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Abstract

In the model of continuum percolation points are placed in the
plane according to a Poisson process of density one and two of them
P1, P2 are joined if P1 lie within the fixed symmetric open set A cen-
tered at P2. In this paper we define a model in which a line segment lP
of length 2L is centered at each point P and the angle of lP and the x-
axis is uniformly distributed over the interval [0, π] independently from
the other line segments. Two points P1, P2 are joined if lP1∩lP2 6= ∅. We
derive bounds on Lc, the critical length for percolation in this model.
We also consider some related models, where further conditions are
posed on either the angles of the line segments or the placement of the
points or both.

1 Introduction
In this paper we address percolation problems defined by Poisson pro-

cesses in the plane. In Section 2, we consider the following model: let us con-
sider a Poisson process Λ of density 1 and at each point P of Λ let us draw a
line segment lP (which we will call stick) of length 2L centered at the point
such that the angle θ of the line and the x-axis is uniformly distributed over
the interval [0, π]. We address percolation problems in the graph G = G(L)
corresponding to this process, i.e. V (G) = Λ and two vertices are joint by an
edge if and only if the line segments belonging to them intersect each other.
Models where line segments are replaced by discs or other symmetric open
sets in R2 were introduced by Gilbert [3] and widely studied ever since (for
references see [4],[7]).

The main motivation for changing discs to line segments is that one can
consider the points of the Poisson process as sensors. It is natural to calculate
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with a circular sensing region, however laser sensors or guards looking in one
direction should be modeled in the way described above. Note that centering
the sticks at the points of the Poisson process or considering Λ as endpoints
of the sticks does not make any difference, we chose to present our theorems
in this way is easier comparison to results about the original model where
bounds are established on the radius of the disc.

The rest of the paper is organized as follows: in section 2, we will obtain
lower and upper bounds on the critical length

Lc = inf{L : P(G(L) contains an infinite component) > 0}

and we derive an asymptotic formula for the expected area of the hole around
the origin, the component of the origin in R2 \ ⋃

P∈Λ lP . Note that in the
scenario of laser sensors, the latter can be interpreted as the expected area
where an object may move without being noticed by any of the sensors.

In Section 3, we discuss similar but more restricted models, where the
sticks must be either horizontal or vertical or the Poisson process takes place
only in the 2-dimensional grid, i.e. in lines of the form x = a or y = b
(a, b ∈ N).

2 Sticks in the plane
In this section we consider problems involving the process Λ. In the first

subsection, we derive bounds on Lc, while in the second subsection, we show
how large is the component of the origin in R2 \⋃

P∈Λ lP .

2.1 Bounds on Lc

The aim of this subsection is to prove the following theorem.

Theorem 2.1. The following inequalities hold:

0.62665 ≤ Lc ≤ 5.7135

Proof : To obtain the upper bound on Lc let us define a bond percolation
measure µt

L on Z2. For any vertex (a, b) ∈ Z2 and any 0 < t < 1/
√

2, let
us define St

a,b = [(a − 1/2)tL, (a + 1/2)tL] × [(b − 1/2)tL, (b + 1/2)tL]. The
bond ((a, b), (a + 1, b)) is open if an only if there are two points P1, P2 of the
Poisson process with P1 ∈ St

a,b ∪ St
a+1,b, P2 ∈ St

a,b such that the following two
conditions hold: (a) the stick centered at P1 crosses both the left side of St

a,b

and the right side of St
a+1,b (we call this the long stick of the edge) and (b)
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the stick centered at P2 crosses both the upper and lower side of St
a,b (which

we call the short stick of the edge).
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(atL,btL)

((a+1)tL,btL)

Figure: configuration showing a bond is open
Similarly, the bond ((c, d), (c, d + 1)) is open if an only if there are two

points Q1, Q2 of the Poisson process with Q1 ∈ St
c,d ∪ St

c,d+1, Q2 ∈ St
c,d such

that the following two conditions hold: (a) the stick centered at Q1 crosses
both the lower side of St

c,d and the upper side of St
c,d+1 and (b) the stick

centered at Q2 crosses both the left and right side of St
c,d.

Proposition 2.2. (i) The percolation measure µt
L is 1-dependent, i.e. the

state of any set S of bonds is independent of the states of any other set T of
bonds if no bond in T shares a common vertex with any bond in S.

(ii) If Z2 contains an infinite open cluster, then G(L) contains an infinite
component.

Proof : By definition the state of an edge ((a, b), (a + 1, b)) depends only on
Λ ∩ (S(a,b) ∪ S(a+1,b)). The squares Su partition the plane from which (i)
follows. To see (ii) note that if e1, e2, ... is an infinite open path in Z2, then
the corresponding long sticks are in the same component of G(L) as if ei, ei+1

are perpendicular, then the long sticks intersect, while if they are parallel,
then they intersect the same short stick. ¤

We will use the following theorem of Balister, Bollobás and Walters [2].

Theorem 2.3. In any 1-dependent bond percolation measure on Z2 in which
every bond is open with probability at least 0.8639, there exists an infinite
open cluster with positive probability. ¤

Let us compute the probabilities that conditions (a) or (b) are not sat-
isfied, thus the bond ((a, b), (a + 1, b)) is closed. Clearly, to satisfy condi-
tion (a) for the angle θ of the stick at P1 and the x-axis we must have
− arctan(1/2) ≤ θ ≤ arctan(1/2). Also the distance of P1 from both the left
side of St

a,b and the right side of St
a+1,b cannot exceed L cos θ. Therefore by

3



symmetry the probability that condition (a) is not satisfied is

pt
1(L) = exp

(
− 2

π

∫ arctan 1/2

0

2L(cos θ − t)L(t− 2t tan θ)dθ

)
=

exp
(
− 4tL2

π

(
sin(arctan 1/2) + 2 cos(arctan 1/2)− t arctan(1/2)−

2t log(cos(arctan 1/2))− 2
))

=

exp

(
−4tL2

π

(√
5− 2− t

(
arctan(1/2) + 2 log(2/

√
5)

)))
.

To satisfy condition (b) the angle θ of the stick centered at P2 and the y-
axis must be in [−π/4, π/4]. Thus by symmetry the probability that condition
(b) does not hold is

pt
2(L) = exp

(
− 2

π

∫ π/4

0

tL (tL− tL tan θ) dθ

)
=

exp

(
−2t2L2

π

(
π/4 + log

√
2

2

))

By Theorem 2.3 and Proposition 2.2 we obtain that if pt
1(L) + pt

2(L) ≤
1−0.8639 = 0.1361 holds, then with positive probability G(L) has an infinite
component an thus Lc ≤ L. Choosing t = 0.63 gives the bound Lc ≤ 5.7135.

For the lower bound note that the expected value of the degree of any
point p ∈ Λ = V (G(L)) is

1

π

∫ π

0

4L2 sin θdθ =
8L2

π
,

which is smaller than 1 if L < 0.62665. If L is such, then we can couple
the graph process to a branching process in a standard way. Let Du denote
the random variable that counts the number of neighbors of u ∈ Λ in G(L).
Clearly, Du = Dv for any u, v ∈ Λ and by our assumption on L we have
E(Du) < 1. The branching process for the coupling is as follows: we pick an
arbitrary point p in Λ = V (G(L) and then we “expose” its neighbors, i.e.
consider the random variable Dp. We declare p dead and its Dp neighbors
living. At each step we expose the neighbors of a living vertex, declare the
neighbors living and the vertex dead. Since two vertices in Λ might have
common neighbors, we have that if this branching process dies out after
finitely many steps, then the component of p in G(L) is finite. It is well-
known that a branching process dies out after finitely many steps if and only
if the expected number of the children of an individual is at most 1, which
proves the theorem. ¤
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2.2 Parameters of cells

In this subsection we derive lower and upper bounds on the area and
diameter of cells. Either we will consider the cell of the origin and determine
the expected value of the parameter or we will consider a square of area A
(or more precisely, a torus of area A as we do not want to consider boundary
effects) and address the problem of finding the maximum value that the
parameter takes over the cells in the square. In order to avoid situations
where a stick crosses the whole square it is reasonable to pose the assumption
A = ω(L2). Before getting into the details, we establish some lemmas that
will be helpful during the proofs.

2.2.1 Basic lemmas

Lemma 2.4. The probability that a line segment of length l is not crossed
by any stick is e−

4lL
π .

Proof : Conditioning first on the angle of the stick, then seeing where the
center must be, we obtain that the expected number of crossings is

1

2π

∫ 2π

0

2lL| cos α|dα =
4lL

π
.

The statement follows from the fact that the number of crossings has Poisson
distribution. ¤

In the following 2 lemmas we prove that for some random variable X we
have E(X2) = o(E2(X)) and thus by Chebyshev’s inequality X is concen-
trated around its mean. Intersections of sticks will be called stick intersection
points. The following lemma states that their number is concentrated around
its mean.

Lemma 2.5. With high probability the number of stick intersection points is
4+o(1)

π
AL2.

Proof : Let Y denote the number of sticks and X denote the number of stick
intersection points. Clearly, we have X ≤ (

Y
2

)
. By the proof of Lemma 2.4, the

expected number of stick intersection points on one fixed stick is 8L2/π. Thus
we have (1+o(1))E(X) = E(X|Y ≥ (1−o(1))A) ≥ 4+o(1)

π
AL2. On, the other

hand, for any ε > 0 we have e−A
∑∞

k=(1+ε)A
k2Ak

k!
→ 0, thus E(X) = 4+o(1)

π
AL2.

To conclude the lemma we have to show that E(X2) = (1+o(1))E2(X). As
for any ε > 0 we have e−A

∑∞
k=(1+ε)A

k4Ak

k!
→ 0, we have to prove E(X2|Y =
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(1 + o(1))A) = (1 + o(1))E2(X). Observe that

X =
∑

1≤i<j≤Y

Xi,j,

where Xi,j denotes the indicator variable of the event that the ith and jth
sticks intersect. Now the lemma follows as Xi,j and Xi′,j′ are independent
unless {i, j} = {i′, j′}. ¤

Intersection points of sticks and circles of radius R around stick inter-
section points will be called R-circle-stick intersection points. The following
lemma states that their number is also concentrated around its mean.

Lemma 2.6. Let R = π
4

log(AL2)
L

. Then there exists a constant c such that
if log(AL4) = o(L2), then with high probability the number of R-circle-stick
intersection points is at most cAL2 log(AL4).

Proof : First note that by Lemma 2.5 we may only consider circle-stick in-
tersection points defined by 3 different sticks. Let Z denote the number of
circle-stick intersection points and Y denote the number of sticks. Clearly,
we have Z = O(Y 3) and thus as e−A

∑∞
k=(1+ε)A

k3Ak

k!
→ 0, we might suppose

that Y = (1 + o(1))A.
Let us write Z =

∑
1≤i,j,k≤Y Zi

j,k, where Zi
j,k is the indicator variable

of the event that the ith stick crosses the circle around the (existing!) in-
tersection point of the jth and kth stick. It is easily seen that P(Zi

j,k =

1) = Θ(L2 log(AL2)
A2 ) and thus E(Z) = Θ(AL2 log(AL2)). Clearly, if |{i, j, k} ∩

{i′, j′.k′}| ≤ 1, then Zi
j,k and Zi′

j′,k′ are independent, while if the intersection
has size 2, then P(Zi

i,jZ
i′
j′,k′) = O(L4 log2(AL2)

A3 as Zi
j,k = 1 must hold and the

center of the stick of which the index is in {i′, j′, k′} but not in {i, j, k, }
must lie within distance c2(L+log(AL2)) from the centers of the other sticks
involved. The number of such pairs Zi

j,k, Z
i′
j′,k′ is O(A4) and thus the sum of

the summands belonging to nonindependent products in E(Z2) is o(E2(Z)).
¤

2.2.2 The maximum diameter and area of cells in a large square

Let dA,L denote the largest diameter and aA,L denote the largest area that
a cell has in a square of area A when sticks have length 2L.

Theorem 2.7. If A = ω(L2+δ) for some δ > 0, then with high probability
there exists 2 stick intersection points at distance at least

π

4

(
log(AL2)

L
− 4

log log(AL2)

L

)
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such that the line segment between them is not crossed by any stick.

Proof : By Lemma 2.4, the probability that the line segment between 2 stick
intersection points at distance between D := π

4

(
log(AL2)

L
− 4 log log(AL2)

L

)
and

D′ := π
4

(
log(AL2)

L
− 3 log log(AL2)

L

)
is not crossed by any stick is log /3(AL2)

AL2 . Let
us denote the number of such pairs by W . By Lemma 2.5 the number of stick
intersection points is w.h.p 4+o(1)

π
AL2 and thus (as the expected number of

stick intersection points in a set S depends only on the area of |S|) we have

E(W ) ≥ 8− o(1)

π2
log4(AL2) log log(AL2).

Lemma 2.8. Let P1, P2 and P3, P4 be 2 pairs of stick intersection points
both at distance between D and D′ such that at least one of P3 and P4 is at
distance ε = ω( log log(AL2)

L
) from the line segment P1P2. Let E1,2 (E3,4) denote

the events that the line segment P1P2 (P3P4) is not crossed by any stick. Then
(i) there exists a constant c such that P(E1,2|E3,4) ≤ e−cεL if ε = o(D),
(ii)) if ε = KD for some constant K P(E1,2|E3,4) ≤ e−(1−δ(K)) 4

π
DL such

that δ(K) → 0 as K →∞,
(iii) P(E1,2|E3,4) = e−

4
π

D′Lif ε > D + 2L.

Proof of Lemma: First note that (iii) is trivial as the centers of all sticks
that can have any effect on a line segment should lie within distance L of the
line segment.

Observe the following:
(a) if one of P3, P4 is at least x away from the line segment e, then at

least 1/3 of the line segment P1P2 is x/2 away from e (e and P1P2 might
cross!),

(b) if dist(P, e) = x, then the viewing angle of e from P is at least
2 arctan( d

2x
) and if E3,4 holds, then on any line f containing P not meeting e

there should not be any point Q ∈ Λ with lQ parallel with f and dist(P,Q) <
L. Note again that the nonexistence of such Q is not assured by E1,2.

Now to prove (i) let us use (a) with x = ε and (b) with x = ε/2 to obtain
that the expected number of sticks crossing P3P4 even if E1,2 holds is at least

∫ arctan( ε
D

)

0

2

3
sin αDL ≥ cεL.

Then the statement of (i) follows as (just as in Lemma 2.4) the number of
such sticks has a Poisson distribution.

The proof of (ii) follows the same lines, to show that δ(K) → 0 note that
as K →∞ we have dist(P3P4, e) ≥ (K − 1)D and thus the viewing angle of
e from any point of P3P4 tends to 0 (uniformly). ¤
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To finish the proof of Theorem 2.7 let us fix 2 stick intersection points
P1, P2 at distance between D and D′ and let us denote the line segment
between P1 and P2 by e. Furthermore, let W1 denote the number of pairs
P3, P4 of stick intersection points both at distance between D and D′ such
that both of them within distance log2 log(AL2)

L
from e and their line segment

not crossed by any stick, let W2 denote the number of pairs P3, P4 of stick
intersection points both at distance between D and D′ with log2 log(AL2)

L
<

dist(P3P4, e) < D +4L such that their line segment not crossed by any stick,
and let W3 denote number of pairs P3, P4 of stick intersection points both at
distance between D and D′ with dist(P3P4, e) ≥ D + 4L such that their line
segment not crossed by any stick.

Clearly, we have W = W1 +W2 +W3. Let us bound E(Wi|E1,2) i = 1, 2, 3.
Just by the expected number of pairs of stick intersection points at the right
distance, we have E(W1|E1,2) ≤ log(AL)2 log2 log(AL2). By the last part of
Lemma 2.8, we know that E1,2 and E3,4 are independent if both P3, P4 are
further than D + 2L from e and thus E(W3|E1,2) ≤ E(W ).

To bound E(W2|E1,2), we distinguish 2 cases. First, let us assume that
L < 10D. Then for any ε < D + 2L we have 2ε(D + ε) ≤ 50Dε and thus by
Lemma 2.8 we have

E(W2|E1,2) ≤
∫ D+2L

0

50DL2 log(AL)2e−cεLdε = O(log2(AL)2).

Now assume L > 10D. Then choosing a large enough K and using the
assumption A = ω(L2+δ) for some positive δ and Lemma 2.8 we obtain

E(W2|E1,2) ≤
∫ KD

0

3K2DL2 log(AL)2e−cεLdε + O

(∫ D+2L

KD

εL2 log(AL)2e−
4
π

DL

)
=

O(log2(AL)2) + o(1).

Putting the above bounds together, we obtained

E(W |E1,2) = (1 + o(1))E(W ).

As E(W 2) = E(WE(W |E1,2)), we are done by Chebyshev’s inequality. ¤

Theorem 2.9. If log(AL2) = o(L2), then for any ε > 0 we have dA,L ≤
(1 + ε)π

4
log(AL2)

L
w.h.p.
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Proof : The diameter of any cell is attained at two stick intersection points,
thus it is enough to prove that any cell belonging to a stick intersection point
P is contained in the circle C of radius (1+ε)π

4
log(AL2))

L
with center P . To do so

we show that there is a stick that intersects C and all stick-circle intersection
points are separated from P , where being separated means that there is a
stick with both endpoints outside C that crosses the line segment between P
and the stick-circle intersection point. The former statement is trivial as P is
a stick intersection point, thus as log(AL2) = o(L2) implies log(AL2)

L
= o(L),

the sticks that define P must intersect C. Let us choose ε′ > 0 such that
(1 + ε)(1− ε′) > 1 holds. Then by Lemma 2.4 we obtain that the probability
that one particular stick-circle intersection point is not separated from the
center of the circle even with sticks of length 2(1 − ε′)L is (AL2)−(1+ε)(1−ε′)

and thus, by Lemma 2.6, the probability that this happens for at l stick-
circle intersection point tends to 0. Finally, note that as log(AL2)

L
= o(L), the

endpoints of these sticks lie outside the circle. ¤

By Theorem 2.7 and Theorem 2.9 we can determine dA,L asymptotically
if log(AL2) = o(L2) holds.

Corollary 2.10. If log(AL2) = o(L2), then with high probability we have

dA,L = (1 + o(1))
π

4

log(AL2)

L
.

Another immediate consequence of Theorem 2.9 is the following upper
bound on aA,L.

Corollary 2.11. If log(AL2) = o(L2), then for any ε > 0 we have aA,L ≤
(1 + ε)π3

64
log2(AL2)

L2 w.h.p.

The following theorem is the analogue of Theorem 2.7. As its proof differs
from that of Theorem 2.7 only by replacing Lemma 2.4 by a statement on
the probability of no sticks meeting a circle, we omit the proof.

Theorem 2.12. If A = ω(L2+δ) for some δ > 0, then with high probability
there exists 2 stick intersection points at distance at least

1

2

(
log(AL2)

L
− 4

log log(AL2)

L

)

such that the circle of which a diameter is the line segment between them is
not intersected by any stick.
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2.2.3 The area of the cell around the origin

In this subsection we derive lower and upper bounds on the expected area
A of the cell around the origin, namely we prove the following theorem.

Theorem 2.13. The expected area of the cell around the origin is

π3

8L2
+ o(1/L2).

Proof : To obtain the lower bound we compute the expected area of the set
S containing the origin with the property that whenever s ∈ S, then the
segment from s to the origin is not crossed by any stick. We will call S the
star-set around the origin.

Let us fix a point Q and a half line starting from Q. By Lemma 2.4, the
probability that no stick crosses the half line within distance R is

e−
1
π

∫ π
0 2RL| cos θ|dθ = e−

4RL
π . (1)

Therefore the expected area of the star-set around the origin is

π

∫ ∞

0

e−
4L
π

√
RdR = π

∫ ∞

0

2xe−
4L
π

xdx =
π3

8L2
.

To obtain the upper bound let us define the following events: E1 is the
event that the cell around the origin is contained in the disc D of radius L−2/3

centered at the origin, E2 is the event that for any boundary point P of D
there is a stick crossing D that separates P from the origin, E3 is the event
that D does not contain any endpoint of the sticks, E4 is the event that the
cell around the origin is the star-set around the origin. Clearly E2 ⊂ E1 and
E2 ∩E3 ⊂ E4, furthermore to ensure that all boundary points are separated
from the origin, it is enough to prove that all the intersection points of the
boundary and any stick are separated from the origin and that there exists
at least one such intersection point.

It is enough to prove that

P(E1 \ E4)L
−4/3 = o(L−2), (2)

P(E1)E(A|E1) = o(L−2). (3)

Let B be a disc of radius R and let Q be a point on its boundary. The
probability that no stick separates Q from the center of B is at most

e−
1
π

∫ π
0 (2L−2R)R| cos α|dα = e−

4
π

(L−R)R. (4)
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The expected number of sticks that intersect a disc B of radius R is
4RL + R2π (again, condition first on the angle of the stick, then see where
the center must be). Since the number XB of such sticks is a Poisson random
variable, we obtain that (a) P(XB = 0) = exp(−(4RL+R2π)) and if R ¿ L,
then (b) P(XB > 8RL) ≤ exp(−cRL) for some constant c.

Using (a), (b) and 4 with R = L−2/3 we obtain that for L large enough
we have

P(E2) ≤ 8L1/3e−L1/3

+ e−L1/3

+ e−cL1/3

= e−Ω(L1/3).

Furthermore P(E3) = e−2πL−4/3 . Thus

P(E1 \ E4)L
−4/3 ≤ P(E4)L

−4/3 ≤ (P(E2) + P(E3))L
−4/3 =

(
e−Ω(L1/3) + O(L−4/3)

)
L−4/3 = O(L−8/3),

which proves 2.

We still have to prove 3. Note that by the above we have P(E1) ≤ P(E2) =

O(e−L1/3
). We will use 1-dependent percolation on Z2 defined in the previous

section and apply the following lemma.

Lemma 2.14. In any 1-dependent bond percolation measure on Z2 in which
every bond is open with probability at least 0.95, there exists an open cycle sur-
rounding the origin within distance 2k+1 with probability at least 1−10k+12−2k

for any positive integer k.

Proof : In the proof of Theorem 2.3, Balister, Bollobás and Walters define
10 pairs of non-adjacent bonds of the rectangle Tu ∪ Tv where Tu = {u, u +
(0, 1), u+(1, 0), u+(1, 1)} and u and v are adjacent sites in (2Z)2 and declare
the bond (u, v) open in a new 1-dependent percolation on (2Z)2 if in all pairs
at least 1 of the bonds were open in the original percolation measure. Thus
the probability that a bond is closed in the new percolation measure is at
most 10q2, where q denotes the probability that a bond was closed in the
original percolation measure. By repeating the procedure k + 1 times we
obtain a measure on (2k+1Z)2 where the probability of a bond to be closed
satisfies 10q′ < 10k+12−2k (here we used the assumption that 10q < 0.5 from
the beginning) and in which if the origin is surrounded by an open cycle
immediately (i.e. the 8 sites around form an open cycle), then there exists
an open cycle surrounding the origin within distance 2k+1 in the original
percolation measure. But this happens with probability at least 1 − 8q′ >
1− 10k+12−2k . ¤
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Since in the 1-dependent percolation measure defined in the previous
section, St

u has side-length tL for some constant t, by Lemma 2.14 we obtain
that if t is large enough to make the probability q of a bond being closed small
enough to satisfy 10q < 0.5, then the probability that the area of the cell
around the origin is not contained in the surrounding square of side-length
2k+1tL is at most 10k+12−2k .

P(A ≥ (2k+1tL)2|E1) ≤ 10k+12−2k

and thus

E(A|E1) ≤ 1 +
∞∑

k=2

(2k+1tL)4P
(
A ≥ (2k−1tL)2|E1

) ≤ K · L4

for some constant K that does not depend on L. Therefore we have

P(E1)E(A|E1) = O
(
e−L1/3

L4
)

which proves 3. ¤

2.3 Stick length tending to 0

In this subsection we address the problem when L tends to 0 and show
that in this case µλ,L behaves very much like the original independent bond
percolation on Z2. To state this result precisely we introduce the following
two quantities.

λ′c(L) := inf{λ : µλ,L(the bond ((0, 0), (1, 0))is open) ) > 1/2},

λ′′c (L) := inf{λ : µ′′λ,L(the bond ((0, 0), (1, 0))is open )) > 1/2},
where µ′′λ,L is the bond percolation on Z2 in which a bond is declared to be
open if the corresponding line segment is covered by sticks centered at points
inside the line segment. Clearly we have λ′c(L) ≤ λ′′c (L).

Proposition 2.15. If L tends to 0, then we have

(1 + o(1))λ′c(L) = λ′′c (L) = (1 + o(1))λc(L) = (1 + o(1))
| log L|

2L
.

Proof : In µ′′λ,L the bond ((0, 0), (1, 0)) is open if and only if (a) there are
points (x1, 0) and (x2, 0) with x1 ∈ [0, L] and x2 ∈ [1−L, 1] and (b) any two
consecutive points on the line segment ((0, 0), (1, 0)) are within distance 2L.
These distances are independent of each other, and we know that as L tends

12



to 0, the number of points on the line segment is λ+O(λ2/3) with probability
tending to 1. Therefore the probability that condition (b) is satisfied is (1−
e−2λL)λ+O(λ2/3) + f(L), where f(L) tends to 0 as L tends to 0. Using the fact
that 1 + z ∼ e−z as z tends to 0, we obtain that condition (b) is satisfied
with probability tending to 1/2 if λ = (1 + o(1)) | log L|

2L
. The probability that

condition (a) does not hold is 2eλL − e2λL which tends to 0 for λ = (1 +

o(1)) | log L|
2L

. This proves the equation λ′′c (L) = (1 + o(1)) | log L|
2L

.
To see (1 + o(1))λ′c(L) = λ′′c (L) note that for ((0, 0), (1, 0)) to be open in

µλ,L, condition (b) still must hold.
In µ′′λ,L the state of every bond is independent of that of the others,

thus µ′′λ,L is simply the ordinary independent bond percolation model. The
Harris-Kesten theorem [5],[6] states that percolation occurs if and only if
bonds are open with probability higher than 1/2. Thus we have λc(L) ≤
λ′′c (L). The bond percolation µλ,L is 1-dependent (i.e. the state of any bond
is independent of the set of all bonds that do not share a common site with).
We know that the probability of an infinite component is 0 if the probability
of an edge to be open is less than 1/c2, where c is the connective constant
of Z2. The above computations show, that if λ ≤ (1 − ε) | log L|

2L
for any fixed

positive ε, then the probability of a bond to be open tends to 0. This proves
λc(L) = (1 + o(1))λ′′c (L). ¤

2.4 Stick length tending to ∞
In this subsection we consider the case of large stick length. We will com-

pare the percolation process to another process that takes place in the plane
and connect in this way Section 2 and 3. Given two independent Poisson
processes in the plane Λh, Λv, each of density λ, for any P = (p1, p2) ∈ Λh

let us draw a horizontal stick of length 2L centered at P (i.e. the line
segment from (p1 − L, p2) to (p1 + L, p2)) and for any P ′ ∈ Λv let us
draw a vertical stick of length 2L centered at P ′. Let Ghv(λ, L) be the
graph of which the vertex set is Λu ∪ Λv and two vertices are joined if the
sticks centered at the vertices intersect and let us define λhv(L) = inf{λ :
P(Ghv(λ, L)contains an infinite component ) > 0}.
Proposition 2.16. For any L > 0 we have λc(L + 1) ≤ λhv(L).

Proof : For any P = (p1, p2) ∈ Λh let π(s) = (p1, dp2e) and for any p′ =
(p′1, p

′
2) ∈ Λv let π(p′) = (dp′1e, p′2). For any a, b ∈ N the set of points {π(P ) ∈

y = a} and the set of points {π(P ′) ∈ x = b} are distributed according to
a Poisson process on these lines with density λ. Clearly, if (P, Q) is an edge
in Ghv(λ, L), then (π(P ), π(Q)) is an edge in G(λ, L + 1), which proves the
statement of the proposition. ¤
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Proposition 2.17. For any L > 0 we have λc(L) ≥ 1
2Lb2L+1c+4L

.

Proof : The expected degree of any vertex vP in G(λ, L) is at most λ(2Lb2L+
1c+4L) (λ4L for the vertices corresponding to points obtained in the Poisson
process on the line of P , and at most λ(2Lb2L + 1c) for the vertices corre-
sponding to points on perpendicular lines). Thus if λ is as in the condition
of the proposition, then this expected degree is at most 1. The proposition
follows as the lower bound in Theorem 2.1. ¤

Theorem 2.18. For any L > 0 we have λhv(L) ≤ c/L2, where c = 5.875.

Proof : We define a 1-dependent bond percolation on Z2 very similar to that
of Section 2. Remember, for any vertex (a, b) ∈ Z2 and any 0 < t < 1,
we denote by St

a,b the square of side length tL centered at (atL, btL), i.e
[(a − 1/2)tL, (a + 1/2)tL] × [(b − 1/2)tL, (b + 1/2)tL]. The horizontal bond
((a, b), (a, b+1)) is open if an only if (i) there is a P ∈ Λh ∩ (S(a,b) ∪S(a,b+1))
of which the stick meets both left and right side of (S(a,b) ∪ S(a,b+1)) and (ii)
a P ′ ∈ Λv ∩S(a,b), while the vertical bond ((c, d), (c + 1, d)) is open if an only
if there is a Q ∈ Λh ∩ S(c,d) and a Q′ ∈ Λv ∩ (S(c,d) ∪ S(c+1,d)) of which the
stick meets both upper and lower side of (S(c,d) ∪ S(c+1,d)).

The probability that (i) does not hold e−λ2(1−t)tL2
= e−2(1−t)tc, while the

probability that (ii) does not hold is e−λt2L2
= e−ct2 . Since Λh and Λv are

independent, the two conditions are met (or not met) independently, thus for
any bond e in Z2 we have

P (e is closed) = e−2(1−t)tc + e−ct2 − e−c(2t−t2).

Plugging in c = 5.875 and t = 0.707 we obtain that the above quantity is
less than 0.1361, thus by Theorem 2.3 the statement follows. ¤

Corollary 2.19. For any L > 0 we have

1

2Lb2L + 1c+ 4L
≤ λhv(L) ≤ c/L2,

where c = 5.875.

2.5 Sticks of length 1

In this subsection we consider the case 2L = 1, the maximum stick length
when the bond percolation measure µλ,1/2 is 1-dependent. In fact µλ,1/2 has
the stronger property that it is 1-dependent and any horizontal bond is mu-
tually independent from any set of vertical bonds and vice versa. We will
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call such percolation measures 1-dependent and perpendicular independent.
We will determine lower and upper bounds on the critical probability of any
1-dependent perpendicular dependent percolation measure.

Theorem 2.20. In any 1-dependent, perpendicular independent bond perco-
lation on Z2 in which every bond is open with probability at least 0.7733, the
origin is in an infinite open component with positive probability.

Proof : We follow the lines of [2]. Consider the lattice (2Z)2 of which the vertex
u will correspond to the 2×2 square Su = {u; u+(0, 1); u+(1, 0); u+(1, 1)} of
the original lattice and the bond uv to the rectangle Su∪Sv. We declare this
bond open if in the graph induced by Su ∪ Sv there is an open component
that contains one of the following 3 subsets of vertices both in Su and Sv

(vertices labeled with x form the required subsets):

.

. . .
..

x

.x
.
x

.
x

.
x

.x.x

Since any 2 of the above subsets intersect, therefore if there is an infinite
component in (2Z)2 then there is an infinite component in the original lattice.
Unfortunately, the percolation obtained in this way will not be perpendicular
independent, but it will still be 1-dependent, therefore we will be able to use
Theorem 2.3. To do so we have to establish an upper bound on the probability
q′ that a fixed bond in (2Z)2 is closed provided each bond in the original
lattice is closed with probability at most q.

Drawing Su ∪ Sv horizontally we define 12 sets Ei (i = 1, ..., 12) of edges
in Su ∪ Sv and prove that if none of the Ei consist of only closed bonds then
the bond uv is open.
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Figure: the subsets E1-E12 of bonds

If no vertical bond is open then considering E5, E10 and E12 gives that
all lower horizontal bonds must be open, and their component contains the
required subsets. The same argument holds if the only open vertical bond
is either the leftmost or the rightmost. If the only open vertical bond is the
left middle one, then E1, E6 and E8 provide the component containing the
required sets of vertices, while if the only open vertical bond is the right
middle one, then we use E1, E4, E5.
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Let us assume now that there are exactly 2 open vertical bonds. If these
are the 2 middle ones, then we are done by E1 and E2. If the 2 leftmost bonds
are open, then we need E1, E2 and E8, while if the 2 rightmost bonds are
open, we obtain a good open component via E1, E2 and E4. If the leftmost
and the right middle vertical bonds are open, we need to use E1, E2, E3 and
E4, while if the rightmost and left middle vertical bonds are open, we are
done by E1, E2, E6 and E7. If the 2 outmost vertical bonds are open, then
using E2, E3, E4, E6, E7, E9 and E11 we see that either all lower or all upper
horizontal bonds are open forming a good component with the 2 open vertical
bonds.

If there is at most 1 closed vertical bond, then we proceed as follows.
Leftmost or rightmost bond closed: E1 and E2, left middle: E1, E2, E3 and
E4, right middle: E1, E2, E6 and E7.

As among the above sets of bonds there are 2 of size 2, 6 of size 3 and
4 of size 4, we obtain that the probability that a bond is closed in the new
lattice is at most 2q2 + 6q3 + 4q4. By Theorem 2.2 we know that we have an
infinite component in (2Z)2 if this expression is less than 0.1361, which holds
if q < 0.201.

To improve on this bound, one might consider the lattice (3Z)2 of which
the vertex u will correspond to the 3 × 3 square Su = {u; u + (0, 1); u +
(1, 0); u + (1, 1); u + (2, 0); u + (2, 1); u + (2, 2); u + (1, 2); u + (0, 2)} of the
original lattice and the bond uv to the rectangle Su ∪ Sv, where we declare
this bond open if in the graph induced by Su∪Sv there is an open component
that contains at least 5 of the 9 vertices both in Su and Sv. One might find 3
configurations consisting of 3 independent bonds, 18 of 4 bonds, 54 of 5 bonds,
103 of 6 bonds, 181 of 7 bonds, 227 of 8 bonds and 82of 9 bonds such that
if in all configurations at least one of the bonds is open in all configurations,
then the there exists an open component containing at least 5 vertices both
in Su and Sv. (The list of all configurations and the programme that finds
these can be downloaded from [1].) Therefore if in the original percolation
the probability that a bond is closed is at most q, then in the auxiliary
percolation defined as above the probability that a bond is closed is at most
3q3 + 18q4 + 54q5 + 103q6 + 181q7 + 227q8 + 82q9 which is less than 0.1361 if
q < 0.2267. Thus we are done by Theorem 2.2

¤
As lower bound on the critical probability of any 1-dependent bond per-

colation on Z2 one has 1/c2 where c is the connective constant of Z2. To
see this note that for any self-avoiding walk the set of every other edge is
independent, thus the standard first moment argument gives this result. We
improve this lower bound a bit in the following theorem.
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Theorem 2.21. In any 1-dependent, perpendicular independent bond perco-
lation on Z2 in which every bond is open with probability at most 0.2, the
origin is in an infinite open component with zero probability.

Proof : Let us say that E ⊂ E(Z2) is perpendicular independent if any two
edges in E that share a common vertex are perpendicular. Let us say that a
self-avoiding walk W starting at the origin is in Wn,m if W contains n edges
and the maximum size of a perpendicular independent subset of the edges of
W is m. Clearly, if for some p we have

∑n
m=dn/2e |Wn,m|pm → 0 as n tends

to infinity, then the origin is in a finite open component with probability 1.
We would like to bound |Wn,m|. In any self-avoiding walk (SAW), the

maximum size of a perpendicular independent subset of the edges and one
such set can be determined by a greedy algorithm. Let us denote by an,m

(bn,m) the number of SAW’s inWn,m of which the maximum independent set
of edges determined by this greedy algorithm contains (does not contain) the
last edge of the SAW. Any SAW that starts at the origin can be continued
by at most 3 edges, 2 perpendicular and a forward edge, thus we have

an,m ≤ 2an−1,m−1 + 3bn−1,r−1,

bn,m ≤ an−1,m,

which gives
an,m ≤ 2an−1,m−1 + 3an−2,r−1.

Let us write f(x, y) =
∑

n,m≥0 a′n,mxnym, where a′1,m = a1,m and for other
values of n a′n,m is defined such that the above inequalities hold with equation.
By the recurrence we obtain

f(x, y) =
g(x, y)

1− 2xy − 3x2y
,

where g(x, y) is defined for all x, y ∈ R. Plugging in x = 1 we obtain that the
radius of convergence of

∑
n,m≥0 a′n,mym is 0.2, thus it is at least that much

for
∑

n,m≥0 an,mym. ¤

Proposition 2.22. For any edge e ∈ E(Z2) we have

µλ,1/2(e is open) = 1− (λ + 1)e−λ

Proof : W.l.o.g let e ∈ E(Z2) be a horizontal edge on the line l with endpoints
A and B, let H be the center of e and for any P ∈ {A,B, H} let lP+ (lP−)
denote the halfline of l starting from (ending at) P . If Λl is the set of the
points of Poisson process on l, then e is open if and only if one of the following
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three pairwise disjoint events happen: (i) Λl contains points both from the
segments AH and HB, (ii) Λl∩HB = ∅ and there exist Q1 ∈ lH− ∩Λl, Q2 ∈
lB+ ∩ Λl with d(Q1, H) + d(B, Q2) ≤ 1/2, (iii) Λl ∩ AH = ∅ and there exist
Q1 ∈ lA− ∩ Λl, Q2 ∈ lH+ ∩ Λl with d(Q1, A) + d(H, Q2) ≤ 1/2.

The probability of (i) is (1 − e−λ/2)2, the probability of both (ii) and
(iii) is e−λ/2

∫ 1/2

0

∫ t

0
λe−λsλe−λ(t− s)dsdt = e−λ/2

∫ 1/2

0
λ2te−λtdt. Integrating

by parts gives
∫ 1/2

0

λte−λt =

[
−te−λt − 1

λ
e−λt

]1/2

0

= −
(

1

2
+

1

λ

)
e−λ/2 +

1

λ
.

Thus by the pairwise disjointness of (i), (ii) and (iii)we obtain

µλ,1/2(e is open) = (1− e−λ/2)2 + 2e−λ/2

∫ 1/2

0

λ2te−λtdt

= (1− e−λ/2)2 + 2e−λ/2λ

[
−

(
1

2
+

1

λ

)
e−λ/2 +

1

λ

]

= 1− (λ + 1)e−λ.

¤
Theorems 3.5 and 3.6 together with Proposition 3.7 give the following

Corollary.

Corollary 2.23.
0.82438 ≤ λc(1/2) ≤ 2.826
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