Some Best Possible Inequalities Concerning Cross-Intersecting Families

PETER FRANKL
C.N.R.S., Paris, France

AND

NORIHIDE TOKUSHIGE
Meiji Univ., Kanagawa, Japan

Communicated by the Managing Editors
Received July 30, 1990

Let \(\mathcal{A} \) be a non-empty family of \(a \)-subsets of an \(n \)-element set and \(\mathcal{B} \) a non-empty family of \(b \)-subsets satisfying \(A \cap B \neq \emptyset \) for all \(A \in \mathcal{A}, B \in \mathcal{B} \). Suppose that \(n > a + b \), \(b \geq a \). It is proved that in this case \(|\mathcal{A}| + |\mathcal{B}| \leq \binom{n}{a} - \binom{n-a}{a} + 1 \) holds. Various extensions of this result are proved. Two new proofs of the Hilton-Milner theorem on non-trivial intersection families are given as well.

1. INTRODUCTION

Let \(X := \{1, 2, \ldots, n\} \) be an \(n \)-element set. For an integer \(k \), \(0 \leq k \leq n \), we denote by \(\binom{X}{k} \) the set of all \(k \)-element subsets of \(X \). A family \(\mathcal{F} \subseteq \binom{X}{k} \) is called intersecting if \(F \cap F' \neq \emptyset \) for all \(F, F' \in \mathcal{F} \). One of the best known results in extremal set theory is the following.

THEOREM [EKR]. Let \(\mathcal{F} \subseteq \binom{X}{k} \) be an intersecting family with \(n = |X| \geq 2k \). Then, \(|\mathcal{F}| \leq \binom{n-1}{k-1} \).

Two families \(\mathcal{A} \subseteq \binom{X}{a} \) and \(\mathcal{B} \subseteq \binom{X}{b} \) are said to be cross-intersecting if and only if \(A \cap B \neq \emptyset \) holds for all \(A \in \mathcal{A} \) and \(B \in \mathcal{B} \). Recall the following result of Hilton and Milner.

THEOREM A [HM]. Let \(\mathcal{A} \subseteq \binom{X}{a} \) and \(\mathcal{B} \subseteq \binom{X}{b} \) be non-empty cross-intersecting families with \(n = |X| \geq 2a \). Then, \(|\mathcal{A}| + |\mathcal{B}| \leq \binom{n}{a} - \binom{n-a}{a} + 1 \).
Recently, Simpson [S] rediscovered this theorem. In this paper, we generalize the above result in various ways. Probably the following is the most natural extension of Theorem A.

Theorem 1. Let \(\mathcal{A} \subset \binom{X}{a} \) and \(\mathcal{B} \subset \binom{X}{b} \) be non-empty cross-intersecting families with \(n = |X| \geq a + b \), \(a \leq b \). Then the following hold:

1. \[|\mathcal{A}| + |\mathcal{B}| \leq \binom{n}{a} - \binom{n-a}{a} + 1. \]
2. If \(|\mathcal{A}| \geq \binom{n-1}{n-a} \), then
 \[|\mathcal{A}| + |\mathcal{B}| \leq \begin{cases} \binom{n}{a} - \binom{n-a}{a} + 1 & \text{if } a = b \geq 2 \\ \binom{n-1}{a-1} + \binom{n-1}{b-1} & \text{otherwise.} \end{cases} \]

Putting restrictions on the size of \(\mathcal{A} \) we can obtain stronger bounds.

Theorem 2. Let \(\mathcal{A} \subset \binom{X}{a} \) and \(\mathcal{B} \subset \binom{X}{b} \) be non-empty cross-intersecting families with \(n = |X| \geq a + b \), \(a \leq b \). Suppose that \(\mathcal{A} \mathcal{B} \mathcal{A}^c = \mathcal{B} \mathcal{B}^c \mathcal{A} \) holds for some real number \(\alpha \) with \(n-a \leq \alpha \leq n-1 \). Then the following holds:

\[|\mathcal{A}| + |\mathcal{B}| \leq \begin{cases} \binom{n}{b} - \binom{n}{b} + \binom{n}{n-a} & \text{if } a < b \text{ or } \alpha \leq n-2 \\ 2 \binom{n-1}{a-1} & \text{if } a = b \text{ and } \alpha \geq n-2. \end{cases} \]

The next result is of similar flavor, and it will be used for one of the new proofs for the Hilton–Milner theorem (see Section 4).

Theorem 3. Let \(\mathcal{A} \subset \binom{Y}{a} \), \(\mathcal{B} \subset \binom{Y}{b} \) be non-empty cross-intersecting families with \(m = |Y| \geq 2a - 1 \). Suppose that \(|\mathcal{A}| < \binom{m-1}{a-1} \), then \(|\mathcal{A}| + |\mathcal{B}| \leq \binom{m-1}{a-1} - \binom{m-a}{a-1} + 1. \)

2. **Proof of Theorem 1**

To prove the theorem, we start with an easy inequality.

Lemma 1. Let \(a, b, \) and \(n \) be integers. Suppose that \(n \geq a + b \) and \(a \leq b \). Then, it follows that

\[\binom{n-1}{a-1} + \binom{n-1}{b-1} \leq \binom{n}{b} - \binom{n-a}{b} + 1. \]
or equivalently,
\[
\binom{n-1}{n-a} - \binom{n-1}{b} \leq \binom{n-a}{n-a} - \binom{n-a}{b}.
\]

Proof. To prove the above inequality, it suffices to show that
\[
\binom{x-1}{n-a-1} \leq \binom{x-1}{b-1}
\]
holds for all real numbers \(x, n-a+1 \leq x \leq n-1 \). This is equivalent to
\[
(x-b) \cdots (x-n+a+1) \leq (n-a-1) \cdots b
\]
\[
\iff x-b \leq n-a-1 \iff x \leq n-1 + (b-a).
\]
The above inequality follows from \(x \leq n-1 \) and \(a \leq b \).

Proof of Theorem 1. We prove the theorem by induction on \(n \). Since the theorem clearly holds for \(n = a+b \), we assume that \(n > a+b \). Further, by the Kruskal–Katona theorem [Kr, Kal], we may assume that \(\mathcal{A} := \{ X - A : A \in \mathcal{A} \} \) is the collection of the smallest \(|\mathcal{A}| \) sets in \(\binom{X}{n-a} \) with respect to the colex order (see Appendix). Let us define
\[
\mathcal{A}(n) := \{ A - \{ n \} : n \in A \in \mathcal{A} \} \subset \binom{X - \{ n \}}{a-1}.
\]
\[
\mathcal{A}(\bar{n}) := \{ A : n \notin A \in \mathcal{A} \} \subset \binom{X - \{ n \}}{a}.
\]
We also define \(\mathcal{B}(n) \) and \(\mathcal{B}(\bar{n}) \) in the same way.

Proof of (i). Since the RHS of the inequality in (ii) does not exceed the RHS of that of (i) we may suppose that \(\mathcal{A} < \binom{X}{n-a} \) and therefore \(\mathcal{A}(\bar{n}) = \emptyset \).

Case 1. \(\mathcal{B}(\bar{n}) \neq \emptyset \). By the induction hypothesis, we have
\[
|\mathcal{A}(n)| + |\mathcal{B}(\bar{n})| \leq \binom{n-1}{b} - \left(\binom{n-1}{a} - \binom{n-a}{b} \right) + 1.
\]
This, together with \(|\mathcal{B}(n)| \leq \binom{n}{b} \), gives
\[
|\mathcal{A}| + |\mathcal{B}| = |\mathcal{A}(n)| + |\mathcal{B}(\bar{n})| + |\mathcal{B}(n)| \leq \binom{n}{b} - \binom{n-a}{b} + 1.
\]
Case 2. \(\mathcal{B}(\bar{n}) = \emptyset \). In this case, we have
\[
|\mathcal{A}| + |\mathcal{B}| = |\mathcal{A}(n)| + |\mathcal{B}(n)| \leq \binom{n-1}{a-1} + \binom{n-1}{b-1}.
\]
Using Lemma 1, we obtain the desired inequality.

Proof of (ii). Since the theorem holds if \(|\mathcal{A}| = \binom{n-1}{a-1} \), we assume that \(|\mathcal{A}(n)| = \binom{n-1}{a-1} \) and \(|\mathcal{A}(\bar{n})| > 0 \). Note that \(|\mathcal{A}(n)| = \binom{n-1}{a-1} \) implies \(|\mathcal{B}(\bar{n})| = 0 \).

Case 1. \(a < b \). By the induction hypothesis, we have
\[
|\mathcal{A}(\bar{n})| + |\mathcal{B}(n)| \leq \binom{n-1}{b-1} - \binom{(n-1)-a}{b-1} + 1.
\]
So we obtain
\[
|\mathcal{A}| + |\mathcal{B}| = |\mathcal{A}(n)| + |\mathcal{A}(\bar{n})| + |\mathcal{B}(n)|
\leq \left\{ \binom{n-1}{a-1} + \binom{n-1}{b-1} \right\} + \left\{ 1 - \binom{n-a-1}{b-1} \right\}
\leq \binom{n-1}{a-1} + \binom{n-1}{b-1}.
\]
Using Lemma 1, we obtain the desired inequality.

Case 2. \(a = b \). By the induction hypothesis, we have
\[
|\mathcal{A}(\bar{n})| + |\mathcal{B}(n)| \leq \binom{n-1}{a} - \binom{(n-1)-(a-1)}{a} + 1.
\]
This, together with \(|\mathcal{A}(n)| = \binom{n-1}{a-1} \), gives
\[
|\mathcal{A}| + |\mathcal{B}| = |\mathcal{A}(n)| + |\mathcal{A}(\bar{n})| + |\mathcal{B}(n)| \leq \binom{n}{a} \binom{n-a}{a} + 1.
\]
This completes the proof of (ii).

3. Proofs of Theorem 2 and Theorem 3

In this section, we use Lovász' version of the Kruskal–Katona theorem, and so we need the following technical lemma.

Lemma 2. Let \(s, t, \) and \(n \) be integers with \(n > s + t \). Define a real valued function \(f(x) := \binom{n}{x} - \binom{s}{x} + \binom{x}{t} \). Then, the following hold:
(i) Suppose that \(1 + (n - s - t) v/s(v - n + t + 1) < (r^v)/(n - v) \), then \(f'(x) < 0 \) holds for all real numbers \(x \leq v \).

(ii) Let \(u, v \) be real numbers with \(u < v \), \(u < n - t + s \). Suppose that \(f'(u) < 0 \) and \(f(u) \geq f(v) \), then \(f(u) \geq f(x) \) holds for all real numbers \(x \), \(u \leq x \leq v \).

Proof. Proof of (i). Since
\[
f'(x) = -\left(\frac{x}{s}\right)^{s-1} \sum_{j=0}^{n-t-1} \frac{1}{x-j} + \left(\frac{x}{n-t}\right)^{n-t-1} \sum_{j=0}^{s-1} \frac{1}{x-j},
\]
the inequality \(f'(x) < 0 \) is equivalent to
\[
\left(\sum_{j=0}^{n-t-1} \frac{1}{x-j}\right) / \left(\sum_{j=0}^{s-1} \frac{1}{x-j}\right) < \left(\frac{x}{s}\right)^{s-1} \left(\frac{n}{n-t}\right)^{n-t-1}.
\]
By simple estimation, we have
\[
\text{LHS} = 1 + \left(\sum_{j=s}^{n-t-1} \frac{1}{x-j}\right) / \left(\sum_{j=0}^{s-1} \frac{1}{x-j}\right) \leq 1 + \frac{n-t-s}{x-n+t+1} \cdot \frac{x}{s}.
\]
Thus, to prove (1), it suffices to show that
\[
(x-s) \cdot \ldots \cdot (x-n+t+1) \left(1 + \frac{n-t-s}{x-n+t+1} \cdot \frac{x}{s}\right) < (n-t) \cdot \ldots \cdot (s+1).
\]
Since the LHS of (2) is increasing with \(x \), it suffices to show (2) for \(x = v \), that is,
\[
1 + \frac{n-t-s}{v-n+t+1} \cdot \frac{v}{s} < \left(\frac{v}{s}\right)^{s-1} \left(\frac{v}{n-t}\right)^{n-t-1}.
\]
This was exactly our assumption.

Proof of (ii). Suppose on the contrary that \(f(u) < f(x) \) holds for some \(x, x > u \). Then, we may assume that there exist \(p, q \) which satisfy
\[
u < p < q \leq v, f'(p) = f'(q) = 0, f(p) < f(u) < f(q).
\]
If $f'(x) = 0$, it follows that

$$\binom{n}{s} = \binom{x}{n-t} \left\{ 1 + \left(\sum_{j=0}^{n-t-1} \frac{1}{x-j} \right) \right\} \left\{ \sum_{j=0}^{n-t-1} \frac{1}{x-j} \right\}.$$

Substituting this into $f(x)$, we define a new function:

$$g(x) := \binom{n}{s} - \binom{x}{n-t} \left\{ \sum_{j=0}^{n-t-1} \frac{1}{x-j} \right\} \left\{ \sum_{j=0}^{n-t-1} \frac{1}{x-j} \right\}.$$

Note that $g(x) = f(x)$ holds if $f'(x) = 0$. Thus, $f(u) < g(q)$ must hold. We derive a contradiction by showing that $f(u) \geq g(x)$, or equivalently,

$$\left\{ \binom{x}{s} - \binom{u}{n-t} \right\} \sum_{j=0}^{n-t-1} \frac{1}{x-j} \leq \binom{x}{n-t} \sum_{j=0}^{n-t-1} \frac{1}{x-j}$$

holds for all $x \geq p$. Since $u < n - t + s$, $\binom{x}{s} - \binom{u}{n-t}$ is positive, and so the LHS is decreasing with x. On the other hand, the RHS is increasing with x. Therefore, it suffices to check the inequality for $x = p$, that is $f(u) \geq g(p) = f(p)$. This was our assumption.

Using the above lemma, we prove Theorem 2, which contains Theorem 1 (i).

Proof of Theorem 2. Since the theorem holds for $n = a + b$, we assume that $n > a + b$. Let $|\mathcal{A}| = \binom{n}{x}$, $n - a \leq x \leq n - 1$. Then, by the Kruskal–Katona theorem we have $|\mathcal{B}| \leq \binom{n}{b} - \binom{x}{b}$. Define $f(x) := \binom{x}{b} - \binom{x}{a}$. Define $f(x) := \binom{x}{b} - \binom{x}{a}$.

Case 1. $a < b$. In this case, we prove that $f'(x) < 0$ holds for $n - a \leq x \leq n - 1$. By Lemma 2 (i), it suffices to show that

$$1 + \frac{(n-a-b)(n-1)}{ba} < \binom{n-1}{b}/\binom{n-1}{n-a}. \quad (1)$$

This holds for $n = a + b + 1$. So we may assume that $n \geq a + b + 2$. Then,

$$\text{RHS} = \frac{(n-a) \cdot \ldots \cdot (n-b)}{b \cdot \ldots \cdot a}$$

$$= \frac{(n-a)(n-a-1)}{a(a+1)} \cdot \frac{(n-a-2) \cdot \ldots \cdot (n-b)}{b \cdot \ldots \cdot (a+2)}$$

$$\geq \frac{(n-a)(n-a-1)}{a(a+1)},$$

$$\text{LHS} = 1 + \frac{n-a-(a+1)}{a+1} \cdot \frac{n-1}{a}.$$
To prove (1), it suffices to show that
\[
1 + \frac{(n-2a-1)(n-1)}{a(a+1)} < \frac{(n-a)(n-a-1)}{a(a+1)},
\]
or equivalently, \(n > 2a + 1\), and this was our assumption.

Case 2. \(a = b\).

Subcase 2.1. \(x \leq n - 2\). In this case, we prove that \(f'(x) < 0\) holds for \(n - a \leq x \leq n - 2\). By Lemma 2 (i), it suffices to show that
\[
1 + \frac{(n-2a)(n-2)}{a(a-1)} < \binom{n-2}{a}/\binom{n-a}{n-a}.
\]
This holds for \(n = 2a + 1\). So we assume that \(n > 2a + 2\). Then,
\[
(2) \iff 1 + \frac{(n-2a)(n-2)}{a(a-1)} < \frac{(n-a)(n-a-1)}{a(a-1)} \iff n > 2a.
\]
This was our assumption.

Subcase 2.2. \(x \geq n - 2\). Note that \(f(n-2) = f(n-1) = 2\binom{n-1}{a-1}\). So by Lemma 2 (ii), \(f(x) < 2\binom{n-1}{a-1}\) holds for \(n-2 < x \leq n-1\).

Next we prove Theorem 3, which will be used to prove the Hilton–Milner theorem.

Proof of Theorem 3. Since the theorem clearly holds for \(m = 2a - 1\), we assume that \(m \geq 2a\). We distinguish two cases according to the size of \(\mathcal{A}\).

Case 1. \(1 \leq |\mathcal{A}| \leq \binom{m-2}{m-a}\). Let \(\mathcal{A} = (\binom{x}{m-a})\), \(m-a \leq x \leq m-2\). Then, by the Kruskal–Katona theorem we have \(|\mathcal{B}| \leq (\binom{m}{a-1}) - (\binom{x}{a-1})\). Define \(f(x) := (\binom{m}{a-1}) - (\binom{x}{a-1}) + (\binom{x}{m-a})\). First we prove that \(f'(x) < 0\) holds for all \(x\), \(m-a \leq x \leq m-3\). By Lemma 2(i), it suffices to show that
\[
1 + \frac{(m-2a+1)(m-3)}{(a-1)(a-2)} < \binom{m-3}{a-1}/\binom{m-3}{m-a}.
\]
This holds for \(m = 2a\), and if \(m > 2a\) this is equivalent to \(m > 2a - 1\) which is our assumption.

Next, we prove that \(f(m-2) \geq f(x)\) holds for all \(x\), \(m-3 \leq x \leq m-2\). By Lemma 2 (i), it suffices to show that \(f(m-a) \geq f(m-2)\), or equivalently,
This follows from Lemma 1.

Case 2. $|\mathcal{A}| > \binom{m-2}{m-a}$. In this case, we have $|\mathcal{B}| < \binom{m-1}{a-1} - \binom{m-a-1}{a-1} = \binom{m-a}{m-a-1} + \binom{m-a-1}{m-a-1}$. Let $|\mathcal{B}| = \binom{m-1}{m-(a-1)} + \binom{m-a-1}{m-(a-1)-1}$, $m-a \leq x < m-2$. Then, by the Kruskal–Katona theorem, we have $|\mathcal{A}| \leq \binom{m}{a} - \binom{m-a}{a-x} - \binom{m-a}{x}$. Define $f(x) := \binom{m-1}{m-(a-1)} + \binom{m-a-1}{m-(a-1)-1} + \binom{m}{a} - \binom{m-a}{a-x} - \binom{m-a}{x}$. By arguments in Case 1, $f(x) \leq f(m-a)$ holds for all x, $m-a \leq x \leq m-2$.

4. Application

Using results of earlier sections, we give two new proofs of the Hilton–Milner theorem. Let us mention that other short proofs were given in [FF, M]. Recall that an intersecting family \mathcal{F} is called non-trivial if $\bigcap_{F \in \mathcal{F}} F = \emptyset$ holds.

Theorem [HM]. Let $\mathcal{F} \subset \binom{X}{k}$ be a non-trivial intersecting family with $n = |X| \geq 2k$, Then $|\mathcal{F}| \leq \binom{n-1}{k-1} - \binom{n-k-1}{k-1} + 1$.

Proof 1. Suppose that $|\mathcal{F}|$ is maximal with respect to the conditions. First we deal with an important special case. Suppose that there exists $A := \{a, b\} \in \binom{X}{2}$ such that $A \cap F \neq \emptyset$ holds for all $F \in \mathcal{F}$. By the maximality of $|\mathcal{F}|$, $\{G : A \subset G \in \binom{X}{2}\} \subset \mathcal{F}$ holds. Define

$$\mathcal{A} := \{F - \{a\} : F \in \mathcal{F}, F \cap A = \{a\}\},$$

$$\mathcal{B} := \{F - \{b\} : F \in \mathcal{F}, F \cap A = \{b\}\}.$$

Then \mathcal{A}, \mathcal{B} are cross-intersecting families on $X - A$. By Theorem A,

$$|\mathcal{A}| + |\mathcal{B}| \leq 1 + \binom{n-2}{k-1} - \binom{n-k-1}{k-1}.$$

Consequently,

$$|\mathcal{F}| \leq 1 + \binom{n-2}{k-1} - \binom{n-k-1}{k-1} + \binom{n-2}{k-2} = 1 + \binom{n-1}{k-1} - \binom{n-k-1}{k-1},$$

as desired.
Next consider the case when 9 is shifted (see Appendix). Note that
\{2, 3, \ldots, k + 1\} \in \mathcal{F}$. Now define
\[
\mathcal{A} := \{ F - \{1\} : F \cap \{1, 2\} = \{1\}, F \in \mathcal{F}\},
\]
\[
\mathcal{B} := \{ F - \{2\} : F \cap \{1, 2\} = \{2\}, F \in \mathcal{F}\},
\]
\[
\mathcal{C} := \{ F - \{1, 2\} : \{1, 2\} \subseteq F \in \mathcal{F}\},
\]
\[
\mathcal{D} := \{ F - \{1, 2\} : \{1, 2\} \cap F = \emptyset\}.
\]

Then by Theorem A and \{3, 4, \ldots, k + 1\} \in \mathcal{A} \cap \mathcal{B}, |\mathcal{A}| + |\mathcal{B}| \leq 1 + \binom{n-1}{k-1} - \binom{n-k-1}{k-1} holds.

On the other hand, \mathcal{C}, \mathcal{D} are cross-intersecting and \mathcal{D} is 2-intersecting. Thus, \mathcal{D}' := \{ X - D : D \in \mathcal{D}, (n-2) - (2k-2) = (n-2k)-\text{-intersecting. By the Intersecting Kruskal–Katona theorem (cf. [Ka2]),}\]
\[
|\mathcal{D} : \sigma_{k-2}(\mathcal{D}')| \geq |\mathcal{D}^*| = |\mathcal{D}| \text{ (see Appendix) and by the cross-intersecting property } \mathcal{S} \cap \mathcal{C} = \emptyset. \text{ Therefore,}\]
\[
|\mathcal{C}| + |\mathcal{D}| \leq |\mathcal{S}| + |\mathcal{C}| \leq \binom{n-2}{k-2} = \binom{n-2}{k-2}.
\]

Again, we obtain $|\mathcal{S}| = |\mathcal{A}| + |\mathcal{B}| + |\mathcal{C}| + |\mathcal{D}| \leq 1 + \binom{n-1}{k-1} - \binom{n-k-1}{k-1}$.

Now to the general case. Apply repeatedly to \mathcal{S} the shift operator (see Appendix) \mathcal{S}_{ij}, 1 \leq i < j \leq n. Either we obtain a shifted non-trivial intersecting family of the same size (and we are done by the second case) or at some point the family stops to be non-trivial. That is for some \mathcal{G} \subseteq \binom{X}{k}, \mathcal{G} \text{ non-trivial intersecting, } |\mathcal{S}| = |\mathcal{G}| \text{ we have that } \bigcap_{H \in \mathcal{S}_{ij}(\mathcal{G})} H \neq \emptyset. \text{ In this case, clearly } \{i\} = \bigcap_{H \in \mathcal{S}_{ij}(\mathcal{G})} H \text{ and consequently } \{i, j\} \cap G \neq \emptyset \text{ for all } G \in \mathcal{G}. \text{ Thus we are done by the first special case.} \]

Proof II. Since the theorem clearly holds for $n = 2k$, we assume that $n \geq 2k + 1$. We may assume that $n \in F \in \mathcal{F}$ holds for some F. Let us define $Y := X - \{n\}, m := |Y|, a := k$,
\[
\mathcal{A} := \{ F : n \notin F \in \mathcal{F}\} \subseteq \binom{Y}{a},
\]
\[
\mathcal{B} := \{ F - \{n\} : n \in F \in \mathcal{F}\} \subseteq \binom{Y}{a-1}.
\]

Then \mathcal{A} and \mathcal{B} are non-empty cross-intersecting families. Since \mathcal{A} is intersecting itself, $|\mathcal{A}| \leq \binom{m}{a-1}$ holds. First suppose that $|\mathcal{A}| = \binom{m}{a-1}$. If $m = 2a$, then $|\mathcal{A}| = \frac{1}{2}\binom{m}{a}$. Hence for all $B \in \mathcal{B}$ and for all $y \in Y - B$, $B \cup \{y\} \in \mathcal{A}$.
holds. Therefore, B is also intersecting, and so we may that $m \in B$ holds for all $B \in B$. Since \mathcal{F} is non-trivial, there exists $A \in \mathcal{A}$ such that $m \notin A$. So,

$$|\mathcal{B}| \leq \left| \left(\frac{Y-\{m\}}{a-2} \right) - \left(\frac{Y-A}{a-1} \right) \right| = \left(\frac{m-1}{a-2} \right) - \left(\frac{m-a}{a-1} \right).$$

This implies that $|\mathcal{F}| = |\mathcal{A}| + |\mathcal{B}| \leq \left(\binom{n}{a-1} - \binom{m-a}{a-1} \right) = \left(\binom{n}{k-1} - \binom{n-k-1}{a-1} \right)$. If $m > 2a$, then we may assume that $m \in A$ holds for all $A \in \mathcal{A}$, that is, $\mathcal{A} = \{ A \in \binom{\mathcal{Y}}{a} : m \in A \}$. Since \mathcal{F} is non-trivial, there exists $B \in B$ such that $m \notin B$. But, for all $A \in \binom{\mathcal{Y}-(B \cup \{m\})}{a-1}$, $A := A_0 \cup \{m\} \in \mathcal{A}$ must hold, a contradiction.

Next suppose that $|\mathcal{A}| < \binom{n}{a-1}$. Then by Theorem 3, we have

$$|\mathcal{F}| = |\mathcal{A}| + |\mathcal{B}| \leq \left(\frac{m}{a-1} \right) - \left(\frac{m-a}{a-1} \right) + 1 = \left(\frac{n-1}{k-1} \right) - \left(\frac{n-k-1}{a-1} \right) + 1,$$

as desired.

APPENDIX

Let n, k be integers and let X be an n-element set. We define the colex order $<$ on $\binom{\mathcal{X}}{k}$ by setting $A < B$ if $\max\{i : i \in A-B\} < \max\{i : i \in B-A\}$. The shift operator S_{ij}, $1 \leq i < j \leq n$, on $\binom{\mathcal{X}}{k}$ is defined as follows: Let $\mathcal{F} \subseteq \binom{\mathcal{X}}{k}$. For $F \in \mathcal{F}$, define

$$s_{ij}(F) := \begin{cases} (F-(j)) \cup \{i\} & \text{if } i \notin F, j \in F, \text{ and } (F-\{j\}) \cup \{i\} \notin \mathcal{F} \\ F & \text{otherwise}, \end{cases}$$

and $S_{ij}(\mathcal{F}) := \{ s_{ij}(F) : F \in \mathcal{F} \}$. It is easily checked that (i) $|S_{ij}(\mathcal{F})| = |\mathcal{F}|$ and (ii) $S_{ij}(\mathcal{F})$ is intersecting if \mathcal{F} is intersecting. A family $\mathcal{F} \subseteq \binom{\mathcal{X}}{k}$ is called shifted if $S_{ij}(\mathcal{F}) = \mathcal{F}$ holds for all $1 \leq i < j \leq n$. For a family $\mathcal{F} \subseteq \binom{\mathcal{X}}{k}$ and an integer $l \leq k$, we define the lth shadow of \mathcal{F} by $\sigma_l(\mathcal{F}) := \{ G \in \binom{\mathcal{X}}{k} : G \subseteq \exists F \in \mathcal{F} \}$.

ACKNOWLEDGMENT

The authors are indebted to J. E. Simpson for calling their attention to Theorem A, which initiated this research.
REFERENCES

