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§0. Introduction

A century ago Edmund Landau analyzed the then recent proofs of Hadamard
and, in particular, of de la Vallée Poussin for the Prime Number Theorem. As
de la Vallée Poussin proved also an error term

π(x) = li(x) +O(xe−c
√

x), (1)

Landau’s idea was to improve upon the error term optimizing the technical tools
employed. He presented in his “Handbuch. . . ” two attempts. Both methods are
technically by now standard, but still lengthy and full of calculations. The form of
error terms deducible present themselves as

π(x) =

x∫
2

dt

log t
+O

(
x · exp(−K logL x)

)
, (2)

and Landau sought the optimal values of L an K deducible using the method of
de la Vallée Poussin; more precisely, optimizing use of the positive trigonometric
polynomials occupying a key role in the original proof.
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§1. A few properties of the Riemann zeta function

In this section we deal with the Riemann zeta function

ζ(s) :=
∞∑

n=1

1
ns

=
∏

p prime

(
1

1− 1
ps

)
(σ := <s > 1). (3)

Here the first, defining sum – the Dirichlet series of the identically 1 sequence – is
absolutely and locally uniformly convergent in σ > 1. Thus in the whole domain
of convergence σ > 1, ζ(s) is analytic, each function n−s = exp(−s log n) being
an entire function in s. Moreover, by absolute convergence and the unique prime
factorization, the second form – the Euler product form – follows everywhere in
σ > 1. In fact, this Euler product form is often called the analytic form of the
unique prime factorization theorem, for obvious reasons. The same way as the sum,
it also gives a locally uniformly convergent representation: ζ(s) is the limit of partial
products of analytic functions (1−p−s)−1. However, here the analytic functions used
are not entire functions, but only regular for σ > 0; and neither representation is
convergent, hence is not valid, for any larger halfplane than σ > 1.

Still, the Riemann zeta function ζ(s) itself can be meromorphically continued
all over the complex plane C. Also, the Rieman zeta function admits a functional
equation

ζ(s) = 2sπs−1Γ(1− s) sin(sπ/2)ζ(1− s),

or, in a more symmetric form,

ξ(s) = ξ(1− s) with ξ(s) := (s− 1)Γ(s/2 + 1)π−s/2ζ(s). (4)

But what is the definition of ζ(s) for σ ≤ 1 in these formulae? The functional
equation makes sense if only we have some extended definition for ζ(s) for values
out of the halfplane of convergence of (3). This can be accomplished by either
defining the analytic continuation along the way of proving the functional equation,
or by extending the function first and treating the functional equation only after it.

First we present a direct analytic continuation by means of partial summation,
as this is most suitable to derive the basic estimates we need along the course of our
work. By partial summation the formula

∑
a<n≤b

f(n)g(n) = F (b)g(b)− F (a)g(a)−
∫ b

a
F (t)g′(t)dt (5)(

F (x) :=
∑
n<x

f(n), g ∈ C1[a, b]

)
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is meant; in fact this is another formulation of partial integration for Stieltjes inte-
grals with respect to dF . As a technical tool, we denote

r(x) :=
∫ x

1

(
{y} − 1

2

)
dy ∈

[
−1
8
, 0
]

(∀x ∈ R), r(N) = 0 (∀N ∈ N). (6)

Proposition 1. The Riemann zeta function continues analytically to σ > −1, ex-
cept for one singularity at s = 1 where it has a first order pole of residuum 1.
Furthermore, ζ(s)

i) has the form

ζ(s) =
1

s− 1
+

1
2
− s(s+ 1)

∫ ∞

1

r(x)dx
x2+s

,

with r(x) defined in (6),

ii) satisfies

ζ(s) =
N∑

n=1

1
ns
− 1

2
N−s +

1
s− 1

N1−s − s(s+ 1)
∫ ∞

N

r(x)
x2+s

dx, (7)

for all N ∈ N and for σ > −1

iii) satisfies for σ > −1 ∣∣∣∣ζ(s)− s+ 1
2(s− 1)

∣∣∣∣ ≤ |s(s+ 1)|
8(σ + 1)

,

iv) and satisfies also 1
σ−1 < ζ(σ) < σ

σ−1 for all 1 ≤ σ.

Proof. Recall that ζ(s) = limN→∞
∑N

n=1
1
ns in σ > 1. Putting a = 1/2 and b = N ,

say, partial summation (5) leads to

N∑
n=1

1
ns

=

(
N∑

n=1

1

)
N−s −

∫ N

1
[x]

−s
xs+1

dx = N1−s + s

∫ N

1

(x− {x})
xs+1

dx

= N1−s + s

∫ N

1

1
xs
dx+

1
2

∫ N

1

−s
xs+1

dx− s

∫ N

1

(
{x} − 1

2

)
xs+1

dx (8)

= N1−s +
[
sx1−s

1− s

]N

1

+
[
x−s

2

]N

1

− s

∫ N

1

(
{x} − 1

2

)
xs+1

dx

=
s

s− 1
− 1

2
+

1
2
N−s − 1

s− 1
N1−s − s

∫ N

1

(
{x} − 1

2

)
xs+1

dx.
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Observe that the last integral in (8) converges absolutely and locally uniformly for
σ > 0. Taking limits in N →∞, we get the formula

ζ(s) =
s

s− 1
− 1

2
− s

∫ ∞

1

(
{x} − 1

2

)
xs+1

dx, (9)

providing an analytic continuation of ζ(s) all over the right halfplane <s > 0, as
the integral is locally uniformly and absolutely convergent there. Let us now apply
repeated partial integration in (8) to get

N∑
n=1

1
ns

=
s

s− 1
− 1

2
+

1
2
N−s − 1

s− 1
N1−s − s

{[
r(x)
x1+s

]N

1

−
∫ N

1
r(x)

(−1− s)
x2+s

dx

}

=
s

s− 1
− 1

2
+

1
2
N−s − 1

s− 1
N1−s − s

{
0 +

∫ N

1
r(x)

1 + s

x2+s
dx

}
, (10)

where r(x) is defined in (6). The last integral in (10) converges absolutely and
locally uniformly even for σ > −1. Letting N →∞, we get the formula

ζ(s) =
s

s− 1
− 1

2
− s(s+ 1)

∫ ∞

1

r(x)dx
x2+s

=
1

s− 1
+

1
2
− s(s+ 1)

∫ ∞

1

r(x)dx
x2+s

, (11)

first following from (10) only for σ > 1. However, (11) extends even to σ > −1
analytically. This defines the analytic (more precisely, meromorphic) continuation
of the Riemann zeta function, and shows its meromorphic behavior as having one,
simple pole at s = 1 and behaving analytically everywhere else in σ > −1.

Comparing (10) and (11) it is immediate that we also have (7), which, in fact,
contains only terms analytic in σ > −1, except for the pole at s = 1 of N1−s/(s−1).
Observe that (11) implies also part (iii) of the assertion if we take into account∣∣∣∣∫ ∞

1

r(x)dx
x2+s

∣∣∣∣ ≤ 1
8

∫ ∞

1

dx

x2+σ
=

1
8(1 + σ)

.

Moreover, for real 1 < s = σ comparison of the integral
∫∞
1 x−σdx with the defining

sum of ζ(s) yields part (iv) of the statement.

Already Riemann has calculated the first few zeros of ζ(s), and found that the
first complex zero occurs at 1/2+ i14, . . . . That is, ζ(s) does not vanish in the close
vicinity of the real line (in σ ≥ 0). For us it suffices to see the following.

Proposition 2. The Riemann zeta function ζ(s) does not vanish in 1/2 ≤ σ ≤ 1,
−
√

5 ≤ t ≤
√

5.

Proof. We simply use the elementary formula obtained as part (iii) of the previous
Proposition 1. If ζ(s) vanishes, then this gives 4(σ + 1) ≤ |s(s − 1)|. Let us fix t
and assume, as we may, that 0 ≤ t. On the line segment [1/2 + it, 1 + it] we have
|s(s − 1)| ≤ |s|2 = t2 + σ2 ≤ t2 + σ, hence in the full range 1/2 ≤ σ ≤ 1 we must
certainly have 4(σ + 1) ≤ t2 + σ, that is, t2 ≥ 4 + 3σ ≥ 11/2 > 5.
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Proposition 3. The Riemann zeta function also satisfies

i) |ζ(s)| ≤ c log |t| |t| ≥ 2, 1− 1
log |t| ≤ σ and

ii) |ζ ′(s)| ≤ c log2 |t| |t| ≥ 2, 1− 1
log |t| ≤ σ.

iii) |ζ(s)| ≤ c|t|1−σ/(1− σ) for all |t| ≥ 2, −1 ≤ σ < 1.

iv) |ζ(s)| ≤ c|t|(1−σ)+ log |t| for all |t| ≥ 2, −1 ≤ σ.

Proof. For σ ≥ 2 we have uniform boundedness of ζ(s) and ζ ′(s), in view of absolute
and uniform majorization of their series representation by ζ(2) and ζ ′(2), respec-
tively. So assume σ < 2. We also assume, as we may, t > 0, hence t ≥ 2. On
applying (7) with N := [t] + 1, say, we obtain

|ζ(s)| ≤max{1, N−σ}+
∫ N

1
x−σdx+N−σ +

N−(σ−1)

t
+ (t+ 2)(t+ 3)

N−1−σ

1 + σ

≤1 + cN1−σ +
N1−σ − 1

1− σ
+ c

(
t

N

)2

N1−σ � t1−σ − 1
1− σ

+ 1 + t1−σ. (12)

Observe that we already have (iii). Moreover, we have for σ < 1

t1−σ − 1
1− σ

≤ max
0≤θ≤1−σ

d

dθ
eθ log t = log t t1−σ (13)

and for σ > 1

t1−σ − 1
1− σ

=
1− t−(σ−1)

σ − 1
≤ max

0≤θ≤σ−1

d

dθ
e−θ log t = log t, (14)

which proves (iv) for σ 6= 1 and whence by continuity for all σ > −1, too. Consider
now the domain σ ≥ 1 − 2/log t and t ≥ 3/2. In this domain t1−σ ≤ t2/ log t = e2,
hence also (i) obtains. In fact, we got more (i.e., a larger domain) than we need for
part (i), but it makes also the next step easy. Indeed, for an application of Cauchy’s
coefficient estimate at s = σ + it in a circle of radius ρ := 1/4 log t, the circle stays
in this domain when t ≥ 2 and σ ≥ 1 − 1/ log t. That proves the second part,
too. Alternatively, the similar partial summation formula (5) can be applied even
to ζ ′(s); or, formula (7) can be differentiated and then estimated.

In our work it is important to observe that some estimates, valid to the right of
the line σ = 1, extend on and to the left of it in a certain range.

Proposition 4. Assume that with certain constants c > 0, and b ≥ 1, and with a
constant a > 0 small enough, the Riemann zeta function satisfies for all |t| ≥ 2 the
estimate

|ζ(s0)| ≥ c log−b |t| for s0 = σ0 + it with σ0 := σ0(t) := 1 +
a

logb+2 |t|
.
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Then we must have

|ζ(s)| ≥ c/2
logb |t|

for all s = σ + it with 2 > σ > 1− a

logb+2 |t|
.

Furthermore, we must also have∣∣∣∣ζ ′(s)ζ(s)

∣∣∣∣� logb+2 |t| for all s = σ + it with 2 > σ > 1− a

logb+2 |t|
. (15)

Proof. Again, assume t ≥ 2. Since ζ(s) is analytic, clearly we can write

|ζ(s)| ≥ |ζ(s0)| − |ζ(s0)− ζ(s)| ≥ c log−b t−max
σ
|ζ ′(σ + it)| 2a

logb+2 t
.

Since ζ ′ can be estimated according to part (ii) of Proposition 2, we now get with
C denoting the constant there

|ζ(s)| ≥ c log−b t− C log2 t
2a

logb+2 t
>

c/2
logb t

.

if a < c/(4C). The first part of the assertion follows, while using the estimate of
Proposition 3 (ii) for ζ ′, even the second part obtains.
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§2. The logarithmic derivative of ζ(s) in the critical strip

We have seen that ζ(s) has an analytic (meromorphic) continuation. Even if
ζ(s) may vanish at some discrete points, 1/ζ(s) is meromorphic together with ζ(s)
at least in the same halfplane σ > −1. Moreover, it is analytic for σ > 1, as
ζ(s) 6= 0 in σ > 1. This follows from the locally uniformly convergent Euler product
representation (3), as from that we get

1
ζ(s)

=
∏

p prime

(
1− 1

ps

)
=

∞∑
n=1

µ(n)
ns

,

where µ(n) = (−1)k if n is squarefree with k distinct prime divisors, and µ(n) = 0 if n
is not squarefree. (This arithmetical function is Möbius’s function.) It is immediate
that ∣∣∣∣ 1

ζ(s)

∣∣∣∣ ≤ ∞∑
n=1

1
nσ

= ζ(σ) (σ > 1), (16)

an even sharper form of nonvanishing of ζ(s) in σ > 1. However, to estimate order of
magnitude of 1/ζ(s) is quite intricate. For our needs here we analyze the logarithmic
derivative ζ ′/ζ, which is defined meromorphically as the quotient of ζ ′ and ζ (even
if defining also the logarithm would take more effort and complications).

Let us recall first a fundamental formula of Jensen.

Lemma 1 (Jensen). Let f(z) be analytic throughout a disk |z − z0| ≤ R and let
the zeroes of f in the disk be z1, . . . , zn, all listed according to multiplicity. Assume
that f(z0) 6= 0, i.e. z0 6= zj for j = 1, . . . , n. Then we have

log
∣∣∣∣f(z0)

R

z1
. . .

R

zn

∣∣∣∣ = 1
2π

∫ 2π

0
log
∣∣f(Reiϕ + z0)

∣∣ dϕ. (17)

Proof. If f 6= 0 throughout the disk, i.e. n = 0, then even log f is analytic and
Cauchy1s formula applies to log f . Since < logw = log |w|, taking the real part of
Cauchy’s formula gives

log |f(z0)| =
1
2π

∫ 2π

0
log
∣∣f(Reiϕ + z0)

∣∣ dϕ, (18)

that is, (17) in case n = 0. Consider now the case when there are n ≥ 1 zeroes, and
put

g(z) :=
f(z)
B(z)

, with B(z) :=
n∏

j=1

(
R(z − zj)

R2 − (zj − z0)(z − z0)

)
.
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The zeroes of f and the Blaschke product B cancel, hence g 6= 0 is analytic through-
out the disk. An application of (18) for g gives

log |g(z0)| =
1
2π

∫ 2π

0
log
∣∣g(Reiϕ + z0)

∣∣ dϕ =
1
2π

∫ 2π

0
log
∣∣f(Reiϕ + z0)

∣∣ dϕ,
since all Blaschke factors map the bounding circle |z − z0| = R onto |w| = 1 and
thus |B(z)| does not change the integral on the right. On the other hand it is easy
to substitute z0 into g to get

log |g(z0)| = log
∣∣∣∣f(z0)

R

z1
. . .

R

zn

∣∣∣∣ ,
and combining the last two formulas yields (17).

An obvious corollary is the following estimate of Jensen.

Lemma 2 (Jensen). Let f(z) be analytic throughout a disk |z − z0| ≤ R. Assume
that f(z0) 6= 0, and let |f(z)| ≤ M all over the disk |z − z0| ≤ R. Denote n the
number of zeroes of f in the smaller disk |z−z0| ≤ r < R, counted with multiplicity.
Then we have

n log
R

r
≤ log

1
|f(z0)|

+ logM. (19)

In the theory of the Riemann zeta function N(t) stands for the zeroes of ζ(s) in
the rectangle with vertices 0, 1, it and 1 + it; the number of zeroes in the rectangle
with vertices i(t± 1) and 1 + i(t± 1) is thus n(t) := N(t+ 1)−N(t− 1) whenever
t ≥ 1 (and is 0 if 0 ≤ t ≤ 1 according to Proposition 2, anyway). Also, it is clear
that the zeroes of ζ(s) lie symmetrically with respect to the real axis, as ζ(x) ∈ R
whenever x > 1, and thus ζ(s) = ζ(s) according to the reflection principle. Our next
aim is to estimate n(t) at least in the order of magnitude. In the more advanced
theory the Riemann–von Mangoldt formula

N(t) =
t

2π
log

t

2π
− t

2π
+O(log t)

is proved; however, we will need only a somewhat simpler result.

Proposition 5. The number of zeroes n(t) of ζ(s) in the rectangle with vertices
0 + i(t ± 1) and 1 + i(t ± 1) does not exceed an absolute constant times log |t| for
|t| ≥

√
5− 1, and is zero if |t| ≤

√
5− 1.

Proof. Assume, as we may, t ≥ 0. In case t ≤
√

5− 1, the assertion is just Proposi-
tion 2. Moreover, the first rectangle fully out of the zero-free domain of Proposition 2
is [0, 1]× [

√
5,
√

5 + 2]i, so we can restrict ourselves to t ≥
√

5 + 1.
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Let us apply Jensen’s estimate to ζ(s) e.g. around the point s0 = 2 + it and
with R = 5/2 and r =

√
5. On the one hand |z − s0| ≤ R does not contain the

singular point at z = 1, hence ζ is analytic throughout the larger disk. On the other
hand the smaller disk |z− s0| ≤ r covers the rectangle with vertices 0 + i(t± 1) and
1+ i(t±1). Thus we get an estimate for n(t), too. Indeed, the estimate (19) implies

n(t) log
√

5
2
≤ log

1
|ζ(s0)|

+ logM with M := max
|z−s0|≤5/2

|ζ(z)|.

Here by (16) 1/|ζ(2 + it)| ≤ ζ(2) = π2/6 – an absolute constant, anyway – and
Proposition 3 (iii) can be invoked to estimateM asM � t3/2. Whence the assertion.

We use the above estimate on the number of zeroes to derive an estimate of the
order of magnitude of the negative real part of the logarithmic derivative of ζ ′/ζ in
the halfplane of absolute convergence. To this end we need a well-known function
theoretical lemma.

Lemma 3 (Borel–Caratheodory). Let f(z) be a holomorphic function in the
disk |z − z0| ≤ R satisfying <f ≤ A there. Then for any r < R we have

max
|z−z0|≤r

|f(z)− f(z0)| ≤
2r

R− r
(A−<f(z0)) . (20)

Proof. It suffices to consider the case when z0 = 0 and f(0) = 0. Consider the
function

g(z) :=
f(z)

z(2A− f(z))
.

Since w := f(z) is in the halfplane <w ≤ A, we have |w| ≤ |2A − w|, hence on the
circle |z| = R we get |g(z)| ≤ 1/R. Since f(0) = 0, f(z)/z is regular, hence also g
is regular, and the maximum principle yields |g(z)| ≤ 1/R all over the disk |z| ≤ R.
But

f(z) = g(z)z(2A− f(z), f(z) =
2Azg(z)
1 + zg(z)

.

which shows that for |z| = r the modulus of f is at most

|f(z)| ≤ 2Ar/R
1− r/R

=
2rA
R+ r

.

Hence the same holds throughout the disk, as was to be shown.

Proposition 6. For σ > 1 and |t| > 2 we have

<− ζ ′

ζ
(s) ≤ c log |t| −

∑
ρ=β+iγ : ζ(ρ)=0 |t−γ|≤1

< 1
s− ρ

. (21)
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Proof. First we consider the disk D around s0 := 2+ it with radius 3; it lies fully in
the domain σ ≥ −1 and contains the rectangle [0, 1]× i[t− 1, t+ 1]. In what follows
let all sums, products etc. over ρ stand for sums, products over all zeroes in this
rectangle. By the above Proposition 5 the number n(t) of terms is then � log t.

Now put Φ(s) := ζ(s)/P (s) with P (s) :=
∏

ρ(s− ρ). Then Φ(s) is regular in D;
moreover, it is nonzero in the rectangle [0, 1] × i[t − 1, t + 1], as well as in σ > 1,
hence even its logarithm f(s) := log Φ(s) is regular throughout the smaller disk
E := {s : |s− s0| ≤

√
2}.

The order of magnitude of Φ(s) is controlled all over the circle ∂D. Indeed,
there |ζ(s)| � t2 log t � t3 in view of Proposition 3 (iv), while all the factors in
P (s) exceed one in absolute value, as ∂D lies farther than 1 from the rectangle
[0, 1]× i[t− 1, t+ 1], where all the considered zeta-roots ρ lie. In all, we find

|Φ(s)| � t3 (s ∈ ∂D), (22)

and hence all over the disk D containing also E. Clearly, f(s) := log Φ(s) is regular
on E, and the Borel–Caratheodory Lemma can be applied to f(s). Lemma 3 yields

max
E
|f(s)| ≤ |f(s0)|+

2r
R− r

(
max

|s−s0|≤2
<f(s)−<f(s0)

)
. (23)

Taking into account also Proposition 5, we get

<f(s0) ≥ log
∣∣∣∣ζ(2 + it)

3n(t)

∣∣∣∣ ≥ log

∣∣∣∣∣1−
∞∑

n=2

n−2

∣∣∣∣∣−c log t� log |2−ζ(2)|−log t� − log t,

and also
<f(s0) ≤ log |ζ(2 + it)| − log 1n(t) ≤ log |ζ(2)| = c,

hence choosing a logarithm branch with =f(s0) = arg Φ(s0) ∈ [−π, π), we obtain
also |f(s0)| � log t. Finally, we have

<f(s) = log |Φ(s)| ≤ logCt3 � log t

according to (22). Writing in these estimates (23) becomes

max
|s−s0|≤

√
2
|f(s)| � 2r

R− r

(
max

|s−s0|≤2
<f(s)

)
+ log t� R+ r

R− r
log t� log t, (24)

in view of the choice R = 2 and r =
√

2 above. Let now the point s = σ + it be
anywhere in the segment (1 + it, s0]. Note that for all z

Φ′

Φ
(z) =

ζ ′

ζ
(z)−

∑
ρ

1
z − ρ

. (25)
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An application of Caucy’s estimate gives

<− Φ′

Φ
(z) ≤

∣∣∣∣Φ′

Φ
(z)
∣∣∣∣ = |f ′(z)| ≤ 1√

2− 1
max

E
|f | � log t, (26)

and combining (25) and (26) yields the assertion.
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§3. The functional equation and the logarithmic derivative of ζ(s)

In this section we use well-known properties of the Γ function to deduce the
functional equation of ζ(s). The functional equation enables us to establish various
facts concerning the location of the roots of ζ(s) and to derive an even more precise
formula for the logarithmic derivative.

As a generalization of the factorial function the Gamma function can be defined
by its Euler integral form as

Γ(z) :=
∫ ∞

0
xz−1e−xdx (<z > 0). (27)

This is just the Mellin transform of the measure e−xdx/x. Partial integration easily
gives Γ(z) = zΓ(z − 1) and Γ(1) = 1, hence Γ(n) = (n − 1)!, showing how Γ
extends the factorial function. Moreover, the very same functional equation provides
a successive method to define the analytic (meromorphic) continuation of Γ for
<z > −1, then to <z > −2, etc., all over the plane. It is not too difficult to see that
the integral equals to Gauss’ definition

lim
m→∞

m!mz

z(z + 1) · · · · · (z +m)
, (28)

where the latter limit is locally uniformly convergent – hence regular – all over
C \ −N. Gauss’ definition easily yields the equivalent definition

1
Γ(z)

= eCzz
∞∏

k=1

(
1 +

z

k

)
e−z/k (C = 0.57 . . . Euler’s constant) (29)

which is the Weierstrass product representation of the entire function 1/Γ. From this
and the obvious Weierstrass product form of the sine function the reversal formula

Γ(z)Γ(1− z) =
π

sinπz
(30)

obtains, too. The product form (29) clearly shows that Γ has first order poles at
points of −N and is regular everywhere else; moreover, Γ is nonzero as its reciprocal
is an entire function.

To establish a connection between ζ(s) and Γ(z) we substitute y := λx in (27)
and get

Γ(z) =
∫ ∞

0
xz−1e−xdx = λz

∫ ∞

0
yz−1e−λydy (<z > 0). (31)

Summation of Γ(z)/nz over λ = n ∈ N gives

Γ(z)ζ(z) =
∞∑

n=1

∫ ∞

0
yz−1e−nydy =

∫ ∞

0
yz−1 e−y

1− e−y
dy. (32)
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This leads to the functional equation through some deformation of the contour
integral path, but here we follow another argument, also due to Riemann, being
perhaps shorter to explain. Here instead of using λ = n we put λ = n2 and obtain

Γ(z)ζ(2z) =
∞∑

n=1

∫ ∞

0
yz−1e−n2ydy =

∫ ∞

0
yz−1ω(y)dy

(
ω(z) :=

∞∑
n=1

e−n2y

)
. (33)

In function theory ω is more well-known in the form of the Theta function

Θ(z) :=
∞∑

n=−∞
e−n2πz

(
<z > 0

)
, (34)

which is related to ω as Θ(z) = 2ω(πz) + 1 i.e. ω(z) = (Θ(z/π)− 1)/2.

Lemma 4 (Poisson–Jacobi). The function Θ(z) satisfies the functional equation

Θ
(

1
z

)
=
√
zΘ(z) (<z > 0), (35)

with
√
z denoting the principal branch of the square root function.

Proof. It suffices to show the assertion for real x > 0, as the functional equation
then extends, by analytic continuation, even to the right halfplane <z > 0.

Now consider τx(t) := e−πxt2 . Our point is that Θ(x) is defined as a sum, where
the sum runs over function values τx(n) = e−πxn2

of τ := τx at n ∈ N with x > 0
considered a fixed parameter here. With x > 0 fixed, clearly τ ∈ C(R), τ ∈ L(R)
and even τ” ∈ L(R). Hence Poisson’s summation formula applies giving

Θ(x) =
∞∑

n=−∞
e−πxn2

=
∞∑

n=−∞
τ(n) =

∞∑
n=−∞

τ̂(n), (36)

with the Fourier coefficients τ̂(n) defined as

τ̂(n) :=
∫ ∞

−∞
e−2πintτ(t)dt =

∫ ∞

−∞
e−2πint−πxt2dt = e−πn2/x

∫ ∞

−∞
e−πx(t+in/x)2dt.

(37)
Here the last integral is a complex path integral over the real line, but can be
moved to another horizontal straight line passing through −in/x. The integrand
e−πx(t+in/x)2 is an entire function of t ∈ C, hence no residues occur, while integrals
over the segments [T, T − in/x] in the deformation process contribute o(1) when
T → ±∞. In all,∫ ∞

−∞
e−πx(t+in/x)2dt =

∫ ∞−in/x

−∞−in/x
e−πx(z+in/x)2dz =

∫ ∞

−∞
e−πxu2

du =
1√
x
, (38)

computing the integral over z using parametrization by z = u − ix/n with u ∈ R.
Taking into account (34), collecting (36), (37) and (38) furnishes (35).
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Proposition 7. The Riemann zeta function ζ(s) is analytic all over C except for a
simple pole of residuum 1 at s = 1. Moreover, it admits the functional equation (4).

Proof. Setting s = z/2 with <s > 1 in (33) and inserting ω(y) = (Θ(y/π) − 1)/2,
substituting x := y/π gives

Γ
(s

2

)
ζ(s) =

∫ ∞

0
ys/2−1 Θ(y/π)− 1

2
dy = πs/2

∫ ∞

0
xs/2−1 Θ(x)− 1

2
dx =

∫ 1

0
+
∫ ∞

1
.

(39)
After dividing by πs/2, an application of Lemma 4 in the integral over [0, 1] leads to

2
πs/2

Γ
(s

2

)
ζ(s) =

∫ 1

0
xs/2−1

(√
1/xΘ(1/x)− 1

)
dx+2

∫ ∞

1
xs/2−1ω(πx)dx

(
<s > 1

)
.

Substituting u = 1/x in the first integral then yields∫ 1

0
xs/2−1

(√
1/xΘ(1/x)− 1

)
dx =

∫ 1

0
xs/2−1

(
x−1/2 (Θ(1/x)− 1) + x−1/2 − 1

)
dx

=
∫ ∞

1
u−1/2−s/2 (Θ(u)− 1) du+

∫ ∞

1

(
u−1/2−s/2 − u−1−s/2

)
du

= 2
∫ ∞

1
u−1/2−s/2ω(πu)du+

([
2u1/2−s/2

1− s

]∞
1

−

[
2u−s/2

−s

]∞
1

)

= 2
∫ ∞

1
x−1/2−s/2ω(πx)dx+

2
s− 1

− 2
s

= 2
∫ ∞

1
x(1−s)/2−1ω(πx)dx+

2
s(s− 1)

(
<s > 1

)
.

and thus

π−s/2Γ
(s

2

)
ζ(s) =

∫ ∞

1

(
x(1−s)/2−1 + xs/2−1

)
ω(πx)dx+

1
s(s− 1)

(
<s > 1

)
.

(40)
Now if we multiply by s(s − 1)/2, taking into account Γ(s/2)s/2 = Γ(s/2 + 1) we
obtain

ξ(s) = (s− 1)π−s/2Γ
(s

2
+ 1
)
ζ(s) = P (s) + P (1− s) + 2

(
<s > 1

)
, (41)

where
P (z) :=

z(z − 1)
2

∫ ∞

1
xz/2−1ω(πx)dx.

Thus even if originally we have started with <s > 1, the end formula gives an entire
function, since P (z) is regular all over C. Moreover, it is easy to see that substituting
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s by 1 − s the formula in (41) for ξ(s) remains unchanged; thus we arrive at (4).
Expressing now ζ(s) gives

ζ(s) =
1

s− 1
πs/2 1

Γ
(

s
2 + 1

)ξ(s), (42)

all terms on the right hand side being entire functions but for 1/(s−1). As for s = 1
we already know the behavior of ζ(s), the meromorphic behavior of ζ(s) has now
been fully described. Finally, observe that ξ(s) 6= 0 for <s > 1, as neither terms can
vanish in the definition (4) of ξ if <s > 1. It follows by the functional equation just
proved, that ξ does not vanish for <s < 0 either. Recalling (42) it follows that for
<s < 0 ζ(s) vanishes exactly when 1/Γ(s/2 + 1), that is, when s ∈ −2N.

The zeroes s = −2,−4, . . . are called the trivial zeroes of ζ(s), while all other
zeroes – the so-called nontrivial zeroes – lie in the critical strip 0 ≤ <s ≤ 1. Clearly,
any nontrivial zero ρ of ζ is a zero of ξ, too; and conversely, a trivial zero of ζ
is never a zero of ξ, for the effect of the corresponding pole of the Γ function.
By the functional equation it follows that for a nontrivial root ρ ζ(ρ) = 0 implies
ζ(1 − ρ) = 0; also, by the reflection principle we see that ρ and 1 − ρ are ζ-roots,
too.

Hadamard’s approach was then to continue with the build-up of general complex
function theory, in particular of entire functions, to see that there are infinitely many
nontrivial zeroes lying in the critical strip. The best way to see this is to observe,
that by the functional equation Ξ(z) := ξ(z + 1/2) is symmetric with respect to
both the real and the imaginary axis; hence it is a function of z2 only (Exercise!).
Then taking Ξ(z) = Φ(z2), the function Φ(w) is another entire function, but its
growth order is now 1/2. (It is not too difficult to see that the order of ξ is the order
of Γ, which is 1.) However, general function theory says that an entire function of
order < 1 is the Weierstrass product of its root factors; in particular, if the function
is not a polynomial, then it must have infinitely many zeroes.

In any case, the entire function ξ has all its zeroes in the critical strip. Moreover,
it has order 1, since taking into account (41), it suffices to see that P (z) is of order 1,
which is easy to calculate. (In fact, we will need only that ξ has order at most 1,
which is easier to see from upper estimate of the growth of P (z).) In all, we find
the Weierstarss product representation

ξ(s) = eas+b
∏

ρ : ξ(ρ)=0

(
1− s

ρ

)
es/ρ, (43)

which gives
ξ′

ξ
(s) = a+

∑
ρ : ξ(ρ)=0

(
1

s− ρ
+

1
ρ

)
, (44)
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which is a meromorphic representation by Mittag-Leffler sums. Writing in the defi-
nition of ξ we finally obtain

ζ ′

ζ
(s) = − 1

s− 1
+

1
2

log π − 1
2

Γ′

Γ

(s
2

+ 1
)

+ a+
∑

ρ : ξ(ρ)=0

(
1

s− ρ
+

1
ρ

)
. (45)

Lemma 5. The logarithmic derivative of Γ(z) satisfies

Γ′

Γ
(z) = log z +O(1) (<z > 0, |z| > 1).

Proof. The Mittag-Leffler partial fractions sum formula for the logarithmic deriva-
tive of Γ follows from the product representation (29) as

−Γ′

Γ
(z) = C +

1
z

+
∞∑

k=1

(
1

k + z
− 1
k

)
= C +

1
z
−

∞∑
k=1

(
z

(k + z)k

)
. (46)

Now we write

N∑
k=1

(
1

k + z
− 1
k

)
≈
∫ N

1

(
1

x+ z
− 1
x

)
dx = log(N + z)− log(z+1)− logN ≈ log z,

where it is easy to see that the deviation of the expressions connected by the ap-
proximate equality symbol ≈ will remain bounded in <z > 0.

Using Lemma 5 in (45) furnishes the formula

ζ ′

ζ
(s) = −1

2
log
(s

2
+ 1
)

+
∗∑
ρ

(
1

s− ρ
+

1
ρ

)
+O(1) (s→∞ in <s > 0) , (47)

with
∑∗

ρ denoting a sum extended over the nontrivial roots of ζ(s). Since for <s > 1
all terms in the sum have positive real parts, we finally obtain the next assertion.

Proposition 8. We have

<− ζ ′

ζ
(s) ≤ C +

1
2

log t−
∑

ρ

(
1

s− ρ
+

1
ρ

)
(s = σ + it, σ > 1, |t| ≥ 2) , (48)

with
∑

ρ being extended over all, or over any subset of the nontrivial roots of ζ(s).

17



§4. Basic results on the error term in prime distribution

Lemma 6. Let δ(x) be any monotone increasing function satisfying
√
x ≤ δ(x) ≤ x.

If Ψ(x) = x+O(δ(x)), then π(x) = li(x) +O(δ(x)).

Proof. Recall that Ψ(x) :=
∑

n<x Λ(n) with Λ being von Mangoldt’s function

Λ(n) :=

{
log p if n = pk with p prime, and k ∈ N
0 otherwise.

Let l(n) := log p for n = p prime and 0 otherwise; then by definition Θ(x) :=∑
n<x l(n). First we compare Ψ(x) and Θ(x), which is easy:

Θ(x) ≤ Ψ(x) =
∑
p<x

∑
k : pk≤x

log p = Θ(x) +
∑

p

∑
2≤k≤ log x

log p

log p

< Θ(x) +
∑

p≤
√

x

[
log x
log p

]
log p ≤ Θ(x) + π(

√
x) log x = Θ(x) +O(

√
x),

using also Chebyshev’s theorem π(y) � y/ log y. So it follows that Ψ(x) − Θ(x) =
O(
√
x) = O(δ(x)), and it suffices to compare Θ(x)− x and π(x)− li(x).

We apply partial summation, then the assumption, and bring back the main
term by a reversed application of partial integration. Hence

π(x) =
∑
n≤x

l(n)
log n

= Θ(x)
1

log x
−
∫ x

2
Θ(y)

−1
y log2 y

dy

=
x

log x
+
O(δ(x))

log x
+
∫ x

2
(y +O(δ(y))

dy

y log2 y

=
x

log x
+
∫ x

2

y

y log2 y
dy +O(δ(x)) +O(δ(x))

∫ x

2

dy

y log2 y

=
∫ x

2

dy

log y
+O(δ(x)) = li(x) +O(δ(x)).

The assertion obtains.

Lemma 7. Let δ(x) be any monotone increasing function with
√
x ≤ δ(x) ≤ x. If

T (x) :=
∗∑

n<x

Λ(n) log
(x
n

)
= x+O(δ(x)), (49)

then π(x) = li(x) +O(δ(x)).
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Proof. Let us define f(n) := Λ(n) and g(y) := log(x/y) = log x− log y, where here
x is considered a fix constant, and y is the variable between 1 and x. We apply
partial summation to get

Ψ(x) = −
∫ x

1
T (y)

−1
y
dy.

Here both integrated terms vanish as T (1) = 0 = log(x/x). Observe that T (y) = 0
for all y < 2, hence the lower limit of the integration can be changed to 2. Now we
get

Ψ(x) =
∫ x

2
(y +O(δ(y))

1
y
dy = x+O

(∫ x

2

δ(y)
y
dy

)
= x+O(∆(x)),

with ∆(x) :=
∫ x
2

δ(y)
y dy. Repeating the argument of Lemma 6 with ∆, we get

π(x) = li(x) +
O(∆(x))

log x
+
∫ x

2

O(∆(y))
y log2 y

dy,

hence

π(x)− li(x) = O

(
1

log x

∫ x

2

δ(y)
y
dy +

∫ x

2

∫ y

2

δ(u)
u

du
dy

y log2 y

)
.

Clearly, the first term is O(δ(x)). Interchanging the integrals in the second we find∫ x

2

∫ y

2

δ(u)
u

du
dy

y log2 y
=
∫ x

2

δ(u)
u

∫ x

u

dy

y log2 y
du =

∫ x

2

δ(u)
u

(
1

log u
− 1

log x

)
=
∫ √

x

2
+
∫ x

√
x
≤
√
x+

1
log x

∫ x

2

δ(u)
u

,

which is exactly the same as before apart from the term
√
x ≤ δ(x). Hence we get

O(δ(x)), as stated.
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§5. Mellin transform and Perron’s coefficient formula

In this section we assume that an is a sequence (an arithmetical function), and
consider the corresponding Dirichlet series

A(s) :=
∞∑

n=1

an

ns
, (50)

where the series will be assumed to be convergent. Putting α(x) :=
∑

n<x an, the
series (50) (if convergent) is just

A(s) =
∫ ∞

1
x−sdα(x), (51)

which is the general form of a Stieltjes–Mellin transform whenever α is a function
of bounded variation, or is just a measure. Substituting t := log x, we obtain

A(s) =
∫ ∞

0
e−tsdα(et), (52)

which is just the Laplace transform of the measure dβ(t) := dα(et). With a change
of variable this can be transformed to a Fourier transform as well; however, it is
already clear, that similar inversion formulae, as for e.g. the Laplace transform,
should hold. One example is to follow after the next technical lemma.

Lemma 8. Let r > 0. Then – interpreting the integral in the Cauchy principal
value sense – we have

∫ r+i∞

r−i∞

ys

s
ds = I(y) :=


2πi if y > 1
πi if y = 1
0 otherwise.

(53)

Moreover, let T > 0 be any parameter. Then we have∣∣∣∣∫ r+iT

r−iT

ds

s
− πi

∣∣∣∣ ≤ 2r
T

and
∣∣∣∣∫ r+iT

r−iT

ys

s
ds− I(y)

∣∣∣∣ ≤ 2yr

T | log y|
. (54)

Proof. It suffices to prove the second assertion. Let first define η := log y; then η is
above or below 0 when y is above or below 1. In case y = 1, the integral is∫ r+iT

r−iT

ds

s
=
∫ T

0

(
i

r + it
+

i

r − it

)
dt = 2i

∫ T

0

r

r2 + t2
dt = 2i arctan(T/r).

Since π/2− arctanx = arctan(1/x) < 1/x, we obtain the result if y = 1.
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Let now y < 1, i.e. η < 0. We move the path of integration to the right, making
use of the fact that the full circle integral along the boundary of the rectangle Q
with vertices r− iT ,r+ iT , R+ iT and R− iT , vanishes by Cauchy’s Fundamental
Theorem since ys/s is regular on Q. On the other hand the integral along the right
side is O(2T exp(Rη)/R), which tends to 0 rapidly together with R because η < 0.
This makes it possible to shift the curve of integration to a disconnected pair of
horizontal lines from r ± iT to ∞ ± iT . On these segments we can estimate the
integrals as ∣∣∣∣∫ ∞±iT

r±iT

exp(ηs)
s

ds

∣∣∣∣ ≤ ∫ ∞

r

exp(ηx)
T

dx =
yr

|η|T
.

Finally, let y > 1. Then the path of integration is moved towards the left. First we
push the path of integration to the rectangle with vertices r±iT , −R±iT , and then,
checking that the integral on the leftmost line [−R−it,−R+iT ] is O(y−RT/R) → 0,
we even transform the integral to the two lines [r ± iT,−∞± iT ]. As before, both
line integrals can be estimated as∣∣∣∣∫ −∞±iT

r±iT

exp(ηs)
s

ds

∣∣∣∣ ≤ ∫ r

−∞

exp(ηx)
T

dx ≤ yr

ηT
.

The only difference is that here the integrand is not analytic, but has one simple
pole at s = 0. Hence by the residuum theorem the total line integral over the
closed curve is not 0, but is 2πiRes[ys/s]s=0. As the residuum is 1, the assertion
obtains.

Lemma 9 (Perron). Let r > 0 and assume that the Dirichlet series A(s) :=∑∞
n=1

an
ns converges absolutely and uniformly for σ ≥ r. Then – interpreting the

integral in the Cauchy principal value sense – we have

1
2πi

∫ r+i∞

r−i∞
A(s)

xs

s
ds =

∗∑
n<x

an, (55)

where the * denotes the interpretation that in case x = m ∈ N the corresponding
term is taken with weight 1/2. Moreover, let T > 0 be any parameter. Then we
have ∣∣∣∣∣ 1

2πi

∫ r+iT

r−iT
A(s)

xs

s
ds−

∗∑
n<x

an

∣∣∣∣∣ ≤ xr

πT

∞∑
n=1

|an|
| log∗(x/n)|nr

, (56)

where here log∗(y) denotes log(y) for 0 < y 6= 1 and 1 for y = 1.
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Proof. By uniform convergence, we can split the Dirichlet series to terms and apply
the preceding Lemma 8 to each term with y = x/n. The first part of the assertion
then follows. Moreover, in the finite interval case the error terms add up as

∞∑
n=1

|an|
2(x/n)r

| log∗(x/n)|T
=

2xr

T

∞∑
n=1

|an|
| log∗(x/n)|nr

.

The reader will find no difficulty in expressing the individual terms an from the
coefficient formulae for x = n+ 1/2 and x = n− 1/2, e.g.
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§6. Another contour integral deduction

There are many variants of the above connections between the transform and
the original function or measure. We will directly employ the following version.

Lemma 10. Let r > 0. Then we have∫ r+i∞

r−i∞

ys

s2
ds = L(y) :=

{
2πi log y if y ≥ 1
0 otherwise.

(57)

Moreover, let T > 0 be any parameter. Then we have∣∣∣∣∫ r+iT

r−iT

ys

s2
ds− L(y)

∣∣∣∣ ≤ 2πyr

T
. (58)

Proof. It suffices to prove the second assertion. Put η := log y. In case y = 1, the
integral is ∫ r+iT

r−iT

ds

s2
=
[
−1
s

]r+iT

r−iT

=
1

r − iT
− 1
r + iT

=
2iT

r2 + T 2
,

which is less than 2/T in absolute value. Whence the result if y = 1.
Let now y < 1, i.e. η < 0. As before, we apply Cauchy’s Fundamental Theorem

along the boundary of the rectangle Q with vertices r−iT ,r+iT , R+iT and R−iT :
the full circle integral vanishes since ys/s2 is regular on Q. On the other hand the
integral along the right side is O(2T exp(Rη)/R2), which tends to 0 rapidly together
with R because η < 0. This makes it possible to shift the curve of integration to a
disconnected pair of horizontal lines from r ± iT to ∞± iT . On these segments we
can estimate the integrals as∣∣∣∣∫ ∞±iT

r±iT

exp(ηs)
s2

ds

∣∣∣∣ ≤ ∫ ∞

r

exp(ηx)
T 2 + x2

dx <
yr

T

∫ ∞

0

T

T 2 + x2
dx =

πyr

2T
.

Finally, let y > 1. Then the path of integration is moved towards the left. First
we push the path of integration to the rectangle with vertices r ± iT , −R ± iT ,
and then, checking that the integral on the leftmost line [−R − it,−R + iT ] is
O(y−RT/R2) → 0, we even transform the integral to the two lines [r± iT,−∞± iT ].
Similarly as before, but using also 0 < r < T , both line integrals can be estimated
as ∣∣∣∣∫ −∞±iT

r±iT

exp(ηs)
s2

ds

∣∣∣∣ ≤ ∫ r

−∞

exp(ηx)
T 2 + x2

dx <
yr

T

∫ ∞

−∞

T

T 2 + x2
dx =

πyr

T
.

The only difference is that here the integrand is not analytic, but has one simple
pole at s = 0. Hence by the residuum theorem the total line integral over the closed
curve is not 0, but is 2πiRes[ys/s2]s=0. Clearly, this residuum is η = log y. Hence
the assertion.
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Lemma 11 (Perron). Let r > 0 and assume that the Dirichlet series A(s) :=∑∞
n=1

an
ns converges absolutely and uniformly for σ ≥ r. Then – interpreting the

integral in the Cauchy principal value sense – we have∫ r+i∞

r−i∞
A(s)

xs

s2
ds = 2πi

∑
n<x

an log
(x
n

)
. (59)

Moreover, let T > 0 be any parameter. Then we have∣∣∣∣∣ 1
2πi

∫ r+iT

r−iT
A(s)

xs

s2
ds−

∑
n<x

an log
(x
n

)∣∣∣∣∣ ≤ xr

T

∞∑
n=1

|an|
nr

. (60)

Proof. By uniform convergence, we can split the Dirichlet series to terms and apply
the preceding Lemma 8 to each term with y = x/n. The first part of the assertion
then follows. Moreover, in the finite interval case the error terms add up as

∞∑
n=1

|an|
(x/n)r

T
=
xr

T

∞∑
n=1

|an|
nr

.
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§7. Connection of ζ(s) and π(x)

The following are the key results of Landau’s analysis – apart from the loss in
error precision of a factor 2 under the exponent, that is, a square root – in case of
Theorem 2, due to the weaker form of Lemma 7 used by him.

Theorem 1 (Landau). Assume that the Riemann zeta function satisfies with some
constants A,C, a > 0 and d ≥ 1∣∣∣∣ζ ′(s)ζ(s)

∣∣∣∣ ≤ C logA |t| |t| ≥ 2, σ ≥ 1− a

logd |t|
. (61)

Then we have with any B > d+ 1 the inequality

π(x) = li(x) +O(xe−x1/B
). (62)

Moreover,

Theorem 2 (Pintz). Assume that the Riemann zeta function satisfies with some
constant a > 0

ζ(s) 6= 0 |t| ≥ 2, σ ≥ 1− a

log |t|
. (63)

Then we have with any b < 2
√
a the inequality

π(x) = li(x) +O(xe−b
√

x). (64)

The proof of Theorem 2 needs a further proposition, that of obtaining an upper
estimate of ζ ′/ζ from knowing a merely zero-free region.

Proposition 9. Assume that the Riemann zeta function satisfies with some con-
stants a, d > 0

ζ(s) 6= 0 |t| ≥ 2, σ ≥ 1− a

logd |t|
. (65)

Then for any positive ε > 0 we have∣∣∣∣ζ ′(s)ζ(s)

∣∣∣∣ ≤ C log1+2d |t| |t| ≥ 2, σ ≥ 1− a− ε

logd |t|
, (66)

with C = C(ε) being a suitable constant.

Proof. The statement is obvious for σ ≥ 2, so consider only σ < 2. Assume, as we
may, t > 0, and consider the domain

D := {s ∈ C : s = σ + it, σ ≥ 1− a log−d t, t ≥ 1}.
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In this simply connected domain ζ(s) is regular and is nonzero by condition and
in view of Proposition 2. Hence its logarithm log ζ(s), and also the logarithmic
derivative (log ζ)′ = ζ ′/ζ are analytic inD. It follows that fixing any finite value of t0,
the assertion holds true for 2 ≤ t ≤ t0 with some suitable constant C. So we assume
also t > t0 with t0 chosen so that a log−d t < 1/4 and that (a − ε/3) logd(t + 2) <
a logd t.

Let now s = σ+it be arbitrary inD with t > t0 and consider the point s0 := 2+it.
The circle with radius R := 1 + (a − ε/3) log−d t around s0 lies fully within the
domain D by condition and the choice of t0. In this domain Proposition 3 provides
log |ζ(s)| ≤ 1/2 log t + c, since for 1 − σ ≤ 1/ log t part (i), otherwise (iii) can be
invoked.

Next we will apply the Borel–Caratheodory Lemma (i.e. Lemma 3). In our
application of this, we choose f := log ζ, z0 = s0 = 2 + it, R = 1 + (a− ε/3) log−d t
and r = R− ε/3 log−d t. We conclude that in the circle |z − s0| ≤ r the estimate

| log ζ(z)− log ζ(2 + it)| ≤ 2r(log(t+ 2) + C −< log ζ(2 + it))
R− r

� logd+1 t

ε

holds. Hence also | log ζ(z)| � logd+1 t/ε. Take now an s = σ + it with t > t0
and σ ≥ 1 − (a − ε) log−d t. Note that the small disk |z − s| ≤ ρ with radius
ρ := (ε/3) log−d t at s lies fully within the previous disk |z− s0| ≤ r. By the Cauchy
integral formula we find

ζ ′(s)
ζ(s)

=
1
2π

∫ 2π

0

log ζ(s+ ρeiϕ)
ρeiϕ

dϕ,

hence ∣∣∣∣ζ ′(s)ζ(s)

∣∣∣∣ ≤ c logd+1 t

ερ
� log2d+1 t

ε2

Having Proposition 9, the proof of Theorem 1 and 2 are contained in the following
combined result.

Theorem 3. Assume that the Riemann zeta function satisfies with some constants
A,C, a > 0 and d ≥ 1∣∣∣∣ζ ′(s)ζ(s)

∣∣∣∣ ≤ C logA |t| |t| ≥ 2, σ ≥ 1− a

logd |t|
. (67)

Set D := (d+ 1)d
1

d+1 /d. Then we have with any b < a1/(d+1)D the inequality

π(x) = li(x) +O(xe−b log
1

d+1 x). (68)

26



Proof. The proof hinges upon an application of the residuum theorem on a relatively
complicated contour integration path. Let us choose x > 2 and T > 2. Recalling
the definition of T (x) from (49), we start with the formula∣∣∣∣T (x)− 1

2πi

∫ 2+iT

2−iT

(
−ζ

′(s)
ζ(s)

)
xs

s2
ds

∣∣∣∣ ≤ x2

T

∞∑
n=1

Λ(n)
n2

= C
x2

T
, (69)

following directly from Lemma 11 and the fact that
∑∞

n=1
Λ(n)
n2 = −ζ ′(2)/ζ(2) is just

a constant. Now we shift the line of integration to a new path Γ from 2 − iT to
2+iT , chosen so that joining −Γ and the vertical straight line segment [2−iT, 2+iT ]
forms a closed Jordan curve, encircling the pole of ζ at s = 1. Hence if we change
the line of integration to the new path Γ, by the residuum theorem we obtain the
same integral least 2πi the value of the residuum at 1. That is, we find∫

[2−iT,2+iT ]

(
−ζ

′(s)
ζ(s)

)
xs

s2
ds =

∫
Γ

(
−ζ

′(s)
ζ(s)

)
xs

s2
ds+ 2πix. (70)

In the following we estimate the contribution of the line integral along Γ. Γ will
be chosen symmetric to the real axis, i.e. Γ = Γ+

⋃
Γ− with Γ− joining 2− iT and

1/2 within the halfplane =z ≤ 0, and Γ+ := Γ− joining 1/2 and 2 + iT within the
upper halfplane =z ≥ 0. Clearly it suffices to describe both the definition and the
estimates of the various parts of Γ+. Now we define

Γ+ := Γ0 ∪ γ ∪ Γ∗ with Γ0 :=
[
1
2
,
1
2

+ 2i
]
, Γ∗ :=

[
1− a

logd T
+ iT, 2 + iT

]
and γ(t) := 1− a

logd t
+ it for t ∈ [2, T ]. (71)

On the line segment Γ0 the Riemann zeta function is analytic, and also nonzero by
Proposition 2, hence its logarithmic derivative is continuous and thus bounded. (In
fact, a lower estimate of ζ(s) is already at hand, and a similar upper estimate or an
estimate using Cauchy’s integral formula would be easy to prove.) We thus find∣∣∣∣∫

Γ0

(
−ζ

′(s)
ζ(s)

)
xs

s2
ds

∣∣∣∣ ≤ 2
C
√
x

1/4
= O(

√
x). (72)

When t ≥ 2, the estimate of the logarithmic derivative of ζ(s) uses the assumption
(61). Similarly as above,∣∣∣∣∫

Γ∗

(
−ζ

′(s)
ζ(s)

)
xs

s2
ds

∣∣∣∣ ≤ 2C logA T
x2

T 2
= O(

x2

T
), (73)
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since logA T = O(T ). Finally we return to the integral over the essential portion γ.
Here by (61) we can write∣∣∣∣∫

γ

(
−ζ

′(s)
ζ(s)

)
xs

s2
ds

∣∣∣∣ ≤ C logA T

∫ T

2

x1−a/ logd t

t2

∣∣∣∣ ad

t logd+1 t
+ 1
∣∣∣∣ dt

� x logA T

∫ T

2

x−a/ logd t

t2
dt. (74)

It remains to estimate the latter integral. Put µ := a log x, extend the interval
of integration to [1,∞), and apply a change of variable v := log t and then u :=
µ−1/(d+1)v to get∫ T

2

x−a/ logd t

t2
dt <

∫ ∞

0
exp

(
− µ

vd
− v
)
dv = ν

∫ ∞

0
exp

(
ν

{
− 1
ud
− u

})
du, (75)

where ν := µ1/(d+1). The last integral is of the form∫ ∞

0
exp(νh(u))du,

where h(u) = −u−d− u is a strictly concave function attaining its maximum at one
single inner point α := d1/(d+1) of the interval. Also, it is several times continuously
differentiable (in fact, analytic) along the interval. (Around 0 we may cut a fixed,
small interval to get rid of the singularity where h(+0) = −∞; on this interval any
rough estimate will do, being much less then the contribution around α.) We can
thus apply

Lemma 12 (Laplace). Let Φ(x) and h(x) be two real continuous functions in the
finite or semi-infinite interval α ≤ x ≤ β, such that

i) Φ(x)eνh(x) is absolutely integrable over the interval for every positive value of
ν;

ii) h(x) has a single maximum in the interval, namely at x = α; and the supre-
mum of h(x) in any closed subinterval not containing α is less than h(α);

iii) h”(x) is continuous; and h′(α) = 0, h”(α) < 0.

Then, as ν →∞, we have∫ β

α
Φ(x)eνh(x)dx ∼ Φ(α)eνh(α)

{
−π

2νh”(α)

}1/2

. (76)

Proof. This is the so called Laplace method, see e.g. [7, §18, p. 39].
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In fact, we have Φ ≡ 1, and shall apply the asymptotic expansion (76) both for
[α,∞) and for (0, α]. So we get∫ ∞

0
exp

(
ν

{
− 1
ud
− u

})
du ∼ 2eνh(α)

{
−π

2νh”(α)

}1/2

.

Here h(α) = −d−d/(d+1) − d1/(d+1) = −d1/(d+1)(d + 1)/d and h”(α) = −(d +
1)/d1/(d+1), hence

ν

∫ ∞

0
exp

(
ν

{
− 1
ud
− u

})
du ∼ 2e−νd1/(d+1)(d+1)/d

{
πd1/(d+1)ν

2(d+ 1)

}1/2

. (77)

Remark. Although it is good to see that our estimate is asymptotically the right
value, deriving an essentially sharp upper estimate suffices. In what follows we show
such an estimate of the last integral of (75).

Proof. Write D := d1/(d+1)(d + 1)/d; it is a relevant constant being the minimum
value of ϕ(u) := u−d + u on (0,∞). Indeed, ϕ(d1/(d+1)) = D, but for any u > 0 we
have by the inequality between the arithmetic and geometric means

u−d + u

d+ 1
≥
(
u−du

d
. . .

u

d

) 1
d+1 = d−

d
d+1 =

D

d+ 1
.

It follows that∫ ∞

0
exp

(
ν

{
− 1
ud
− u

})
du <

∫ D

0
e−νDdu+

∫ ∞

D
e−νudu

= De−νD + e−νD

∫ ∞

0
e−νudu =

(
D +

1
ν

)
e−νD.

As ν →∞, this remains O(e−νD), which is quite sufficient for our present purposes.

Comparing (74), (75) and (77) we are led to∣∣∣∣∫
γ

(
−ζ

′(s)
ζ(s)

)
xs

s2
ds

∣∣∣∣� x logA T
√
νe−Dν , (78)

with D and the implied constant of � depending explicitly on d. So substituting
the definition ν = (a log x)1/(d+1) we finally get∣∣∣∣∫

γ

(
−ζ

′(s)
ζ(s)

)
xs

s2
ds

∣∣∣∣� x logA T log
1

2d+2 xe−D(a log x)
1

d+1 with D =
d

1
d+1 (d+ 1)

d
.

(79)
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To finish the proof we choose T = x2, say, and collect the error terms (72), (73)
and (79) to get∣∣∣∣∫

Γ

(
−ζ

′(s)
ζ(s)

)
xs

s2
ds

∣∣∣∣� √
x+ x logA+1 xe−D(a log x)

1
d+1 = O

(
xe−(D−ε)(a log x)

1
d+1

)
,

(80)
with ε > 0 arbitrary and x > x0(ε) large enough.

Combining (69), (70) and (80) yields

T (x) = x+O

(
xe−(D−ε)(a log x)

1
d+1

)
. (81)

To deduce Theorem 3, take now b < a1/(d+1)D arbitrary. Choosing ε > 0
sufficiently small, (81) immediately implies

T (x) = x+O (δ(x))
(
δ(x) := x exp(−b log

1
d+1 x)

)
. (82)

Now an application of Lemma 7 leads to the assertion.

To prove Theorem 2, we substitute d = 1, and find D = 2. Whence with all
constants b < 2

√
a, the asymptotic formula (68) holds true. Theorem 1 is even

simpler to obtain.
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§8. Application of positive polynomials to find zero-free regions
of ζ(s)

This is the point where positive trigonometric polynomials – and the quantities
U and V of the Landau problems – have their role. In this section let

f(x) := a0+a1 cosx+· · ·+ak cos kx ≥ 0 0 ≤ aj (j = 1, . . . , k) 0 < a0 < a1 (83)

be any positive, positive definite even trigonometric polynomial with first coefficient
a1 larger than its constant term a0.

Proposition 10 (Landau). Let f be any polynomial in (83), and let b be any
constant with

b ≥ f(0)
a1 − a0

− 1 .

Then we have

|ζ(σ + it)| ≥ c log−b |t| |t| ≥ 2, σ = 1 +
1

logb+2 |t|
.

Proof. It is easy to see either directly from the definition and then the Euler product
of ζ(s) or from integrating ζ ′/ζ that we have

log(ζ(s)) =
∑

p

∑
`

1
`
p−`s =

∑
p

∑
`

1
`
p−σ`e−it` log p (σ > 1).

Taking also the conjugate point s and applying 2< log z = log z + log z = log |z|2 =
2 log |z| we find

log |ζ(s)| = < log ζ(s) =
∑

p

∑
`

1
`
p−`σ cos(t` log p). (84)

Combining (84) at the points σ + ijt with the coefficients aj we obtain

log
k∏

j=0

|ζ(σ + ijt)|aj =
∑

p

∑
`

1
`
p−`σf(` log p) ≥ 0, (85)

that is,
k∏

j=0

|ζ(σ + ijt)|aj ≥ 1. (86)
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For a lower estimate of |ζ(s)| we apply Proposition 1 (iv) and Proposition 3 (i) for
the other terms to get

|ζ(s)|a1 ≥ c

(
σ − 1
σ

)a0
(

1
log t

)a2+···+ak

�
(

1
log t

)(b+2)a0+a2+···+ak
(
t ≥ 2, σ = 1 +

1
logb+2 t

)
.

Thus we get (
|ζ(s)| logb t

)a1

� (log t)ba1−((b+2)a0+a2+···+ak) ,

hence we need to choose b so that the exponent on the right hand side be nonnegative.
A calculation leads

b(a1 − a0) ≥ f(0)− (a1 − a0) ,

which is equivalent to the condition assumed for b. This proves the Proposition.

Now we can combine Proposition 4, Proposition 9 and 10 with Theorem 1 to
conclude

Corollary 1 (Landau). Let

U := inf
{

f(0)
a1 − a0

: f satisfies (83)
}
.

Then we have with any K > 0 and L < 1/(U + 1) the formula (2).

Remark 1. Note the improvement of obtaining 1/(U + 1) and not 1/(U + 2) orig-
inally derived by Landau. This is due to the fine estimates of §4, where we have
improved a root factor upon Landau’s original derivation.

The above method yields an error term exp(logL x), still not optimal. Applying
the even sharper estimates of ζ ′/ζ in Propositions 6 and 8 should further improve our
end result. In fact, already de la Vallée Poussin achieved better, and an improvement
upon that belongs to the second, more precise approach of Landau.

Proposition 11 (Landau). Let f be any polynomial in (83), and let a be any
constant with

a <
2(
√
a1 −

√
a0)2

f(0)− a0
.

Then we have

|ζ(σ + it)| 6= 0 whenever |t| ≥ t0(a), σ ≥ 1− a

log |t|
.
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Proof. Now we combine the Dirichlet series representation of the logarithmic deriva-
tive of ζ(s) at the points σ + ijt with coefficients aj and take real parts to get

<
k∑

j=0

−aj
ζ ′

ζ
(σ + ijt) =

k∑
j=0

aj

∞∑
n=1

Λ(n)
nσ

<e−ijt log n =
∞∑

n=1

Λ(n)
nσ

k∑
j=0

aj cos(jt log n),

(87)
which implies

<
k∑

j=0

aj

(
−ζ

′

ζ
(σ + ijt)

)
=

∞∑
n=1

Λ(n)
nσ

f(t log n) ≥ 0. (88)

In the other direction we apply Proposition 8 for all j ≥ 1 with choosing the set of
zeroes to be taken into account simply the empty set if j ≥ 2, and the only one zero
at ρ = β + it lying closest to the critical line at height t when j = 1. (We present
the argument only for imaginary parts t = =ρ where there is at least one root ρ, for
otherwise there is nothing to prove.) Moreover, formula (45) gives a similar estimate
−ζ ′(σ)/ζ(σ) ≤ 1/(σ − 1) +O(1) for 1 < σ < 2. These give

0 ≤ <
k∑

j=0

aj

(
−ζ

′

ζ
(σ + ijt)

)
≤ a0

σ − 1
− a1

σ − β

a1 + a2 + . . . ak

2
log t+O(1). (89)

Put now

κ :=
a0

a1
∈ (0, 1) and λ =

a1 + a2 + . . . ak

2a1
+ η with η > 0 arbitrary.

We can melt the O(1) term into η log t for t > t0, whence

1
σ − β

< κ
1

σ − 1
+ λ log t (t > t0).

Put now with a parameter µ > 0

σ = 1 +
µ

log t
.

It follows that
1

1− β + µ
log t

<

(
κ

µ
+ λ

)
log t (t > t0),

1− β +
µ

log t
>

1
κ
µ + λ

1
log t

(t > t0),

1− β >

(
1

κ
µ + λ

− µ

)
1

log t
=

1− κ− λµ
κ
µ + λ

1
log t

(t > t0).
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We wish to choose the parameter µ – that is, the value of σ – so that this last
coefficient of 1/ log t be the largest possible. Calculus gives

µ :=
√
κ− κ

λ
,

a positive quantity since 0 < κ < 1. Substituting this choice of µ into the above
expression, we find

1− κ− λµ
κ
µ + λ

=
1−

√
κ

κλ√
κ−κ

+ λ
=

(1−
√
κ)(
√
κ− κ)

κλ+ (
√
κ− κ)λ

=
(1−

√
κ)2

λ
,

and our estimate becomes

1− β >
(1−

√
κ)2

λ

1
log t

(t > t0).

That is,

1− β >
a

log t
if a <

(
1−

√
a0
a1

)2

a1+a2+...ak
2a1

=
2(
√
a1 −

√
a0)2

a1 + a2 + . . . ak
and t > t0(a).

The assertion is proved.

As before, we now combine the zero-free domain obtained and the general deriva-
tion of the corresponding error term in Theorem 2 to obtain

Corollary 2 (Landau). Let

V := inf
{

f(0)− a0

(
√
a1 −

√
a0)2

: f satisfies (83)
}
.

Then we have with L = 1/2 and any K < 2
√

2/
√
V the formula (2).

Proof. Combining the zero-free region of Proposition 11 and the logarithmic deriva-
tive estimate of Proposition 9 furnishes condition (67) with d = 1 and a < 2/V
arbitrary. Thus an application of Theorem 3 yields the assertion with K := b <
2
√
a = 2

√
2/
√
V .

Remark 2. Such type of extremal estimates still play a vital role in analytic number
theory. D. R. Heathbrown [14] uses similar combinations of trigonometric polyno-
mials in his work on the Linnik constant; J. Pintz has asked recently the question
of finding optimal polynomials for the expression

inf
{

a0 + f(0)/9
(
√
a1 −

√
a0)2

}
,

etc.
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§9. The history of Landau’s extremal problems

9.1. In the following we deal with the extremal quantities of Landau. Our discussion
will essentially follow the paper [23] – for more details and various comments about
contribution of colleagues on the development of our work in the subject see the
original paper.

As attracting many eminent mathematicians, the determination, or estimation
of U and V became a well-known problem independently of its number theoretic
applications. To give a historical account of results thus far, let us introduce a more
systematic notation. We put for any a ∈ R

F(a) :=

{
f ∈ C(T) : f(x) = 1 + a cosx+

∞∑
k=2

ak cos kx ≥ 0 (∀x), (90)

ak ≥ 0 (k ∈ N)

}

and denote

Fn(a) := F(a) ∩ Tn, F∗(a) := F(a) ∩ T , F =
⋃
a>1

F(a),

Fn :=
⋃
a>1

Fn(a) = F ∩ Tn, F∗ :=
⋃
a>1

F∗(a) = F ∩ T =
∞⋃

n=1

Fn.

(91)

One can define
α(a) := inf

{
f(0) : f ∈ F(a)

}
,

α∗(a) := inf
{
f(0) : f ∈ F∗(a)

}
,

αn(a) := inf
{
f(0) : f ∈ Fn(a)

}
.

(92)

Note that the definitions (92) can be used whenever F(a) 6= ∅, F∗(a) 6= ∅ or
Fn(a) 6= ∅, resp. It is easy to see that α(a) = α∗(a) for all a ∈ D(α) except
possibly for the point A at the left end of the domain of α where F∗(A) may be
empty. It is also easy to see that [1, 2) ⊂ D(α), α(a) is continuous in [1, 2), and that
F(a) = ∅ for a ≥ 2; moreover, α(a) → +∞ as a → 2 − 0. Finally the infimum in
the definition of α(a) is actually a minimum,

α(a) = min
{
f(0) : f ∈ F(a)

}
,

αn(a) = min
{
f(0) : f ∈ Fn(a)

}
.

(93)

These observations can be found in [22] in a more general setting. However, we
have to note that most of the facts mentioned here appeared first in [2] where
χ(a) = α(a)− 1 and χn(a) = αn(a)− 1 are defined and analyzed (for a ≥ 1). This
analysis is continued (for a ≥ 0) in [1].
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Thus we can omit α∗ and F∗ from now on using only α and F in place of the
original, equivalent usage of Landau. With these cleared we can also put

U := min
a>1

α(a)
a− 1

, Un := min
a>1

αn(a)
a− 1

,

V := min
a>1

α(a)− 1
(
√
a− 1)2

, Vn := min
a>1

αn(a)− 1
(
√
a− 1)2

,

(94)

where the use of min in place of inf is justified later.
Plainly for all a we have αn(a) ↘ α(a) (n→∞) and Un ↘ U , Vn ↘ V (n→∞).

(Here ↘ means monotonically nonincreasing convergence.) Below is a list of values
already determined.

U2 = 7 Landau [18] & Chakalov, [4, 5]
U3 = U4 = U5 = 6 Landau [19, 20] & Chakalov, [4, 5]
U6 = 5.92983 . . . Chakalov, [4, 5]
U7 = U8 = U9 = 5.90529 . . . Chakalov, [4, 5]
V2 = 53.1390719 . . . French, [13]
V3 = 36.9199911 . . . Arestov, [1]
V4 = V5 = V6 = 34.8992258 . . . Arestov, [1].

(95)

Estimates were also deduced for many of the extremal quantities. It follows a list
of records to date in estimating these values.

U < 5.90529 . . . Chakalov, [4, 5]
U > 5.8726 Arestov–Kondrat’ev, [2]
V < 34.5035864 . . . Arestov–Kondrat’ev, [2]
V > 34.468305 . . . Arestov–Kondrat’ev, [2]
V8 < 34.54461566 Kondrat’ev, [16].

(96)

For historical completeness let us mention a few other results, already improved
upon.

V < 35.074 Westphal, [33]
V2 ≤ 53.15 Stechkin, [29]
U11 > 5.792 Chakalov, [4, 5]
V3 ≤ 37.04 Landau, [18]
V3 < 36.97 Stechkin, [29]
V4 < 35.03264 Rosser and Schönfeld, [26]
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V > 21.64
French, [13] referring to an unpub-
lished result of Schoenfeld & V. J. Le
Veque

V > 32.49 Stechkin, [29]
U > 5.8642 B. L. van der Waerden, [31]
V > 32.5136 French, [13]

36.96 > V3 > 36.59 Bateman (unpublished, quoted in
[13]) and [29], resp.

34.91 > V4 > 34.35 Stechkin, [29]
V5,6,7 > 33.373 French, [13]
V8 > 33.313 French, [13]
V9 > 33.1766 French, [13]

Vn ≥

8− 3π − 7

2 cos
(

π
n+2

)
− 1

 ·

√
2 cos

(
π

n+2

)
+ 1√

2 cos
(

π
n+2

)
− 1

(n ∈ N) Stechkin, [29]

34.8993 > V4
D. Hollenbeck (unpublished, referred
to in [27])

V > 33.58 Reztsov, [24]
U > 5.8656 Révész, unpublished
33.54 < V < 34.677 Révész, unpublished.

9.2. In the many investigations of Landau’s extremal problems, a number of new
relatives were introduced. In his quite elegant and sharp lower estimation for U ,
van der Waerden [31] used the construction of a measure

dκ(x) ∼ b0 + 2
∞∑

k=1

bk cos kx ≥ 0 (97)

with the properties

κ ≥ 0, b0 + b1 ≤ 2, bk ≤ 1 (k ∈ N2), (98)

where N2 := N ∩ [2,∞]. Actually van der Waerden sought minimal b1 (b1 < 0 with
maximal absolute value) and could prove that U ≥ 1 − b1. Formulating this as an
extremal problem, van der Waerden treated

Ω := sup
{
1− b1 : ∃κ ∈ BM(T), κ ≥ 0 with (97)–(98)

}
. (99)
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Finding a measure with (97)–(98) and with b1 = −4.8642 . . . , van der Waerden
showed actually

U ≥ Ω ≥ 5.8642 . . . . (100)

S. B. Stechkin [29] used a different method aiming mainly the estimation of V . In
the course of proof he defined an intermediate quantity between U and V when
introducing

W := inf
{
f(0)− 1
a1 − 1

: f ∈ F(a1) with a1 > 1
}

= min
a>1

α(a)− 1
a− 1

,

Wn := inf
{
f(0)− 1
a1 − 1

: f ∈ Fn(a1) with a1 > 1
}

= min
a>1

αn(a)− 1
a− 1

.

(101)

As in case of U and V , we again have Wn ↘ W , and the determination of W and
Wn is a problem of a similar sort.

Stechkin himself could estimate W as follows.

W2 =
1
2

(
5 +

√
17
)

= 4.56 . . . ,

W4 ≤W3 ≤
1
2

(
5 +

√
13
)

= 4.30 . . . ,

W ≥ 4.159.

(102)

9.3. We also introduce some more extremal quantities. Denote by λ and δz (z ∈ T)
the normalized measures (the Lebesgue and (essentially) the Dirac measures at
z ∈ T)

dλ(x) ∼ 1,

dδz(x) ∼ 1 + 2
∞∑

b=1

(
cos kz cos kx+ sin kz sin kx

)
,

δ := δ0.

(103)

We consider the measure sets

M(0) :=

{
τ ∈ BM(T) : dτ(x) ∼

∞∑
k=1

tk cos kx,

t1 ∈ R, tk ≤ 0 (k ∈ N2)

}
,

Mn(0) :=

{
τ ∈ BM(T) : dτ(x) ∼

∞∑
k=1

tk cos kx,

t1 ∈ R, tk ≤ 0 (2 ≤ k ≤ n)

}
,
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M(a) :=

{
τ ∈ BM(T) : dτ(x) ∼ b

(
1− 2

a
cosx

)
+

∞∑
k=2

tk cos kx,

b ∈ R, tk ≤ 0 (k ∈ N2)

}
(104)

=
{
τ ∈ BM(T) : τ = −a

2
t1(τ0) · λ+ τ0, τ0 ∈M(0)

}
,(

t1(τ0) := 〈τ0, 2 cosx〉
)
,

Mn(a) :=

{
τ ∈ BM(T) : dτ(x) ∼ b

(
1− 2

a
cosx

)
+

∞∑
k=2

tk cos kx,

b ∈ R, tk ≤ 0 (2 ≤ k ≤ n)

}
=
{
τ ∈ BM(T) : τ = −a

2
t1(τ0) · λ+ τ0, τ0 ∈Mn(0)

}
,(

t1(τ0) := 〈τ0, 2 cosx〉
)
,

where the last two definitions are valid for any a ∈ R and a 6= 0. Also we put for
arbitrary y ∈ R

N (y) :=

{
ν ∈ BM(T) : ν ≥ 0, dν(x) ∼ 1 +

∞∑
k=1

yk cos kx,

y1 ∈ R, yk ≤ y (k ∈ N2)

}
,

Nn(y) :=

{
ν ∈ BM(T) : ν ≥ 0, dν(x) ∼ 1 +

∞∑
k=1

yk cos kx,

y1 ∈ R, yk ≤ y (2 ≤ k ≤ n)

}
.

(105)

Finally let us introduce for all b ∈ (−2, 2) the square-integrable function set

G(b) :=

{
g ∈ L2(T) : g ≥ 0, g(x) ∼ 1 + b cosx+

∞∑
k=2

bk cos kx

}
. (106)
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To these sets we define the following extremal quantities.

ω(a) := sup
{
t : ∃τ ∈M(a), τ + δ ≥ t · λ

}
,

ωn(a) := sup
{
t : ∃τ ∈Mn(a), τ + δ ≥ t · λ

}
,

β(y) := sup
{
− y1 : ∃ν ∈ N (y), y1 = 〈ν, 2 cosx〉

}
,

βn(y) := sup
{
− y1 : ∃ν ∈ Nn(y), y1 = 〈ν, 2 cosx〉

}
,

ϑ(y) := sup
{
y1 : ∃ν ∈ N (y), y1 = 〈ν, 2 cosx〉

}
,

ϑn(y) := sup
{
− y1 : ∃ν ∈ Nn(y), y1 = 〈ν, 2 cosx〉

}
,

γ(b) := inf
{
||g||2 : g ∈ G(b)

}
.

(107)
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§10. Preliminaries for the detailed analysis of U and V

10.1. As we will extensively use sets of Borel measures and extremal quantities
defined on these sets, we summarize a few facts of the structure of BM(T) at the
outset.

Let us recall that BM(T) = C(T)∗, the topological dual of the Banach space
C(T) with the norm of the total variation norm

||µ||BM(T) =
∫
T

|dµ|. (108)

We know that C(T) is not reflexive, and BM(T)∗ ) C(T). Hence the weak, and
the weak ∗ topology of BM(T) are different, the weak topology being the weakest
topology so that all functionals from BM(T)∗ be continuous linear functionals on
BM(T), while the weak ∗ topology is the weakest topology so that the functionals
belonging to C(T) be continuous on BM(T). Thus the weak ∗ topology is even
weaker than the weak one.

In a topological vector space convex and closed sets remain convex and closed
when considering the weak topology in place of the original topology. However, in
dual spaces like BM(T) closedness is not necessarily saved when considering the
weak ∗ topology instead of the weak topology. On the other hand we have the
Banach–Alaoglu Theorem ([10], 4.10.3. Theorem, p. 205) stating that all the closed
balls in the dual space BM(T) are weak ∗ compact.

Our application of these structural facts will have the following pattern. Usually
we define a set of measures in BM(T) and wish to extremalize some quantity on
that set. Using the definition, we can pass on to a decreasing sequence of closed,
bounded and convex sets Fn ⊂ BM(T), and to show that there exists an extremal
measure, we are entitled to show that F :=

⋂∞
n=1 Fn 6= ∅. This is a Cantor type

property, and can be guaranteed for decreasing and nonempty sequences of compact
sets. Now usually Fn ⊂ BM(T) will be convex and closed, but not compact. To save
the idea, we pass on to the weak ∗ topology. First, the nonempty sets Fn ⊂ BM(T)
remain convex in any topology. They will be bounded in the norm of BM(T) usually
because for nonnegative measures

||µ||BM(T) =
∫
T

|dµ| =
∫
T

dµ = 2π〈1, µ〉 (µ ∈ BM(T), µ ≥ 0). (109)

Hence Fn will be conditionally compact in the weak ∗ topology according to the
Banach–Alaoglu Theorem. To show that Fn are weak ∗ compact, the key point is
to show that Fn are weak ∗ closed, too.

It is obvious that any closed and convex sets Fn can be represented as the
intersection of a set of closed halfspaces defined by continuous linear functionals
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from the bidual space. However, such level sets of linear functionals can be proved
to be even weak ∗ closed only if the functionals themselves are weak ∗ continuous,
i.e. if the functionals belongs to C(T). Thus we will look for a representation of Fn

as an intersection of level sets of the type

X(f, c) :=
{
µ ∈ BM(T) : 〈f, µ〉 ≤ c

}
(110)

with f ∈ C(T). Having such a representation, we can claim Fn to be even weak ∗
closed, hence we get that Fn is not only conditionally compact, but it is also compact
in the weak ∗ topology. Finally, we can refer to the Cantor type property that the
intersection of the compact, decreasing and nonempty sets Fn must be nonempty.
To formalize this argument, we can state the following.

Lemma 13. Suppose that Fn (n ∈ N) is a sequence of subsets of BM(T) with the
following properties.

i) Fn 6= ∅ (n ∈ N).

ii) Fn+1 ⊂ Fn (n ∈ N).

iii) Fn is bounded in the total variation norm of BM(T) (perhaps for n > n0).

iv) Fn can be represented as the intersection of a number of closed halfspaces of
the form (110) with the generating functionals belonging to C(T).

Then the intersection

F :=
∞⋂

n=1

Fn (111)

is a norm-bounded, closed, convex, weak ∗-compact and nonempty subset of BM(T).

Consider the sets

BM(T)C :=
{
µ ∈ BM(T) : µ (112)

is even (i.e. µ(H) = µ(−H) (∀H ⊂ T, measurable))
}

=
{
µ ∈ BM(T) : 〈sin kx, µ〉 = 0 (k ∈ N)

}
=
{
µ ∈ BM(T) : 〈f, µ〉 = 0 ∀f ∈ C(T), f(x) ≡ −f(−x)(x ∈ T)

}
,

BM(T)S :=
{
µ ∈ BM(T) : µ (113)
is odd (µ(H) = −µ(−H) (∀H ⊂ T, measurable))

}
=
{
µ ∈ BM(T) : 〈cos kx, µ〉 = 0 (k ∈ N)

}
=
{
µ ∈ BM(T) : 〈f, µ〉 = 0 ∀f ∈ C(T), f(x) ≡ −f(−x)(x ∈ T)

}
,
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and the set

BM(T)P :=
{
µ ∈ BM(T) : µ (114)
is nonnegative (i.e. µ(H) ≥ 0 (∀H ⊂ T, measurable))

}
=
{
µ ∈ BM(T) : 〈f, µ〉 ≥ 0 ∀f ∈ C(T), f ≥ 0

}
.

Here we use the sets of even, odd and nonnegative functions

E :=
{
f ∈ C(T) : f(x) ≡ f(−x) (x ∈ T)

}
,

O :=
{
f ∈ C(T) : f(x) ≡ −f(−x) (x ∈ T)

}
,

P :=
{
f ∈ C(T) : f ≥ 0

}
,

(115)

to establish a representation of the type iv) for the sets (112)–(114). Namely,

BM(T)C =
⋂
f∈O

(X(f, 0) ∩X(−f, 0)), (116)

BM(T)S =
⋂
f∈E

(X(f, 0) ∩X(−f, 0)), (117)

BM(T)P =
⋂
f∈P

(X(−f, 0). (118)

Thus in the following we can use property iv) for the sets (112), (113) and (114).

10.2. Let 0 < a < b, and k : [a, b] → R be any continuous, strictly increasing and
concave function on the interval.

We define the “tangential function to k” and the “extremal tangential curve” to
k as follows.

Definition 1. For t ∈ R let us consider the points (x, t), (0, t), (x, k(x)) in this
order for all x ∈ [a, b] and denote ϕ(t, x) the angle (measured from the positive x
direction to the counterclockwise sense) of the chord drawn from (0, t) to (x, k(x)).
As 0 < a ≤ x ≤ b, and the vector ((0, t), (x, t)) is horizontal, we plainly have
−π

2 < ϕ(t, x) < π
2 .

We introduce the “extremal tangential curve”

Γ := Γk :=
{

(t0, x0) ∈ R2 : ϕ(t0, x0) = max
a≤x≤b

ϕ(t0, x)
}

; (119)

we also introduce the “tangential function to k”

f(t) := fk(t) := max
a≤x≤b

k(x)− t

x
= max

x∈[a,b]
tanϕ(t, x) = tanϕ(t, x∗) (120)(

(t, x∗) ∈ Γk

)
.
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Plainly we may also consider

ϕ(t) := arctan f(t) = max
a≤x≤b

ϕ(t, x) = ϕ(t, x∗) ((t, x∗) ∈ Γk). (121)

Geometrically ϕ(t) is the oriented angle, f(t) is the slope of the tangential straight
line drawn from the point (0, t) to the curve {(x, k(x)) : a ≤ x ≤ b}.

Note that fk(t) is just the well-known Legendre transform of the function k; as
properties of the Legendre transform are well-known, see e.g. [25], in the following
assertions we will omit the proofs.

Lemma 14. i) The function f(t) : R → R is continuous and strictly decreasing.

ii) The curve Γ is “oriented positively” in the sense that for any two points (t′, x′),
(t′′, x′′) ∈ Γ t′ < t′′ entails x′ ≤ x′′.

iii) The point set I(t) := {x : (t, x) ∈ Γ} is a convex closed set ⊂ [a, b].

Now let us define

x(t) := min
{
x : (t, x) ∈ Γ

}
= min I(t);

x(t) := max
{
x : (t, x) ∈ Γ

}
= max I(t);

x(t) := x(t) whenever x(t) = x(t);
T (x) :=

{
t ∈ R : (t, x) ∈ Γ

}
;

t(x) := max
{
t : (t, x) ∈ Γ

}
= maxT (x);

t(x) := min
{
t : (t, x) ∈ Γ

}
= minT (x);

t(x) := t(x) whenever t(x) = t(x).

(122)

The existence and nature of T , t, t are similar to I, x, x, by the very same
Lemma 14 ii) and iii).

Lemma 15. i) The concave function k is differentiable iff t(x) exists for all a <
x < b. Moreover, for any x ∈ (a, b) we have t(x) = t(x) iff k′(x−0) = k′(x+0).

ii) We always have

f ′(t+ 0) =
−1
x(t)

, f ′(x− 0) =
−1
x(t)

.

Corollary 3. If f is the tangential function defined to k, then f is always a con-
tinuous, strictly decreasing convex function. Moreover, f is differentiable (and then
also continuously) iff k is strictly concave. Conversely, f is strictly convex iff k is
differentiable iff k ∈ C1[a, b].
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§11. Analysis of the extremal quantities

11.1. First of all let us record some basic properties of the functions defined in § 9.
As for the domain of definition (where the corresponding definition yields a finite
value) we use the notation D; similarly, the range of a function is denoted by R.

Proposition 12. i) D(α) = (A, 2) or [A, 2), where −
√

3 ≤ A ≤ −
√

2.

ii) D(αn) = [An, Bn], where An ≤ −
√

2 (n ≥ 2) and Bn = 2 cos π
n+2 .

iii) D(γ) = (−2, 2).

Proof. i) See Proposition 4.1 of [22].
ii) The first estimate follows from the example (4.2) of [22], and the second

statement is a consequence of a theorem of Fejér [11] and Szász [28] who determined
the corresponding extremal polynomials. See also [29], Lemma 1.

iii) Similar to i) but essentially trivial.

Proposition 13. i) In the definition (92) of α(a) the infimum is actually a min-
imum, i.e.

α(a) = min
{
f(0) : f ∈ F(a)

}
for all a ∈ D(α).

ii) If A ∈ D(α), then lim
a→A+

α(a) = α(A), and if A /∈ D(α), then lim
a→A+

α(a) = ∞.

iii) lim
a→2−

α(a) = ∞.

iv) α(a) is a convex function on D(α).

v) αn(a) is a convex function on D(αn).

Proof. These can be found in [22], Propositions 4.2 and 4.3 or, in a somewhat
more general form, in [21], 2.3, 2.5 and 2.6 Propositions. Note that i) and v)
appeared already in Theorem 1 3) of [2], while iii) was proved first in [24], see also
the comments to Proposition 16 iii).

Our knowledge about the actual function values of α(a) is summarized in the
next three propositions.

Proposition 14. i) α(a) = 1 + a for −1 ≤ a ≤ 1.

ii) α(a) = 2a for 1 ≤ a ≤ 4/3.

iii) α(a) = 0 for −4/3 ≤ a ≤ −1.

Proposition 15. α(a) > 0 for a < −4/3, a ∈ D(α).
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Proposition 16. In the range 4/3 < a < 2 we have the following lower estimates
for the function α(a).

i) α(a) > δ(a) := 2a,

ii) α(a) ≥ ϕ(a) := 8a− 3π,

iii) α(a) ≥ τ(a) :=
√

2+a
2−a .

Proofs. For a proof of the claims in Proposition 14, see e.g. Proposition 4.4 i), ii)
and iv) in [22]. Note that i) is (0.17) of [1] and ii) is covered by (0.15) of [1] or
Theorem 1 1) in [2].

For Proposition 15 see Proposition 4.4 v) in [22].
Lastly, consider Proposition 16. First, i) can be found in Proposition 4.4 iii) of

[22]. (α(a) ≥ δ(a) is trivial from Proposition 14 ii) and Proposition 13 iii).)
Proposition 15 ii) is an estimate of Stechkin, see Lemma 3 in [29].
Finally, the nontrivial estimate of Proposition 16 iii) is proved e.g. in [22], The-

orem 5.1. A very similar proof of a very similar, but somewhat more elaborated
(and thus slightly better) nonlinear estimate was given first in [24]. Actually, the
key lemma to the result was attributed to Yudin (oral communication) in [24], while
in [22] an independent and different proof was given which precisely characterizes
also the extremal cases of the lemma.

11.2. For the functions introduced in (107) their use and relevance to the problems
studied can be best seen from the relation between α and ω. Let f ∈ F(a) be
arbitrary and take any τ ∈ M(a) satisfying τ + δ ≥ t · λ with some t ≥ 0. (Such t
and τ must exist since the zero measure, 0 ∈M(a).) We have from the nonnegativity
of f and ak (k ∈ N2), the nonpositivity of tk (k ∈ N2) and from δ ≥ t · λ− τ , that

f(0) = 〈f, δ〉 ≥ 〈f, t · λ− τ〉

= t− 〈f, τ〉 = t−

{
b+

1
2
· a · b ·

(
−2
a

)
+

∞∑
k=2

aktk

}
= t−

∞∑
k=2

aktk ≥ t.

(123)
Taking supremum over all τ and t on the right, and then infimum at the left-hand
side, we obtain the inequality

α(a) ≥ ω(a). (124)

That estimate was essentially at the heart of van der Waerden’s estimate, as we shall
see later. This estimate is not only close numerically, but actually it is theoretically
exact.
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Theorem 4. (Duality)

i) D(α) = D(ω), and the sup in the first definition of (107) is actually a maxi-
mum.

ii) For all a ∈ D(α) α(a) = ω(a).

iii) For all n ∈ N D(αn) = D(ωn), and the sup in the second definition of (107)
is actually a maximum.

iv) For all n ∈ N and a ∈ D(αn) αn(a) = ωn(a).

Proof. The easy part is α(a) ≥ ω(a) and its relatives αn(a) ≥ ωn(a), as shown
above. That also entails D(α) ⊂ D(ω), D(αn) ⊂ D(ωn). The converse is nontrivial,
and the proof applies functional analysis. For the whole argument we refer to [21],
especially 3.4 Theorem and 3.5 Proposition. Note that here the index sets M and
L of [21] are N2 and ∅ or [2, n] and ∅, and thus also 2.6 Proposition of [21] applies.
That covers the border cases a = A and a = An or Bn, not included in the even
more general setting of 3.4 Theorem of [21]. The existence of extremal measures ω
and ωn follows from the argument as pointed out in section 3.6 of [21].

11.3. With the above duality theorem at hand, let us also define the functions

U(a) :=
α(a)
a− 1

=
ω(a)
a− 1

,

V (a) :=
α(a)− 1
(
√
a− 1)2

=
ω(a)− 1
(
√
a− 1)2

,

W (a) :=
α(a)− 1
a− 1

=
ω(a)− 1
a− 1

(a ∈ (1, 2)),

(125)

and for any n ∈ N their finite degree counterparts

Un(a) :=
αn(a)
a− 1

=
ωn(a)
a− 1

,

Vn(a) :=
αn(a)− 1
(
√
a− 1)2

=
ωn(a)− 1
(
√
a− 1)2

,

Wn(a) :=
αn(a)− 1
a− 1

=
ωn(a)− 1
a− 1

(
a ∈ (1, Bn]

)
.

(126)

Since the functions (125)–(126) are the products of one of the positive convex func-
tions α(a), α(a)− 1, αn(a), or αn(a)− 1 and one of the strictly convex and positive
functions 1

a−1 or 1
(
√

a−1)2
, all functions are positive and strictly convex. Note also

that all the six functions tend to +∞ as a → 1 + 0 as the denominators tend to
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+0 and the numerators are finite and positive. Similarly, as Proposition 16 iii) en-
tails, α(a) → +∞ (a → 2 − 0), and that implies U(a) → +∞, V (a) → +∞ and
W (a) → +∞ (a → 2 − 0). Hence we see that the functions (125)–(126) all have
minimum points where the extremal quantities (94) and (101) are attained, and also
that these points are unique due to strict convexity. Thus we have

Proposition 17. i) All the functions (125)–(126) are strictly positive and strictly
convex in their domain of definition.

ii) All the functions (125)–(126) have limit +∞ at 1 + 0.

iii) The functions (125) have limit +∞ at 2 − 0 while the functions (126) are
continuous and finite at Bn.

iv) The functions (125)–(126) have unique minimum points aU , aV , aW and aU,n,
aV,n, aW,n, respectively, where we have

U = U(aU ), V = V (aV ), W = W (aW ),
Un = Un(aU,n), V = V (aV,n), W = W (aW,n).

11.4.

Proposition 18. i) N (y) = ∅ for y < 0.

ii) N (y) = N (2) = {ν ∈ BM(T) : 〈ν, 1〉 = 1 and ν ≥ 0} for y ≥ 2.

iii) ∅ 6= {ν ∈ BM(T) : dν(x) =

1 +
∞∑

k=1

yk cos kx,
∞∑

k=1

|yk| ≤ 1, yk ≤ 0 (k ∈ N2)} ⊂ N (0) =

{ν ∈ BM(T) : ν ≥ 0, dν(x) =

1 +
∞∑

k=1

yk cos kx, 1 +
∞∑

k=1

yk ≥ 0, yk ≤ 0 (k ∈ N2)}.

iv) For any two values 0 ≤ y′ < y′′ ≤ 2 we have N (y′) ( N (y′′).

v) For all y ≥ 0 N (y) is a convex, closed and bounded set in BM(T).

Proof. i) Suppose that y < 0 and ν ∈ N (y). Consider the convolution ν ∗ FN =
fN ∈ TN for any N ∈ N where FN denotes the usual Fejér kernel. On one hand

fN ≥ 0, on the other hand fN (0) = 1 +
(
1− 1

N+1

)
y1 +

N∑
k=2

(
1− k

N+1

)
yk ≤ 1 + 2 +

y
N∑

k=2

(
1− k

N+1

)
. As the right-hand side tends to −∞ with N → ∞ by y < 0, we

have proved i) by contradiction.
ii) For all ν ∈ BM(T), 〈ν, 1〉 = 1, ν ≥ 0 we have 〈ν, 2 cos kx〉 ≤ 〈ν, 2〉 = 2.
iii) It suffices to prove the last equation, the others being easy consequences.

Plainly the conditions on the right-hand side are exceeding the defining conditions
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(105) for N (0) in two respect: by prescribing convergence of the Fourier represen-
tation, and by supposing

1 +
∞∑

k=1

yk ≥ 0. (127)

This last condition, together with yk ≤ 0 (k ∈ N2), entails absolute convergence
of the series (127), hence the Fourier representation must be absolutely uniformly
convergent, and the measure ν is an absolutely continuous measure with a derivative
having absolutely uniformly convergent series representation. The only thing to
show that (127) holds for all ν ∈ N (0). We can use the Fejér kernel FN and the
convolution FN ∗ ν, already used in part i) to get for arbitrary N ∈ N

0 ≤ fN (0) = (ν ∗ FN )(0) = 1 +
N∑

k=1

(
1− k

N + 1

)
yk

≤ 1 + y1 +
∞∑

k=2

(
1− k

N + 1

)
yk.

Using also yk ≤ 0 (k ∈ N2), we can take limits with respect to N → ∞, what
yields (127).

iv) The inclusion is trivial. ν =
(
1− y′′

2

)
· λ + y′′

2 · δ ∈ N (y′′) but ν /∈ N (y′)
shows that N (y′) 6= N (y′′).

v)

N (y) = N (2) ∩
∞⋂

k=2

{
ν ∈ BM(T) : 〈2 cos kx, ν〉 ≤ y

}
N (2) is the intersection of a hyperplane defined by 〈1, ν〉 = 1, and the (closed
and convex) set of nonnegative measures. The other intersection is defined as the
intersection of closed halfspaces. Therefore N (y) is convex and closed. Note that
for any ν ∈ N (y) ||ν||BM(T) = 2π, cf. (109), hence N (y) is also bounded.

Proposition 19. i) For all n ∈ N there exists a unique Cn, −2 ≤ Cn < 0, so
that Nn(y) = ∅ for y < Cn, but not for y ≥ Cn.

ii) Cn ↗ 0 as n→ +∞.

iii) Nn(y) = Nn(2) = N (2) for y ≥ 2.

iv) For any two values Cn ≤ y′ < y′′ ≤ 2 we have

Nn(y′) ( Nn(y′′).

v) For all y ≥ Cn Nn(y) is a convex, closed and bounded set in BM(T).
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Proof. i) Plainly, as the inclusion part is trivial from statement iv), Cn := inf{y :
∃ν ∈ Nn(y)} = sup{y : Nn(y) = ∅}.

First we prove Cn < 0, or more precisely, Cn ≤ − 1
n−1 . To this end let us consider

the function gn(x) := 1− 1
n−1

∑n
k=2 cos kx and the measure dν(x) = gn(x)dx. Plainly

ν ∈ N
(
− 1

n−1

)
showing Cn ≤ − 1

n−1 . On the other hand let y < 0 be arbitrary with
N (y) 6= 0 and let ν ∈ N (y). If we choose N = n in the construction of the Proof of
Proposition 18 i), we obtain 0 ≤ gn(0) ≤ 3+ y

(
N
2 − 1 + 1

N+1

)
≤ 3−|y| · n−2

2 . Thus

|y| ≤ 6
n−2 , proving also Cn → 0 (n→ +∞). For small n the above estimate can be

substituted by the easier one

0 ≤ 〈1 + cos 2x, ν〉 = 1 +
y2

2
≤ 1 +

y

2
,

showing y ≥ −2; the measure νπ
2

:= 1
2

(
δπ

2
+ δ−π

2

)
∈ N2(−2) shows that this

estimate is sharp for n = 2.
We now prove Nn(Cn) 6= ∅. This statement is a Cantor-type one, as Mm :=

N (Cn + 1
m) are closed (also convex) and nonempty sets of BM(T) and plainly

Nn(Cn) =
⋂∞

m=1Mm, where Mm ⊃MM for all m < M .
To apply Cantor’s Lemma, we only have to show that the sets Mm are compact

sets. That is not true in the original topology of BM(T), but it holds true in the
weak ∗ topology of BM(T). Indeed, Nn(y) is bounded in view of (105) and (108),
and all bounded sets of BM(T) are conditionally compact in the weak ∗ topology.
Moreover, N (y) is also closed, since by (114) BM(T)P is closed, and we have, using
notation (110),

Nn(y) = BM(T)P ∩

(
n⋂

k=2

X(cos kx, y)

)
∩X(−1,−1) ∩X(1, 1). (128)

Thus Lemma 13 can be applied to show Nn(Cn) 6= ∅.
ii) Monotonicity is obvious from definition, and Cn → 0 is already proved.
iii) Follows from Proposition 18 ii) trivially.
iv) The inclusion is obvious. If y′′ > 0, the example in Proposition 18 iv) fits here,

too, showing Nn(y′′)\Nn(y′) 6= ∅, while λ ∈ Nn(0) belongs to no Nn(y′) with y′ < 0.
In case y′ < y′′ < 0 by the same way any ν ′ ∈ Nn(y′) with min

2≤k≤n
yk(ν ′) = y ≤ y′ can

be a starting point to define ν ′′ = y′′

y · ν ′ +
(
1− y′′

y

)
λ ∈ Nn(y′′) with ν ′′ /∈ Nn(y′)

since min
2≤k≤n

yk(ν ′′) = y′′ > y′.

v) Clear.

Proposition 20. In the definitions (107) for β, ϑ, βn, ϑn (n ∈ N), the supremum
can be substituted by maximum since in case N (y) 6= ∅, resp. Nn(y) 6= ∅, the
supremum is actually attained by some measure of N (y), resp. Nn(y).
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Proof. One proof can be given following the proof of Nn(Cn) 6= ∅. However, it is
easier to refer to the fact that N (y) and all Nn(y) (n ∈ N) are closed sets, and thus
the continuous functional ν → 〈2 cosx, ν〉 maps these sets to some closed sets of
R. (We may also note that the sets are convex and bounded, too, hence the image
sets must be finite closed intervals.) Taking the supremums as in (107), we actually
extremalize on these image sets of R, and that concludes the argument.

Proposition 21. i) ϑ2(y) =
√

2 + y (C2 = −2 ≤ y ≤ 2).

ii) β2(y) =
√

2 + y (C2 = −2 ≤ y ≤ 2).

Proof. We already know that C2 = −2 (cf. the end of the proof of part i) of Propo-
sition 19.) Since β2(y) ≥ 0 and ϑ2(y) ≥ 0 and both functions are nondecreasing in
their domain of definition, it is enough to prove the statements for all −2 < y ≤ 2.
Let us fix one particular y, and let us choose two extremal measures µ, ν ∈ N2(y)
with Fourier series

dµ(x) ∼ 1 +
∞∑

k=1

zk cos kx, dν(x) ∼ 1 +
∞∑

k=1

yk cos kx (129)

so that
z1 = −β2(y), y1 = ϑ2(y). (130)

The extremal measures exist according to Proposition 20. Let us estimate y2 and z2
by the values of y1 and z1! That kind of estimation was already worked out in [22],
Theorem 2.2 (see also the Remark after it). We get from this Theorem that

z2 ≥ 2 cos
(

2 arccos
(
−z1
2

))
, y2 ≥ 2 cos

(
2 arccos

(y1

2

))
. (131)

Combining (129) and (130) with the inequalities z2 ≤ y, y2 ≤ y, coming from
µ, ν ∈ N (y), we are led to

y ≥ 2 cos
(

2 arccos
(
β2(y)
y

))
, y ≥ 2 cos

(
2 arccos

(
ϑ2(y)

2

))
. (132)

After some calculation this yields the estimates

β2(y) ≤
√

2 + y, ϑ2(y) ≤
√

2 + y. (133)

Now we only have to show that this upper estimate is sharp. Let us consider
the measure

η :=
1
2

(δw + δ−w)
(
w := arccos

(z
2

))
,
(
z :=

√
2 + y

)
.
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We have η ≥ 0, and

dη(x) ∼ 1 +
∞∑

k=1

2 cos(kw) cos kx,

and thus the coefficient of cosx is z, and the coefficient of cos 2x is 2 cos(2w) =
2(2 cos2(w) − 1) = z2 − 2 = y, verifying η ∈ N2(y) and ϑ2(y) ≥ z =

√
2 + y.

The translated measure dη(x + π) shows by the same way β2(y) ≥
√

2 + y. These
and (133) together concludes the proof of the Proposition.

Proposition 22. i) β and ϑ are concave functions on D(β) = D(ϑ) = [0,∞).

ii) For all n ∈ N βn and ϑn are concave functions on D(βn) = D(ϑn) = [Cn,∞).

iii) β(y) = ϑ(y) = βn(y) = ϑn(y) = 2 for all y ≥ 2 and n ∈ N.

iv) For all m > n, m,n ∈ N and y ≥ Cm, we have

βm(y) ≤ βn(y), ϑm(y) ≤ ϑn(y).

v) For all y ≥ 0 we have βn(y) → β(y), ϑn(y) → ϑ(y) (n→∞), uniformly in y.

vi) β(0) = 1, ϑ(0) ≥ 2√
3
.

vii) β and ϑ are strictly increasing in [0, 2]; βn and ϑn are strictly increasing in
[Cn, 2] (n ∈ N).

Proof. i) Let 0 ≤ y′ ≤ y ≤ y′′ be arbitrary y = λy′+(1−λ)y′′ be the representation
of y. Note that here we have 0 ≤ λ ≤ 1. Suppose that ν ′ ∈ N (y′) and ν ′′ ∈ N (y′′)
and consider the measure

ν := λν ′ + (1− λ)ν ′′ ∈ BM(T) (134)

which is nonnegative as λ ≥ 0 and 1− λ ≥ 0.
Plainly

〈1, ν〉 = λ〈1, ν ′〉+ (1− λ)〈1, ν ′′〉 = 1,
y1 =〈2 cosx, ν〉 = λy′1 + (1− λ)y′′1 ,
yk =〈2 cos kx, ν〉 = λy′k + (1− λ)y′′k ,

(135)

where

dν(x) ∼ 1 +
∞∑

k=1

yk cos kx,

dν ′(x) ∼ 1 +
∞∑

k=1

y′k cos kx,

dν ′′(x) ∼ 1 +
∞∑

k=2

y′′k cos kx.

(136)
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Now the first and the third lines of (135) prove ν ∈ N (y) as yk =λy′k + (1−λ)y′′k ≤
λy′ + (1− λ)y′′ = y (k ∈ N2). The second equation of (135) entails that

ϑ(y) = sup{y1 : ν ∈ N (y)}
≥ λ sup{y′1 : ν ′ ∈ N (y′)}+ (1− λ) sup{y′′1 : ν ′′ ∈ N (y′′)}
= λϑ(y′) + (1− λ)ϑ(y′′)

(137)

and similarly to (137) we also have

β(y) = sup{−y1 : ν ∈ N (y)} ≥ λβ(y′) + (1− λ)β(y′′), (138)

proving concavity.
ii) Similar to i).
iii) Proposition 18 ii) and Proposition 19 iii) entail that all functions are constant

for y ≥ 2. The same coefficient estimate

|〈2 cos kx, ν〉| ≤ 〈2, ν〉 = 2 (k ∈ N, ν ∈ N (2)), (139)

already used in the proof of Proposition 19 iii), shows that |y1| ≤ 2. Now βn(2) =
β(2) = 2 is shown by δπ ∈ N (2), and ϑn(2) = ϑ(2) = 2 is shown by δ ∈ N (2).

iv) Trivial in view of Cn ≤ Cm ≤ y and ∅ 6= Nm(y) ⊆ Nn(y).
v) For any fixed particular y ≥ 0 we have N (y) =

⋂∞
n=2Nn(y). Therefore

β(y) ≤ βn(y) (n ∈ N) is trivial. To prove convergence of βn(y) to β(y) at the point
y, let us denote for all n ∈ N

Nn :=
{
νn ∈ Nn(y) : 〈2 cosx, νn〉 ≤ −βn(y)

}
= Nn(y) ∩X

(
2 cosx, βn(y)

)
. (140)

Note that in view of Proposition 20 Nn 6= ∅, and the sets Nn satisfy all the conditions

of Lemma 13 in view of (128) and (140). Hence N =
∞⋂

n=2
Nn is nonempty. One can

easily see that any ν ∈ N belongs to N (y) and

〈2 cosx, ν〉 ≤ − lim
n→∞

βn(y), (141)

proving β(y) ≥ lim
n→∞

βn(y). Now we have βn(y) → β(y) monotonically nonincreas-

ingly in the pointwise sense on the whole [0, 2]. But for the concave and hence
continuous functions βn and β that entails also uniform convergence on [0, 2] by
Dini’s monotone convergence criteria (cf. e.g. [8], (7.2.2), p. 129). With part iii)
that settles uniform convergence, too. A similar argument works for ϑ as well.

vi) The easy examples dν+(x) = (1+cosx)dx, dν−(x) = (1− cosx)dx show that
ϑ(0) ≥ 1 and β(0) ≥ 1. To show that ϑ(0) > 1, one may consider the trigonometric
polynomial

h(x) = 1 +
1

cos π
6

cosx−
tan π

6

3
cos 3x = 1 +

2√
3

cosx− 1
3
√

3
cos 3x (142)
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and the corresponding measure dν(x) = h(x)dx. The only thing to check is h ≥ 0,
which can be done directly, or we can refer to the k = 3 case of Proposition 2.1
of [22]. On the other hand, Proposition 18 iii) entails that for ν ∈ N (0) we can not
have 〈2 cosx, ν〉 = y1 < −1, and this proves β(0) = 1.

vii) Follows from parts i), ii), iii) and Proposition 21.

11.5.

Proposition 23. i) For 1 ≤ a < 2 we have

ω(a) = a ·max
y>0

β(y)− 2/a
y

+ a+ 1. (143)

ii) For a ≤ −1, a ∈ D(ω) we have

ω(a) = (−a) max
y>0

ϑ(y) + 2/a
y

+ a+ 1. (144)

Remark 3. For −1 ≤ a ≤ 1 we have ω(a) = α(a) = 1 + a according to Proposi-
tions 14 i) and Theorem 4 i). Also for −1 ≤ a ≤ 1

sup
y>0

a · β(y)− 2
y

= lim
y→+∞

a · β(y)− 2
y

= 0 (145)

and
sup
y>0

(−a)ϑ(y)− 2
y

= lim
y→+∞

(−a)ϑ(y)− 2
y

= 0, (146)

since |a| ≤ 1, and 0 ≤ β(y) ≤ 2, 0 ≤ ϑ(y) ≤ 2 (see Proposition 22) and hence the
numerators of these functions are always nonpositive. In this sense the statement is
valid for all a, but to emphasize the given forms, where sup is changed to max and
a has been brought out, we used the above formulation.

Proof. i) For a = 1 the statement is trivial according to the above Remark. For a > 1
let us take two extremal measures τ ∈ M(a) and ν0 ∈ N (y0) with max

y>0

β(y)−2/a
y =

β(y0)−2/a
y0

. Since a > 1 and β(0) = 1 we see that ϕa(y) = ϕ(y) = β(y)−2/a
y is negative

for small y > 0, while for y = 2 ϕ(2) = 1−1/a > 0, and for y > 2 ϕ(y) < ϕ(2) and
ϕ(y) → 0 (y → +∞). Hence there exists a y0 /∈ (0, 2], depending on a, where ϕa(y0)
is a maximum. Also τ and ν0 must exist in view of Proposition 20 and Theorem 4
i). First, we recall

τ + δ ≥ t · λ; t = ω(a) (147)

and define
µ := τ + δ − t · λ ≥ 0, (148)
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where with the Fourier expansion in (103) and (104) we are led to

dµ(x) ∼ (b+ 1− t) +
(

2− 2b
a

)
cosx+

∞∑
k=2

(2 + tk) cos kx, (149)

b ∈ R, tk ≤ 0 (k ∈ N2).

Now by µ ≥ 0 we have also b + 1 − t ≥ 0. In case of b + 1 − t = 0 the trivial
argument (109) would give µ ≡ 0, leading in view of the coefficient of cosx to the
equation b = a and thus a+ 1− t = 0. But t = ω(a) = α(a) ≥ 2a > 1 + a for a > 1
according to Propositions 14 ii) and 3.5 i), thus excluding b + 1 − t = 0 for a > 1.
We get

b+ 1− t > 0 if a > 1, (150)

and we can introduce the new normalized measure

ν :=
1

b+ 1− t
µ, dν(x) ∼ 1 +

2(a− b)
a(b+ 1− t)

cosx+
∞∑

k=2

2 + tk
b+ 1− t

cos kx. (151)

Denoting

y1 := − 2(b− a)
a(b+ 1− t)

, yk := − 2 + tk
b+ 1− t

(k ∈ N2), y :=
2

a(b+ 1− t)
, (152)

we immediately get that ν ∈ N (y) with the parameters and coefficients in (152).
Consequently, we have by definition

2(b− a)
a(b+ 1− t)

≤ β(y)
(
y − 2

b+ 1− t
> 0
)
. (153)

Let us use the definition of y and t = ω(a) in the left-hand side to express (153) by
y and ω(a) as

y

a

{(
2
y
− 1 + ω(a)

)
− a

}
≤ β(y), (154)

or, after some calculation,

ω(a) ≤ a · β(y)− 2/a
y

+ a+ 1. (155)

That proves that the left-hand side of (143) can not exceed the right-hand side.
Next we start by considering the extremal measure ν0 ∈ N (y0) and define

b := a

(
β(y0)
y0

+ 1
)
, t :=

−2
y0

+ 1 + b, tk :=
2(yk − y0)

y0
(k ∈ N2),

τ0 :=
2
y0
ν − δ + t · λ ∈ BM(T), dτ0(x) ∼ b+

(
2
y0
y1 − 2

)
cosx+

∞∑
k=2

tk cos kx.

(156)
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We immediately have tk ≤ 0 (k ∈ N2) and from the extremality of ν0 ∈ N (y0) we
also have y1 = −β(y0). Moreover, in view of the definition of b, we have for t1, the
coefficient of cosx in the Fourier expansion of τ0, the equation

t1 =
−2β(y0)

y0
− 2 = b

(
−2
a

)
. (157)

Now (156)–(157) yield τ0 ∈M(a), and, as ν0 ∈ N (y0) entails ν0 ≥ 0, we immediately
get τ0 + δ ≥ t · λ proving that

ω(a) ≥ t. (158)

Now let us substitute the parameters (156) in (158) to obtain

ω(a) ≥ − 2
y0

+ 1 + a

(
β(y0)
y0

+ 1
)

= a · β(y0)− 2/a
y0

+ a+ 1.
(159)

Comparing (155) and (159) proves the assertion.
ii) The proof is very similar to i), hence we omit a few details and give here

only the main steps and formulas. Again we suppose a < −1, and check that
ψa(y) := ψ(y) := ϑ(y)+2/a

y has a positive maximum attained for some y in 0 < y ≤ 2.
The ≤ part will be proved by taking an extremal τ ∈ M(a) and following the
preceding argument from (145) up to (152) with the only alteration that here in
place of (150) we have

b+ 1− t > 0 if a < −1 (160)

because of the relations t = ω(a) ≥ 0 > 1 + a (a < −1). Now in place of (153) we
will obtain from the extremality of τ that

2(b− a)
(−a)(b+ 1− t)

≤ ϑ(y)
(
y =

2
b+ 1− t

> 0
)
, (161)

and similarly to (154)–(156), some calculation leads to

ω(a) = t ≤ (−a)ϑ(y) + 2/a
y

+ a+ 1. (162)

The converse direction goes like (156)–(158) with the only change that here we take
y1 = ϑ(y0) in place of −β(y0). Hence the same change occurs in (159) and we get
the ≥ part.

Remark 4. We have to note here that implicitly we used that ϑ(y)+2/a is positive
only for y > 0, i.e. ϑ(0) ≤ 2/|a|. Now we really have

ϑ(0) =
2
−A

, (163)
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a duality-type relation between different extremal problems, cf. [21], in particular
the discussion around (116)–(121).

Note that this settles the existence of maximum for ψa(y) in y > 0 for all a > A,
but leaves the question open if A ∈ D(α) and a = A. In this case for small y
(ϑ(y) + 2/A)/y has a small, but positive numerator and the denominator is also
positive. Thus we can extend ψA to 0 as

ψA(0) = (−A) lim
y→0+

ϑ(y) + 2/A
y

+A+ 1 = (−A) lim
y→0+

ϑ(y)− ϑ(0)
y

+A+ 1

= (−A)ϑ′(0+) +A+ 1
(164)

in case it is finite. In turn, if (164) is finite, by concavity we conclude that the
maximum is attained at 0, and we conclude

α(A) = ω(A) = (−A)ϑ′(0+) +A+ 1. (165)

On the other hand, if ϑ′(0+) = +∞, similarly to (159) it is easy to show that we
will have lim

a→A+
α(a) = +∞, and hence A /∈ D(α).

Similarly, from α(a) → +∞ (a→ 2−) we can conclude that

β′(0+) = +∞. (166)

Later even the asymptotic order of β will be specified, so we leave this question for
the moment.

Let us point out the geometric interpretation of the maximum in (143). The
concave curve {(y, β(y)) : y ≥ 0} defines a convex domain of points lying below the
curve. The maximum is just the slope of one of the tangent straight lines drawn
from the outer point (0, 2/a) to this convex domain. (The other tangent is just the
second coordinate axis.)

Proposition 24. We have for all n ∈ N the relations

i) βn(0) = 2
Bn

;

ii) ϑn(0) = −2
An

;

iii) For all a ∈ [0, Bn]

ωn(a) = a sup
y>0

βn(y)− 2/a
y

+ a+ 1;

in particular,
ωn(Bn) = Bn · β′n(0+) +Bn + 1;
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iv) For all a ∈ [An, 0]

ωn(a) = (−a) sup
y>0

ϑn(y) + 2/a
y

+ a+ 1;

in particular
ωn(An) = (−An) · ϑ′n(0+) +An + 1.

Proof. Follows similarly to the argument of Proposition 23 and the Remark after it.
We omit the details.

Next we define another extremal quantity as follows.

Z := inf
{
y > 0 : ∃ζ ∈ BM(T), ζ ≥ 0, z ≥ 2(1− y), (167)

dζ(x) ∼ 1− z cosx+
∞∑

k=2

zk cos kx, zk ≤ y (k ∈ N2)
}
.

Proposition 25. i) There exists a unique point yU in (0, 2] so that

β(yU ) = 2(1− yU ).

ii) For the point yU we have Z = yU .

iii) We have Ω = 2
yU
− 1 = 2

Z − 1.

Proof. i) The functions β(y) and 2(1 − y) are continuous and strictly monotonous
in the opposite direction from 0 to 2 and from 2 to −2 in the domain [0, 2]. Hence
there exists a unique solution of the equation β(y) = 2(1− y) in the interval (0, 2).

ii) Denote the set of measures used in the definition of Z as Z(y). Then

Z := inf
{
y > 0 : Z(y) 6= ∅

}
. (168)

Now if y > Z, we have Z(y) 6= ∅, and, as Z(y) ⊂ N (y), we find that β(y) =
max{−〈2 cosx, ζ〉 : ζ ∈ Z(y)} ≥ 2(1− y). Hence, in view of the definition of yU and
the monotonicity of β(y) and 2(1 − y), we conclude y ≥ yU and a fortiori Z ≥ yU .
Conversely, if y > yU , then β(y) > β(yU ) = max{〈−2 cosx, ζ〉 : ζ ∈ N (yU )}, and
for any extremal measure ζ0 ∈ N (yU ), we have 〈−2 cosx, ζ0〉 = β(yU ) = 2(1− yU ),
hence ζ0 ∈ Z(yU ) and Z ≤ yU .

iii) Let K be the measure set in (99) where the defining supremum for Ω is
defined. Note that K contains δπ, hence K 6= ∅. Moreover we have for any κ ∈ K

0 ≤ ||κ||BM(T) =
∫
|dκ| =

∫
dκ = 2π · b0 ≤ 2π(2− b1) =

= 2π
(
1 + (1− b1)

)
≤ 2π(1 + Ω),

(169)
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and using the estimate Ω ≤ U (stated already in (100) as a result implicitly contained
already in [31], and proven in Corollary 4 below) we immediately get that K is
bounded. Note that K is also closed and convex, and can be represented in the
form of the intersection of a set of closed halfspaces generated by functionals from
C(T), hence K is also weakly ∗ compact and the sup in (99) is actually a maximum.
Now for the extremal measure κ ∈ K we consider its Fourier series (97) and prove
that b0 > 1 and b0 + b1 = 2 for κ. Indeed, in case b0 ≤ 1 we must have |b1| ≤ 1,
Ω = 1 − b1 ≤ 2, and the known examples are much better than that. Also if
b0 + b1 < 2, one can consider dκ∗(x) = dκ(x) + 2

3(2 − b0 − b1) · (1 − cosx)dx,
b∗0 + b∗1 = 〈1 − cosx, κ∗〉 = b0 + b1 + 2

3(2 − b0 − b1)
(
1 + 1

2

)
= 2, hence κ∗ ∈ K, and

b∗1 < b1 would provide a contradiction.

Now let us define the measure

ν =
1
b0
· κ ≥ 0.

Plainly ν ∈ N
(

2
b0

)
, hence β

(
2
b0

)
≥ −2b1

b0
= 2(b0−2)

b0
= 2

(
1− 2

b0

)
. Let y0 be 2

b0
,

then we see β(y0) ≥ 2(1−y0), hence y0 ≥ yU . From this we get b0 = 2
y0
≤ 2

yU
, hence

Ω = 1− b1 = b0− 1 ≤ 2
yU
− 1. Similarly, for yU we can take any β-extremal measure

ν ∈ N (yU ) and consider the measure

κ =
2
yU
ν ∈ K

proving Ω ≥ 1− b1 = 1 + 2
yU
· β(yU )

2 = 1 + 2
yU

(1− yU ) = 2
yU
− 1.

Putting [2, n] in place of N2 one can also introduce Zn and Kn, and the corre-
sponding extremal quantities Zn and Ωn (n ∈ N2). It is no surprise now that we
have the analogous

Proposition 26. For arbitrary n ∈ N2 the following statements hold true.

i) There exists a unique point yU,n in (0, 2] so that βn(yU,n) = 2(1− yU,n).

ii) For the point yU,n we have Zn = yU,n.

iii) We have Ωn = 2
yU,n

− 1 = 2
Zn
− 1.

iv) Zn → Z monotonically increasingly, and Ωn → Ω a nonincreasing way.

Corollary 4. We have U = Ω and also Un = Ωn (n ∈ N2).

Proof. As the proofs are very similar, we prove only U = Ω. The easy part is
U ≥ Ω, essentially already proved by van der Waerden [31] the idea dating back to
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Landau [18]. Indeed, let f ∈ F(a) and κ ∈ K be any particular elements, we then
have by f ≥ 0, κ ≥ 0 and using bk ≤ 1, ak ≥ 0 (k ∈ N2) that

0 ≤ 〈f, κ〉 = b0 + ab1 +
∞∑

k=2

akbk ≤ (b0 − 1) + a(b1 − 1)

+

(
1 + a+

∞∑
b=2

ak

)
= b0 − 1 + a(b1 − 1) + f(0).

(170)

Now let us also apply b0 + b1 ≤ 2 for κ ∈ K, and get for a > 1 the inequalities

(1− b1)(a− 1) ≤ b1 − 1 + b0 − 1 + f(0) ≤ f(0). (171)

Now let us take supremum over K at the left, and infimum over F(a) at the right-
hand side to get

Ω(a− 1) ≤ α(a). (172)

Dividing by a− 1 (> 0) and minimizing U(a) = α(a)
a−1 , we get Ω ≤ U . (Note that the

minimum place is a = aU , cf. Proposition 17 iv) for the definition and uniqueness.)
Now let us prove the converse! We start with noting that by Proposition 25

iii) Ω = 2
yU
− 1, and choose a = aΩ such that the maximum at the right-hand side

of (143) is attained at y = yU . Note that 0 < yU < 0.5 is trivial, and for (any one
of the) tangential lines of β at the point (yU , β(yU )) the intersection point of the
straight line with the second coordinate axis defines such an aΩ by

(
0, 2

a

)
being the

intersection point. Hence we conclude the existence of such an aΩ. Consequently,
with a = aΩ and using the Duality Theorem (Theorem 4 i)), we get

U ≤ α(aΩ)
aΩ − 1

=
ω(aΩ)
aΩ − 1

=
1

aΩ − 1

(
aΩ
β(yU )− 2/aΩ

yU
+ aΩ + 1

)
(173)

=
1

a−1

(
a
2(1−y)

y
− 2
y

+ a+ 1
)

=
1

a−1

(
(a−1)

2
y
−a+1

)
=

2
yU

−1= Ω.

We may note that the above mentioned duality relation enables us to give an-
other form of ω(a), which has the interesting feature that only the goal function
to be maximalized is dependent on a, but not the set of measures on what the
maximization takes place. Namely, we have

α(a) = ω(a) = sup
{
(1−b1)(a−1)+(2−b0−b1) : ∃κ ∈ K (with (97)–(98))

}
. (174)

Indeed let us define the right-hand side as ζ(a), and define also the auxiliary quantity

w(b) := sup
{
1− b1 : ∃κ ∈ K, b0 = b (with (97)–(98))

}
. (175)
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Plainly with y := 2
b the function w(b) is related to β(y) as

w(b) = 1 +
b

2
β(y)

(
y :=

2
b

)
, (176)

since for κ ∈ K with b0 = b the measure ν := 1
bκ ∈ N (y), and for ν ∈ N (y) the

measure κ := 2
yν ∈ K. Plainly

ζ(a) = sup
{
(1− b1)a+ (1− b0) : ∃κ ∈ K (with (97)–(99))

}
=

= sup
{
(1− b0) + aw(b0) : κ ∈ K

}
= sup

b0>0

{
1− b0 + a

(
1 +

b0
2
β

(
2
b0

))}
= sup

y>0

{
a

(
1 +

β(y)
y

)
+ 1− 2

y

}
= a sup

y>0

β(y)− 2/a
y

+ a+ 1 = ω(a)

by (144), Proposition 23 i).
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§12. Concluding remarks and further questions for research

One can ask if Landau’s extremal problems are interesting even now. We have
already mentioned that they can be of interest for practical applications, in partic-
ular for computational number theory, as in [26]. Let us mention a further point
and comment connections to recent publications like [9].

Already Landau proved the Prime Ideal Theorem, and later on further gener-
alizations of Dirichlet’s and Riemann’s approach (use of multiplicative generating
functions, i.e. Dirichlet series, in the study of multiplicative problems) appeared.
A quite general setup is the Beurling theory of prime distribution. Now for Beurl-
ing primes the de la Vallée Poussin – Landau method works, but no other refined
techniques can be utilized, since there are counterexamples: Diamond, Montgomery
and Vorhauer [9] has constructed recently a Beurling set of primes so that no better
zero-free region of ζ(s), and no better error term of π(x), can be established than
σ > 1− C/ log t and xe−c

√
log x, respectively.

Also, these problems are related to, or similar to, and have common generaliza-
tions with many other important families of extremal problems. So we are convinced
that further research of them has merit not only for the analytical beauty and dif-
ficulty of them. Hence let us end this work by listing a few questions.

1.) The asymptotic order of α(a) when a → 2− 0 was determined in [22]. It is
of interest to obtain more precise descriptions of values of α(a), in particular when
a→ 2− 0.

2.) We have seen that the extremal function in the α-problem is a polynomial
when say −3/4 < a <

√
2. (We can calculate this a bit further.) Do we have for

all a ∈ D(α) that there is an N := N(a) so that α(a) = αN (a)? (If so, the “right”
(minimal) degree N(a) → ∞ when a → 2 − 0.) Having N(1.85), say, would allow
to exactly determine U , V , W by finite range computer search.

3.) We have seen (Chakalov!) that sometimes Uk+1 = Uk. It seems that in the
dual (van der Waerden-type) extremal problem ω(a) and Ω for measures, we have
vanishing Fourier coefficients for exactly those indices k ∈ N. Prove or disprove!

4.) Determine A and An (left endpoints of D(α) and of D(αn), resp.). These
lead to extremal problems in themselves: for how large an a can an even Fourier
series g(x) (a cosine polynomial of degree n) with ĝ(0) = 1 and ĝ(1) = 0 be strictly
positive definite while g(x) + a cosx ≥ 0?

5.) It is possible to consider similar, however not only positive definite, but signed
Landau-problems, i.e. instead of ak ≥ 0 we can assume arbitrary sign conditions on
various k’s. We already have the duality [21]. Note that considering negative a leads
to this question naturally.

6.) Let G be a locally compact Abelian group. Develop the similar theory.
We have emphasized several times that the Landau extremal problems are related

to many classical and current extremal problems. Let us give an example for the
Landau problem with some sign conditions.
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Example 1. Assume, as sign condition, that f̂ = 0 outside D, where D ⊂ Ĝ is a
domain in the dual group. (E.g. if G = T and Ĝ = Z, then considering polynomials
of degree ≤ n is equivalent to assume f̂ = 0 outside [−n, n].) Then the problem is
about the minimal value of f(0) when a = a1 = 2f̂(1) is given.

Changing the role of G and Ĝ and taking ϕ := f̂ , we obtain the following
extremal problem:

i) ϕ = 0 on G \D, i.e. ϕ is supported in D;

ii) ϕ̂ ≥ 0, i.e. ϕ is positive definite;

iii) ϕ(0) = 1 (normalization);

iv) ϕ(1) = a/2;

and then we seek to minimize
∫
ϕ = ϕ̂(0).

If one only looks for the largest possible value of a so that the problem has a finite
solution, (e.g. if we look for Bn), then the extremal problem becomes maximization
of ϕ(1) under the conditions (i)–(iii) given. This is called “pointwise Turán problem”
(although in R was already considered by Boas and Kac [3] in the forties). See [15]
and the references therein. In the special case of αn, it is an extremal problem solved
by Fejér [11] and Szász [28] – that is the exact value of Bn given above.
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[22] Révész, Sz. Gy., Minimization of maxima of nonnegative and positive definite cosine
polynomials with prescribed first coefficients, Acta Sci. Math. (Szeged) 60 (1995), 589–
608.
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