

regular graph, 15
root, 17
rooted tree, 17
routing, 174

SDR, 120
set system, 53

uniform set system, 54
sibling, 19
simplicial order, 79
simplicial vertex, 79
spanning subgraph, 19
spanning tree, 19
Stable Marriage Theorem, 127
star, 25
Steiner Triple System, 160
Strong Perfect Graph Theorem, 131
strongly connected digraph, 52
subdigraph, 51
subgraph, 12
subsystem, 54
supergraph, 87
system of distinct representatives, 120

tail of an arc, 50
transversal, 55
transversal number, 36, 55
transversal set, 36
tree, 17

binary, 19
rooted, 17

tree decomposition, 88
nice tree decomposition, 94
width of a tree decomposition, 89

tree-like layout, 17
treewidth, 89
Turán’s theorem, 172

underlying set, 53
underlying undirected graph, 53

vertex class, 17
vertex coloring, 39

proper vertex coloring, 41
Vizing’s Theorem, 122

Appendix A

Illustration of algorithms

A.1 Transversal and matching in interval sys-

tems

Algorithm

T := ∅,M := ∅, I := {I1, I2, . . . , In} with increasing right ends
while I 6= ∅ do
b′ := minIi∈I bi,
T := T ∪ {b′}
Select I ′ form {Ii ∈ I | bi = b′} arbitrary
M :=M∪ {I ′}
I := {I ∈ I | b′ 6∈ I}

end while
τ = |T |, ν = |M|, T is a smallest transversal set, and M is a largest
matching.

184

A.1. TRANSVERSAL AND MATCHING IN INTERVAL SYSTEMS 185

Example

In the example there are 7 intervals in I, as shown above.

In the first iteration the leftmost right endpoint (b′) is selected, which is the
right endpoint of the interval I1. Thus, b′ = b1 and I ′ = I1 , which are added
to the sets T andM, respectively: T = {b1} andM = {I1}.

186 APPENDIX A. ILLUSTRATION OF ALGORITHMS

In the last step of the iteration, all of the intervals that contain b′ = b1 are
removed from I. The only intervals remaining in I are I3,I6, and I7. As I
is not empty, a new iteration starts.

In the second iteration, the leftmost right endpoint is b3, thus T becomes
{b1, b3} and M becomes {I1, I3}. b3 is contained only by I3 among the
intervals still in I, thus, after the last step of the iteration I = {I6, I7}.

In the third iteration the leftmost right endpoint is b6, thus, T = {b1, b3, b6}
andM = {I1, I3, I6}.

A.2. DECOMPOSITION OF INTERVAL SYSTEMS INTO MATCHINGS 187

As b6 is contained in both I6 and I7, thus, after the last step of the iteration
I = ∅, and the algorithm quits the loop.

Finally, T = {b1, b3, b6} is a smallest transversal set, andM = {I1, I3, I6} is a
largest matching. Note that the set of intervals removed at the ends of each it-
eration form an intersecting subsystem. Thus, a decomposition of I into min-
imum number of intersecting subsystems is: {{I1, I2, I4, I5}, {I3}, {I6, I7}} .

A.2 Decomposition of interval systems into match-

ings

Algorithm

ϕ := ∅, I := {I1, I2, . . . , In} with increasing left ends
while Dom(ϕ) 6= I do
a′ := minIi∈I\Dom(ϕ) ai,
Select I ′ from {Ii ∈ I \Dom(ϕ) | ai = a′} arbitrary

188 APPENDIX A. ILLUSTRATION OF ALGORITHMS

k := min k∈Z+

∄I∈Dom(ϕ), a′∈I, ϕ(I)=k

k

ϕ := ϕ ∪ {(I ′, k)}
end while
ϕ is a minimal coloring of I

Example

In this illustrative example the interval system has 7 intervals as shown on
the figure above.

The iteration starts with the increasing order of the left endpoints. Interval
I2 has the smallest endpoint, thus I2 is added as the first element of the first
matching / color class, denoted here by red.

A.2. DECOMPOSITION OF INTERVAL SYSTEMS INTO MATCHINGS 189

The second smallest left endpoint belongs to I5. As I5 has intersection with
I2, it can not be added to the first (red) group, thus a new matching / color
is initialized for it. (Denoted by blue.)

The next smallest endpoint belongs to I1. It has intersection with both of
the previous intervals, thus, a new group is opened for it (green).

190 APPENDIX A. ILLUSTRATION OF ALGORITHMS

I4 is selected next and put to a new group, as it has intersection with I2, I5,
and I1 as well.

The next smallest left endpoint belongs to I3. It has intersection with I2 and
I5, thus it can not belong to the first two matchings. However, it has no
intersection with any intervals in the third one, thus I3 is assigned the green
color and put to the third matching.

A.2. DECOMPOSITION OF INTERVAL SYSTEMS INTO MATCHINGS 191

I6 is selected next, that has no intersection with I2, thus it can be put im-
mediately to the first matching.

Last, I7 is selected, that has intersection with I6, but no intersection with I5,
so it is put to the second matching.

192 APPENDIX A. ILLUSTRATION OF ALGORITHMS

The iteration is over, each interval is put into a matching / assigned a color.
The interval system is decomposed into 4 matchings / colored with 4 colors.
It is easy to see, that these 4 colors are necessary, as there are 4 intervals which
are pairwise intersecting: I1, I2, I4, and I5. (All of them contain, e.g., 10.)

A.3. OPTIMAL VERTEX ORDER FOR COLORING NUMBER 193

A.3 Optimal vertex order for coloring number

Example

As an example we take the graph from Figure 1. In this graph both v8 and
v12 have the minimum degree of 1. We select now v12 randomly to be at the
end of the optimal vertex order.

After removing v12 from the graph, v8 has the degree of 0, thus it must be
selected next.

194 APPENDIX A. ILLUSTRATION OF ALGORITHMS

After both v8 and v12 are removed, the edge v8v12 can be also added to the
partial graph at the bottom. Now, v7 and v9 have the minimum degree of 2,
we select v7.

After removing v7 the degree of v11 also decreases to 2, and it is selected as
the next vertex.

A.3. OPTIMAL VERTEX ORDER FOR COLORING NUMBER 195

After removing v11 the degree of v4 is also 2, it is selected as the next vertex.

Again, after removing v4 the degree of v3 decreases to 2, and it is selected as
the next vertex. Note that instead of any of the last three vertices, v9 could
have been selected. The selection between vertices with minimum degree is
arbitrary.

196 APPENDIX A. ILLUSTRATION OF ALGORITHMS

Now, the degree of v10 is reduced to 2, and it is selected as the next vertex.

After removing v10, the degree of v9 is reduced to 1, and each of the remaining
vertices has degree either 3 or 4, thus v9 must be selected for the next vertex
in the order.

A.3. OPTIMAL VERTEX ORDER FOR COLORING NUMBER 197

The remaining graph is a K4, thus all of its vertices have the same degree,
and all of the 4! orders of them would be acceptable for the beginning of the
optimal vertex order. We first remove v5,

and then, v6 is the second one.

198 APPENDIX A. ILLUSTRATION OF ALGORITHMS

Thirdly, v1 is removed,

and the last vertex is v2.

A.3. OPTIMAL VERTEX ORDER FOR COLORING NUMBER 199

In the optimal ordering of the vertices the largest d− value is 3, it is attained
only by v5. Therefore, the coloring number equals 4. Moreover, it is sure,
that the coloring with the First Fit algorithm will require at most 4 colors.
(Since the graph has a K4 subgraph, the 4 colors are definitely needed, i.e.,
the coloring obtained by the First Fit approach will be optimal.)

The coloring of the vertices proceeds from left to right, thus first v2 is colored
with the smallest possible color, that is blue in our case. In this example,
the order of the colors will be blue < green < cyan < red.

200 APPENDIX A. ILLUSTRATION OF ALGORITHMS

In order to make the evaluation easier, in the bottom graph the edges have
the same color as their left endpoint, thus the color of the current vertex can
be selected easier, as the prohibited colors appear on the edges ending at
that vertex. Vertex v1 is the next one to be colored, and it has a blue edge
(neighbor), thus the green color must be used for it.

Vertex v6 has both blue and green neighbors, thus it will need the color
cyan.

A.3. OPTIMAL VERTEX ORDER FOR COLORING NUMBER 201

Then, v5 has blue, green and cyan neighbors, thus it must be colored with
the next color, which is red.

Vertex v9 has only a red neighbor, thus it can be colored with the smallest
color, blue.

202 APPENDIX A. ILLUSTRATION OF ALGORITHMS

Vertex v10 has a blue neighbor, but does not have a green one, so the color
green can be used. Note that having a red neighbor does not influence the
selected color until all the smaller colors are used on one of the neighbors.

The next vertex v3 does not have a blue neighbor, thus it is colored with
blue.

A.3. OPTIMAL VERTEX ORDER FOR COLORING NUMBER 203

Now, v4 has two colored neighbors, and both of them are blue, hence v4 can
be colored with green.

Both of the colored neighbors of v11 have green color, none of them is blue,
thus v11 can be colored with it.

204 APPENDIX A. ILLUSTRATION OF ALGORITHMS

Vertex v7 has blue and green neighbors, thus the color cyan must be used
again.

Vertex v8 can be colored with blue, since it has no colored neighbors.

A.3. OPTIMAL VERTEX ORDER FOR COLORING NUMBER 205

Finally, v12 has only one blue neighbor, thus it can be colored with green.

Using the First Fit algorithm and a vertex order optimal for the coloring
number, the graph has been properly colored with 4 colors.

206 APPENDIX A. ILLUSTRATION OF ALGORITHMS

A.4 Large cut by local improvements

Algorithm

G := (V,E), X = V , Y = ∅
A := {v ∈ X | |N(v)∩X| > |N(v)∩Y |}∪{v ∈ Y | |N(v)∩X| < |N(v)∩Y |}
while A 6= ∅ do

Select v from A arbitrary
if v ∈ X then
X := X \ {v}, Y := Y ∪ {v}

else
X := X ∪ {v}, Y := Y \ {v}

end if
A := {v ∈ X | |N(v) ∩ X| > |N(v) ∩ Y |} ∪ {v ∈ Y | |N(v) ∩ X| <
|N(v) ∩ Y |}

end while
Cut size of the partition (X, Y) cannot be improved by switching the po-
sition of one vertex.

Example

In this illustrative example the graph has 7 vertices and 12 edges

A.4. LARGE CUT BY LOCAL IMPROVEMENTS 207

Initially all the vertices are in the partition class X, and all of them have
more neighbors in the same class than in the other, thus all of the vertices
are in the set A, denoted by blue in this illustration. The size of the cut is 0
at the moment. First move v1 to Y to increase the size of the cut.

The size of the cut increased to two. All the vertices except v1 still has more
neighbors in the same partition class. Continue the algorithm by moving v2
to Y , as it has 3 neighbors in X and only one in Y .

208 APPENDIX A. ILLUSTRATION OF ALGORITHMS

The size of the cut increased to 4, and v2 is also removed from the set A.
Now, we select v3 as the next vertex to move to Y , as it has 4 neighbors in
X and only one in Y .

Obviously, v3 is not in A anymore, as it is the vertex that has been moved
last. Moreover, vertices v4, v5 and v7 are also removed from A as they have
either equally many or fewer neighbors in X than in Y . Vertex v6 has two
neighbors in X, and only one in Y , thus it still remains in A. Additionally,
v1 is in A again, as it has now 2 neighbors in Y and none in X. Select v1
again, and move it back to X to increase the size of the cut, which was 7 at
this step.

A.4. LARGE CUT BY LOCAL IMPROVEMENTS 209

The size of the cut is increased to 9, and the only vertex contained in A is
v6, thus it is moved to Y .

Now, the size of the cut is 10 and A is empty, as each vertex has more
neighbors in the other partition class than in its own one. Therefore, the
partition with X = {v1, v4, v5, v7} and Y = {v2, v3, v6} is locally optimal.

210 APPENDIX A. ILLUSTRATION OF ALGORITHMS

Note that in this case the final cut is also globally optimal, as the graph
has two edge-disjoint cycles of length 3 and consequently, the size of the cut
cannot exceed 12− 2 = 10.

A.5 Large cut by the online approach

Algorithm

G := (V,E), X = Y = ∅
Fix a vertex order v1, v2, . . . , vn arbitrarily
for i = 1 to n do

if |N(vi) ∩X| > |N(vi) ∩ Y | then
Y := Y ∪ {vi}

else
X := X ∪ {vi}

end if
end for
Vertex set of G is partitioned into X and Y with the online approach

Example

The same example with 7 vertices and 12 edges is used here as in Section
A.4.

A.5. LARGE CUT BY THE ONLINE APPROACH 211

Initially, both X and Y are empty, none of the vertices is put into any of
them. First select v1. As it has neighbors neither in X nor in Y , put it into
X.

The next vertex selected is v2, which has one neighbor in X and no one in
Y , thus it is added to Y and the size of the cut is increased by 1.

212 APPENDIX A. ILLUSTRATION OF ALGORITHMS

Then, we choose v3. It has one neighbor in X and none in Y , thus it is put
into Y , just as v2 was in the previous step. Again, the cut is increased by 1.

Vertex v4 has two neighbors, v3 and v2, both of them are in Y , hence v4 is
put into X and the cut is increased by 2.

A.5. LARGE CUT BY THE ONLINE APPROACH 213

As v5 has two neighbors in Y and only one in X, it must be put into X, and
the size of the cut is increased by 2.

The next vertex v6 has one neighbor in both of the partition classes, thus the
algorithm puts it into X, and the cut is increased by 1.

214 APPENDIX A. ILLUSTRATION OF ALGORITHMS

Finally, v7 has 2 neighbors in Y and only one in X thus we put it into X,
and the size of the cut increases by 2.

Now X ∪ Y = V , i.e., each vertex is added to some partition class and the
loop quits. At the end, the size of the cut is 9, that is not optimal, not even
locally, as moving v6 to Y would increase the size by one. Note that the
result of this approach is dependent on the order of selection of the vertices.
For example, if v7 is placed before v6 in the order, then v7 is added to X.
In this case, v6 has more neighbors in X than in Y , thus it is added to Y .
This results in an optimal vertex partition. On the other hand, if the order
of the vertices was v7, v6, . . . , v2, v1, the partition classes obtained would be
X = {v7, v5, v3, v1} and Y = {v6, v4, v2}, and the cut would be of size 8.

A.6. SUBTREE REPRESENTATION OF CHORDAL GRAPHS 215

A.6 Subtree representation of chordal graphs

Example

The above graph of order 8 is taken for illustration. The graph has a number
of simplicial sequences, the one that we will use is:

v3, v1, v2, v7, v5, v4, v6, v8.

Colors are assigned to each vertex to make the intersection of subtrees more
visible. For the construction of the tree the reverse of the simplicial order
must be used, thus we start with v8.

Initially the graph is empty, v8 has just been added (denoted by thickened
border). The construction of the tree starts with introducing node x1. This
node will be present in the subtree representing v8, thus it is denoted by red.
(In the Figures, the left and right trees correspond to the state of the subtree
systems before and after adding the current vertex.)

216 APPENDIX A. ILLUSTRATION OF ALGORITHMS

The next vertex to be added is v6, which is adjacent with v8. The simplest
way to obtain the edge v6v8 in the intersection graph of the subtree system
is, if that single node in the tree becomes also part of the subtree belonging
to the vertex v6. (Note that other options are also available, e.g., a new node
could have been introduced to the tree, that is adjacent with x1, and the
subtree for v6 would have been the whole tree including both x1 and x2.)

The next vertex is v4, which is the neighbor of both previous vertices. Hence,
the simplest way to extend the subtree system is to include x1 in the subtree
for v4 as well.

A.6. SUBTREE REPRESENTATION OF CHORDAL GRAPHS 217

The next vertex in the reverse simplicial order is v5, that is adjacent to v4
and v8, but it is not a neighbor of v6. As a result, x1 cannot be a part of the
subtree for v5, and the tree must be extended with a further vertex x2, where
the subtrees belonging to v8, v4, and v5 intersect. However, to maintain the
tree properties of the assigned subgraphs, x1 and x2 must be adjacent, and
the edge between them must be included in the subgraph corresponding to
v4 and v8 as well.

The next vertex v7 is adjacent with both v5 and v8. However, it is not a
neighbor of v4 and therefore, node x2 cannot be a part of the subtree of v7.
Similarly to the previous case, a new node, x3 is introduced and added to the
subtree of v7. Moreover, we make x3 and x2 to be adjacent, and this edge
becomes the part of the subtrees belonging to v5 and v8.

218 APPENDIX A. ILLUSTRATION OF ALGORITHMS

The next vertex, v2 is the neighbor of v4 and v6. The intersection of the
subtrees representing v4 and v6 contains only the node x1. However, x1 also
belongs to the subtree for v8, whilst v8 is not connected to v2. Then, as in
the previous cases, a new node, x4 should be introduced in the tree for v2
and the subtrees of v4 and v6 should be extended by x4.

The next vertex is v1, the neighbor of v2 and v4. As v1 is not adjacent with
v6, a new node, namely x5 is introduced for v1, and the trees of v2 and v4 are
extended by it.

A.6. SUBTREE REPRESENTATION OF CHORDAL GRAPHS 219

Finally, v3 is added to the graph. This vertex is adjacent with v6 and v2.
We observe that the two subtrees representing v6 and v2, respectively, share
only the node x4, but x4 is also included in the subtree for v4, which is not
adjacent with v3. Therefore, the tree is extended by x6, similarly to the
previous steps.

220 APPENDIX A. ILLUSTRATION OF ALGORITHMS

The intersection graph of the resulting subtree system yields the original
graph.

