Eralier Set Theory Midterm tests BME TTK

1. Prove that there do not exist sets A, B such that

$$\mathcal{P}(A-B) = \mathcal{P}(A) - \mathcal{P}(B).$$

2. Let $\langle A_n : n \in \omega \rangle$ be a system of sets. Prove that

$$\bigcup_{k\in\omega}\bigcap_{n>k}A_n \subseteq \bigcap_{k\in\omega}\bigcup_{n>k}A_n.$$

3. Prove that for any system of sets $\langle A_i : i \in I \rangle$ and set B the following holds:

$$\left(\bigcup_{i\in I}A_i\right)-B = \bigcup_{i\in I}\left(A_i-B\right).$$

4. For each $n \in \omega$ let $A_n \subseteq \mathbb{R}^2$ be a convex subset of the plane. Suppose $A_n \subseteq A_{n+1}$ holds for all $n \in \omega$. Prove that

$$\bigcup_{n\in\omega}A_n$$

is a convex set. (Reminder: a subset $B \subseteq \mathbb{R}^2$ of the plane is convex iff for all $P, Q \in B$ we have $\overline{PQ} \subseteq B$ where \overline{PQ} is the line segment joining P and Q.)

5. Prove that if A is a transitive set, then $\mathcal{P}(A)$ is also a transitive set.

6. Give infinitely many, pairwise non-isomorphic linear orders on the underlying set ω .

7. Let $\mathcal{A} = \langle A, \leq^{\mathcal{A}} \rangle$ partially ordered set that satisfies the conditions of Zorn's lemma and let $\mathcal{B} = \langle B, \leq^{\mathcal{B}} \rangle$ be a substructure of \mathcal{A} (that is, $B \subseteq A$ and for all $x, y \in B, x \leq^{\mathcal{B}} y$ iff $x \leq^{\mathcal{A}} y$). Is it true, that \mathcal{B} necessarily satisfies the conditions of Zorn's Lemma?

8. Prove that for any sets A, B, C

$$A - (B \cup C) \subseteq \overline{(A \cap B) \cup (A \cap C) \cup (B \cap C)}.$$

9. Prove that for any set A we have $\cup \mathcal{P}(A) = A$.

10. Let $\langle A, \leq \rangle$ be a partially ordered set. Applying Zorn's Lemma (or with any other way) prove that there exists $X \subseteq A$ such that $\langle X, \leq \rangle$ is linearly ordered and

 $(\forall a \in A - X)(\exists x \in X)(a \text{ and } x \text{ are incomparable }).$

11. Prove that, if $A \sim B$, then $\mathcal{P}(A) \sim \mathcal{P}(B)$.

12. Prove that if A is a set, then the class $\{E : E \text{ is an equivalence relation on } A \}$ is also a set.

13. Let $\emptyset < \alpha$ be an ordinal. Prove that α is a successor ordinal if and only if $\cup \alpha \in \alpha$.

14. If $\langle A, \langle \rangle$ is an ordered set, then on A^P the lexicographic order $\langle lex$ is defined as follows: for any $\langle a_0, a_1 \rangle, \langle b_0, b_1 \rangle \in A^P$, $\langle a_0, a_1 \rangle \langle lex \rangle \langle b_0, b_1 \rangle$ iff $(a_0 < b_0$ or $a_0 = b_0$ and $a_1 < b_1$). Prove that if $\langle A, \langle \rangle$ is a well ordering, then $\langle A^P, \langle lex \rangle$ is also a well-ordering.

15. Prove that for any sets A, B, C we have

$$(A - (B - (A - B))) \cup C \subseteq (A \cup C).$$

16. For a set A let $T(A) = \{x \subseteq A : x \text{ is a transitive set }\}$. Prove, that if $\cup T(A) = A$, then A is a transitive set.

17. Prove that if κ is an infinite ordinal, then there exists a limit ordinal α such that $\kappa \sim \alpha$ and $\kappa \in \alpha$.

Always give reasons!