Math Logic Homework-1.

1. (A) Let $\mathcal{A} = \langle \mathbb{R}, +, \cdot, 0, 1 \rangle$ be the usual ring of real numbers. Give a formula $\varphi(x, y)$ in the language of \mathcal{A} so that for any evaluation k over \mathcal{A} we have

$$\mathcal{A} \models \varphi[k] \quad \text{iff} \quad k(x) < k(y).$$

(B) The first order language L of partial orders contains only one binary relation symbol <. Give a first order formula ψ of L such that for any partial order $\mathcal{A} = \langle A, < \rangle$

 $\mathcal{A} \models \psi$ iff any two elements of A has a least upper bound.

In this exercise you do not have to prove anything, but please be careful: you should provide well formed formulas (wff's) in the specified first order language.

2. Show that there is an evaluation k such that $k \models (X \Rightarrow Y) \Rightarrow Z$ but $k \not\models X \Rightarrow (Y \Rightarrow Z)$.

3. Let $\varphi = \exists x \exists y \exists z (P(x, y, z)) \land \forall x \forall y \forall z (P(x, y, z) \Rightarrow P(y, z, x))$. Give a first order structure \mathcal{A} such that $\mathcal{A} \models \varphi$.

March 2023.