Improved bounds for Erdős' Matching Conjecture

Peter Frankl

Rényi Institute of Mathematics, Budapest, Hungary

Abstract

The main result is the following. Let F be a family of k-subsets of an n-set, containing no $s+1$ pairwise disjoint edges. Then for $n \geq (2s+1)k - s$ one has $|F| \leq \binom{n}{k} - \binom{n-s}{k}$. This upper bound is the best possible and confirms a conjecture of Erdős dating back to 1965. The proof is surprisingly compact. It applies a generalization of Katona’s Intersection Shadow Theorem.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction and notation

Let $[n] := \{1, 2, \ldots, n\}$ and let $F \subset \binom{[n]}{k}$, $n \geq k \geq 1$. The matching number $\nu(F)$ is the maximum number of pairwise disjoint members (edges) of F. One of the classical problems of extremal set theory is to determine $\max |F|$, for $\nu(F)$ fixed. Here are two easy constructions.

$$A(k, s) := \binom{k(s+1) - 1}{k}, \quad |A(k, s)| = \binom{k(s+1) - 1}{k},$$

$$A(n, 1, s) := \left\{ A \in \binom{[n]}{k} : A \cap [s] \neq \emptyset \right\}, \quad |A(n, 1, s)| = \binom{n}{k} - \binom{n-s}{k}.$$

The Matching Conjecture. (See Erdős [4] (1965).) If $F \subset \binom{[n]}{k}$, $\nu(F) = s$ and n is at least $k(s+1) - 1$ then

$$|F| \leq \max \left\{ \binom{k(s+1)-1}{k}, \binom{n}{k} - \binom{n-s}{k} \right\}$$

holds.

E-mail address: peter.frankl@gmail.com.
The case \(s = 1 \) is the classical Erdős–Ko–Rado Theorem [6]. For \(k = 1 \) the conjecture holds trivially and for \(k = 2 \) it was proved by Erdős and Gallai [5]. Erdős [4] proved (1) for \(n > n_0(k, s) \). In [3] the bound on \(n_0(k, s) \) was lowered to \(2sk^3 \). Recently, Huang, Loh and Sudakov [12] improved it to \(3sk^2 \), which was slightly improved in [9]. On the other hand Füredi and the author proved \(n_0(k, s) \leq cks^2 \), however their result was never published. The aim of the present paper is to provide a completely new argument proving a bound simultaneously improving all known bounds.

Theorem 1.1. Let \(\mathcal{F} \subset \binom{[n]}{k} \), \(\nu(\mathcal{F}) = s \) and \(n \geq (2s + 1)k - s \) then

\[
|\mathcal{F}| \leq \left(\binom{n}{k} \right) - \left(\frac{n - s}{k} \right)
\]

with equality if and only if \(\mathcal{F} \) is isomorphic to \(\mathcal{A}(n, 1, s) \).

One of the principal tools in proving (2) is an extension of Katona’s Intersection Shadow Theorem [13]. For a family \(\mathcal{F} \subset \binom{[n]}{k} \) let us define its shadow \(\partial \mathcal{F} \) by

\[
\partial \mathcal{F} := \left\{ G \in \binom{[n]}{k-1} : \exists F \in \mathcal{F}, G \subset F \right\}.
\]

Theorem 1.2. Let \(\mathcal{F} \subset \binom{[n]}{k} \), \(\nu(\mathcal{F}) = s \), then

\[
s|\partial \mathcal{F}| \geq |\mathcal{F}|
\]

holds.

Let us note that for \(s = 1 \) the inequality (3) is a special case of Katona’s Intersection Theorem. The proof of Theorem 1.2 is by double induction on \(n \) and \(k \)—just imitating the original proof of Katona [13]. The starting case is \(\mathcal{A}(k, s) \), that is all \(k \)-subsets of an \(n \)-set where \(n = k(s+1) - 1 \). For \(\mathcal{A}(k, s) \) one has \(\partial \mathcal{A}(k, s) = \binom{\binom{k(s+1)-1}{k-1}}{k-1} \) and \(s \binom{k(s+1)-1}{k-1} = k(s+1)-1 \) showing that the factor \(s \) is the best possible. On the other hand it follows from the proof that (3) is strict unless \(\mathcal{F} \) is isomorphic to \(\mathcal{A}(k, s) \).

It is well known (cf. for example [7]) that in proving both theorems one can assume that \(\mathcal{F} \) is stable. That is, for all \(1 \leq i < j \leq n \) and \(F \in \mathcal{F} \), the conditions \(i \notin F \), \(j \in F \) imply that \(F \cup \{i\} - \{j\} \) is in \(\mathcal{F} \) as well. The only other ingredient of the proof is the following version of the König–Hall Theorem.

König–Hall Theorem. (Cf. [14].) Let \(G \) be a bipartite graph with \(\nu(G) = s \). Then there exists a subset \(T \) of the vertices with \(|T| = s \), such that all edges of \(G \) are incident to at least one vertex of \(T \).

2. **Proof of Theorem 1.2**

Assume that \(\mathcal{F} \subset \binom{[n]}{k} \) is a stable family with \(\nu(\mathcal{F}) \leq s \). Let us first prove the statement for all \(k \) and \(s \) with \((s + 1)k - 1 \geq n \). Let us construct a bipartite graph with partite sets \(\mathcal{F} \) and \(\partial \mathcal{F} \) where we put an edge connecting \(F \) and \(G \) if and only if \(G \in \partial \mathcal{F} \). It is immediate that each \(F \in \mathcal{F} \) has degree \(k \), and each \(G \in \partial \mathcal{F} \) has degree at most \(n - |G| = n - k - 1 \). Since \(sk \geq n - k + 1 \) for \(n \leq (s + 1)k - 1 \), (3) holds in the above range. Moreover, equality can hold only if \(n = (s + 1)k - 1 \) and each \(G \in \partial \mathcal{F} \) has degree \(ks \), so \(G \cup \{y\} \in \mathcal{F} \) for \(y \notin G \in \partial \mathcal{F} \). It follows that \(G - \{x\} + \{y\} \) also should be a member of \(\partial \mathcal{F} \) (for \(x \in G \), \(y \notin G \)) so \(\partial \mathcal{F} \) is the complete \((k-1)\)-uniform hypergraph on \([(s + 1)k - 1]\) and \(\mathcal{F} = \binom{[(s + 1)k - 1]}{k} \) follows.

From now on, we suppose that \(n \geq (s + 1)k \), \(k \geq 2 \) and (3) holds for \(n - 1 \) for both \(k \) and \(k - 1 \). Let us use the usual notation \(\mathcal{F}(\bar{n}) := \{ F \in \mathcal{F} : n \notin F \}, \mathcal{F}(n) := \{ F - \{n\} : F \in \mathcal{F}, n \in F \} \). These are the two families for which we want to use the induction hypothesis. Here \(\nu(\mathcal{F}(\bar{n})) \leq s \) is obvious. The inequality \(\nu(\mathcal{F}(n)) \leq s \) follows from stability using the following standard argument (cf. [7]). If one
has $s + 1$ disjoint sets $F_i - \{n\} \in \mathcal{F}(n)$ (where $F_i \in \mathcal{F}$, $1 \leq i \leq s + 1$), then $n - 1 \geq (s + 1)(k - 1) + s$ implies that there are elements $1 \leq x_1 < \cdots < x_k \leq n - 1$ disjoint to each F_i. Then stability implies that the sets $F_i - \{n\} \cup \{x_i\} \in \mathcal{F}$ (here $1 \leq i \leq s$) together with F_{s+1} form a matching of size $s + 1$ in \mathcal{F}, a contradiction.

Note that $\partial \mathcal{F}(n)$ provides us with sets in $\partial \mathcal{F}$ which do not contain n. At the same time, adjoining n to any member of $\partial \mathcal{F}(n)$ provides us with a member of $\partial \mathcal{F}$ which contains n. This proves $|\partial \mathcal{F}| \geq |\partial \mathcal{F}(n)| + |\partial \mathcal{F}(n)|$. Using the induction hypothesis yields

\[s|\partial \mathcal{F}| \geq s|\partial \mathcal{F}(n)| + s|\partial \mathcal{F}(n)| \geq |\mathcal{F}(n)| + |\mathcal{F}(n)| = |\mathcal{F}| \]

as desired. □

3. A general inequality

The families $\mathcal{F}_1, \mathcal{F}_2, \ldots, \mathcal{F}_{s+1}$ are called nested if $\mathcal{F}_{s+1} \subset \mathcal{F}_s \subset \cdots \subset \mathcal{F}_1$ holds. The families $\mathcal{F}_1, \mathcal{F}_2, \ldots, \mathcal{F}_{s+1}$ are called cross-dependent if there is no choice of $F_i \in \mathcal{F}_i$ such that F_1, \ldots, F_{s+1} are pairwise disjoint.

Theorem 3.1. Let $\mathcal{F}_1, \mathcal{F}_2, \ldots, \mathcal{F}_{s+1} \subset \binom{Y}{s}$, be nested, cross-dependent families, $|Y| \geq t \ell$. Suppose further $t \geq 2s + 1$, then

\[|\mathcal{F}_1| + |\mathcal{F}_2| + \cdots + |\mathcal{F}_s| + (s + 1)|\mathcal{F}_{s+1}| \leq s \left(\frac{|Y|}{\ell} \right). \]

Proof. Let us choose randomly (according to uniform distribution) t pairwise disjoint sets $B_1, \ldots, B_t \in \binom{Y}{s}$ and define $B = \{B_1, \ldots, B_t\}$. Since the probability $p(B_j \in \mathcal{F}_i) = |\mathcal{F}_i|/\binom{|Y|}{s}$, the expected size $M(|B \cap \mathcal{F}_i|)$ is $t|\mathcal{F}_i|/\binom{|Y|}{s}$. Let us prove a lemma.

Lemma 3.2. For every choice of B one has

\[|B \cap \mathcal{F}_1| + \cdots + |B \cap \mathcal{F}_s| + (s + 1)|B \cap \mathcal{F}_{s+1}| \leq st. \]

Proof. Define a bipartite graph \mathcal{G} with partite sets B and $\{\mathcal{F}_1, \mathcal{F}_2, \ldots, \mathcal{F}_{s+1}\}$ where we join B_j and \mathcal{F}_i by an edge if and only if $B_j \in \mathcal{F}_i$. The fact that $\mathcal{F}_1, \mathcal{F}_2, \ldots, \mathcal{F}_{s+1}$ are cross-dependent translates to $v(\mathcal{G}) \leq s$. Applying the König–Hall Theorem we can find a subset T of the vertices, $|T| = s$ such that all edges are incident to some element of T.

Let T have x elements in B and $s - x$ elements in $\{\mathcal{F}_1, \mathcal{F}_2, \ldots, \mathcal{F}_{s+1}\}$. Let us estimate the total number of edges incident to T. For \mathcal{F}_i there can be at most t incident edges. This gives an upper bound $(s - x)t$ for the $s - x$ vertices from $\{\mathcal{F}_1, \mathcal{F}_2, \ldots, \mathcal{F}_{s+1}\}$. The x vertices in B can be adjacent to $(s + 1) - (s - x) = x + 1$ additional vertices each. This gives the upper bound

\[(s - x)t + x(x + 1) = x^2 - (t - 1)x + st. \]

So far we have not used that $\mathcal{F}_1, \mathcal{F}_2, \ldots, \mathcal{F}_{s+1}$ are nested. If $B_j \in \mathcal{F}_{s+1}$ then $B_j \in \mathcal{F}_i$ follows for all $1 \leq i \leq s$ as well. That is, B_j has degree $s + 1$ in \mathcal{G}. Consequently, $B_j \in T$.

Thus setting $b := |B \cap \mathcal{F}_{s+1}|$, we infer $x \geq b$. Now (6) is a quadratic polynomial in x with main term x^2. Therefore the maximum of (6) in the range $b \leq x \leq s$ is attained either for $x = b$ or $x = s$. We infer

\[|\mathcal{G}| = |B \cap \mathcal{F}_1| + \cdots + |B \cap \mathcal{F}_{s+1}| \leq \max\{b^2 - (t - 1)b + st, s^2 - (t - 1)s + st\}. \]

To prove (5) we need to show that here the right hand side is at most $st - sb$. Let us check it separately for both terms. The inequality $b^2 - (t - 1)b + st \leq st - sb$ is equivalent to $b(t - 1 - s - b) \geq 0$ which is true because of $b \leq s$, $t \geq 2s + 1$. The inequality $s^2 - (t - 1)s + st \leq st - sb$ is equivalent to $s(t - 1 - s - b) \geq 0$ which is true for the same reason. □
Let us return to the proof of the Theorem 3.1. Since the lemma holds for all choices of B, the same inequality must hold for the expected values as well, yielding
\[
\frac{t|\mathcal{F}_1|}{\binom{|Y|}{\ell}} + \cdots + \frac{t|\mathcal{F}_s|}{\binom{|Y|}{\ell}} + (s + 1)\frac{t|\mathcal{F}_{s+1}|}{\binom{|Y|}{\ell}} \leq ts,
\]
or equivalently
\[
|\mathcal{F}_1| + \cdots + |\mathcal{F}_s| + (s + 1)|\mathcal{F}_{s+1}| \leq s\left(\binom{|Y|}{\ell}\right)
\]
as desired. □

Remark. Changing the requirement $t \geq 2s + 1$ one can prove similar inequalities where the coefficient of $|\mathcal{F}_{s+1}|$ is changing in function of t and s.

4. The proof of Theorem 1.1

Let $\mathcal{F} \subseteq \binom{[n]}{s}$ be a stable family with $v(\mathcal{F}) = s$, $n \geq (2s + 1)k - s$. We want to prove $|\mathcal{F}| \leq |A(n, 1, s)|$. Let us write A for short instead of $A(n, 1, s)$ throughout the proof. Let us partition both families according to the intersection of their edges with $[s + 1]$: For a subset $Q \subseteq [s + 1]$ define
\[
\mathcal{F}(Q) := \{ F \in \mathcal{F}: F \cap [s + 1] = Q \},
\]
\[
A(Q) := \{ A \in A: A \cap [s + 1] = Q \}.
\]
Note that for $|Q| \geq 2$, $|A(Q)| = \binom{n - s - 1}{k - 1}$ implying $|\mathcal{F}(Q)| \leq |A(Q)|$. For $1 \leq i \leq s$, $|A((i))| = \binom{n - s - 1}{k - 1}$ and $A((s + 1)) = A(\emptyset) = \emptyset$. Thus all we need to show is
\[
|\mathcal{F}(\emptyset)| + \sum_{1 \leq i \leq s+1} |\mathcal{F}((i))| \leq s\left(\binom{n - s - 1}{k - 1}\right).
\]
We prove (7) in two steps. First we prove
\[
|\mathcal{F}(\emptyset)| \leq s|\mathcal{F}([s + 1])|.
\]
As a matter of fact, for every $H \in \partial \mathcal{F}(\emptyset)$ stability of \mathcal{F} implies $(H \cup [s + 1]) \in \mathcal{F}([s + 1])$. Now (8) is a direct consequence of Theorem 1.2. Plugging (8) into (7) we see that the inequality to prove is
\[
|\mathcal{F}((1))| + \cdots + |\mathcal{F}([s])| + (s + 1)|\mathcal{F}([s + 1])| \leq s\left(\binom{n - s - 1}{k - 1}\right).
\]
To apply Theorem 3.1 set $\mathcal{F}_i := \{ F - (i): F \in \mathcal{F}((i))\}$. Since \mathcal{F} is stable, $\mathcal{F}_1, \ldots, \mathcal{F}_{s+1}$ are nested. Also, since $v(\mathcal{F}) = s$, $\mathcal{F}_1, \ldots, \mathcal{F}_{s+1}$ are cross-dependent. Setting $\ell = k - 1$, $Y = [s + 2, n]$, $|Y| = n - s - 1 \geq (2s + 1)(k - 1)$, all conditions of Theorem 3.1 are satisfied for $t = 2s + 1$. Thus (9) follows from (4), completing the proof.

In case of equality $\mathcal{F}(\emptyset) = \emptyset$ is immediate through Theorem 1.2. Then $\mathcal{F}([s + 1]) = \emptyset$ follows, leading to $\mathcal{F} \subseteq A$. □

5. Concluding remarks

The situation with Erdős’ Matching Conjecture was dormant for two decades. There was a sudden increase of interest during the last two years. It was mainly caused by the fact that through the works of Alon, Frankl, Huang, Rödl, Ruciński, and Sudakov [2] and Alon, Huang and Sudakov [1] it was shown that the Matching Conjecture is relevant in the proof of some seemingly unrelated problems. This motivated the research of Huang, Loh and Sudakov [12] and Frankl, Rödl and Ruciński [10] improving the old bounds of Erdős [4] and Bollobás, Daykin and Erdős [3]. Also it led to the complete solution

The present proof comes within a factor of two to of covering the full range, i.e., \(n \leq (s + 1)k - 1 \). However, a full solution does not seem possible along these lines. On the other hand some improvements are possible. Let us mention just two of them.

If \(k \leq s + 1 \) then \(|k| \subset [s + 1] \) implies that \(\nu(\mathcal{F}(\emptyset)) \leq s - 1 \). Using this fact the same proof yields that the Matching Conjecture is true already for \(n \geq 2sk - s \) and even earlier for the case that \(k \) is substantially smaller than \(s \).

For \(\mathcal{F}(\emptyset) \) we used that its matching number is at most \(s \). However, the much stronger statement \(\nu(\mathcal{F}(\emptyset)) \leq s \) follows from the stability of \(\mathcal{F} \). Using this property and the same inductive argument, the factor \(1/s \) can be replaced by the larger \(\left(\frac{k}{(k-1)s-1} \right) \). The only reason that we did not prove and use this version is that for fixed \(s \) and \(k \) large, the ratio is approaching \(1/s \) which does not permit an improvement of our bounds in general.

Let us conclude this paper by mentioning a Hilton–Milner-type extension of Erdős' Theorem. Hilton and Milner [11] determined the size of the largest intersecting subfamily \(\mathcal{F} \subset \binom{[n]}{k} \) with the property \(\bigcap \mathcal{F} = \emptyset \). We generalize their construction for all \(s \geq 1 \) by defining a family \(\mathcal{H} \) with \(\nu(\mathcal{H}) = s \) with the property that for every element \(x \in [n] \) one still has \(\nu(\mathcal{H}(\{x\})) = s \) (i.e., \(\mathcal{H} \) is \(s \)-stable). Let \(x_0, \ldots, x_{s-1} \) be elements and \(T_1, \ldots, T_s \) be disjoint \(k \)-subsets of \([n]\) such that \(x_i \in T_i \), \(i = 1, \ldots, s - 1 \) but \(x_0 \) is not contained in any of \(T_i \), \(i = 1, \ldots, s \). Define the family

\[
\mathcal{H}(n, s, k) := \left\{ H \in \binom{[n]}{k} : \text{there is an } i, \ 0 \leq i \leq s - 1, \ x_i \in H \right\}
\]

and then \(H \cap (T_{i+1} \cup \cdots \cup T_s) \neq \emptyset \right\} \cup \{T_1, \ldots, T_s\} \).

\[\text{Theorem 5.1. If } \mathcal{F} \subset \binom{[n]}{k} \text{ satisfies } \nu(\mathcal{F}) = s, \nu(\mathcal{F}(x)) = s \text{ for every } x \in [n], k \geq 4 \text{ and } n \geq n_1(s, k) \text{ then } |\mathcal{F}| \leq |\mathcal{H}(n, s, k)| \text{ holds with equality if and only if } \mathcal{F} \text{ is isomorphic to } \mathcal{H}(n, s, k).\]

The proof of this theorem together with a similar result for \(k = 3 \) will appear in a forthcoming paper.

References