Previous Test Questions

On elementary properties of graphs, trees, Eulerian and Hamiltonian Cycles, elementary probability theory

Graph theory

1. Prove that there does not exist a graph on 11 vertices that is isomorphic with its complement.
2. For a natural number n let V_{n} be the set of $(0,1)$-sequences of length n and let \mathcal{G}_{n} be the graph on V_{n} such that there is an edge between $s, t \in V_{n}$ iff the sequences s and t differ from each other in exactly one position (for example, for $n=3$, there is an edge between 011 and 010 but there is no edge between 000 and 011). Determine all values of n for which \mathcal{G}_{n} has an Eulerian cycle.
3. Show that if a graph has n vertices and at least $\frac{n^{2}-2 n+2}{2}$ edges, then the graph has a Hamiltionian cycle (hint: check the Dirac condition).
4. The set of vertices V of the graph \mathcal{G} is the 3 -element subsets of $\{1,2,3,4,5\}$ and for $a \neq b \in V$ there is an edge between a and b iff $a \cap b \neq \emptyset$. Prove that \mathcal{G} and K_{10} are isomorphic (K_{10} is the complete graph on 10 vertices).
5. Suppose that the graph \mathcal{G} has at least 3 vertices and deleting any of its vertices the remaining graph contains an Eulerian cycle. Prove that \mathcal{G} is a complete graph (that is, it is isomorphic with K_{n} for some natural number n).
6. The set of vertices V of the graph \mathcal{G} is the set of 3 -element subsets of $\{1,2,3, \ldots, 2016\}$ and for $a \neq b \in V$ there is an edge between a and b iff the sum of elements of a and that of b are both odd or both even. Show that \mathcal{G} is not connected.
7. Give an example for a graph that contains a Hamiltonian cycle but does not
satisfy the Ore condition.
8. Give an example for a graph that contains a Hamiltonian cycle but does not contain an Eulerian cycle.
9. Prove that if $\mathcal{G}=\langle V, E\rangle$ is a tree on n vertices then

$$
\sum_{x \in V} d(x)=2 n-2 .
$$

11. Suppose \mathcal{G} is a 2017-regular graph whose complement is 2016 -regular. Show that \mathcal{G} has a Hamiltonian cycle.
12. The set of vertices V of the graph \mathcal{G} is the 2-element subsets of $A=\{1,2, \ldots, 10\}$ and there is an edge between $a \neq b \in V$ iff $|x \cap y|=1$. Does \mathcal{G} contain an Eulerian cycle? (Prove your statement, a simple yes/no answer is not enough.)
13. Is there exist a graph \mathcal{G} on 100 vertices such that both \mathcal{G} and its complement contain an Eulerian cycle? (Prove your statement, a simple yes/no answer is not enough.)
14. Show that if a graph \mathcal{G} has 10 vertices and 38 edges then it contains a Hamiltionian cycle.
15. Give an example for two 3-regular graphs having a same number of vertices such that the two graphs are not isomorphic.
16. Assume that the graph \mathcal{G} has n vertices and the degree of each vertex of \mathcal{G} is at least $\frac{2}{3} n$. Show that \mathcal{G} contains at least $\frac{n}{12}$ many pairwise different Hamiltonian cycles.
17. Does there exist a tree on 5 vertices that is isomorphic with its complement? (Prove your statement, a simple yes/no answer is not enough.)
18. Let $\mathcal{G}_{1}, \mathcal{G}_{2}, \mathcal{G}_{3}$ be graphs. Assume that \mathcal{G}_{1} is isomorphic with \mathcal{G}_{2} and \mathcal{G}_{2} is isomorphic with \mathcal{G}_{3}. Prove that \mathcal{G}_{1} is isomorphic with \mathcal{G}_{3}.
19. Suppose \mathcal{G} is a 3 -regular graph having at least 6 vertices. Prove that the complement of \mathcal{G} is connected (hint: check the Dirac condition to the complement of $\mathcal{G})$.

Probability Theory

20. We are rolling a red and a blue dice. Let A be the event that the result in the blue dice is even and let B be the event that the sum of the results in the blue and red dice is at least 10 . Decide if A and B are independent or not.
21. In public transportation a bus goes through in its route 16 times in each day. Assume, in each route, $p=0.1$ is the probability that it arrives to its last station later than scheduled. Give the probability that in a day it is late for its last station 3 times.
22. Let ξ and η be uniformly distributed random variables in the unit interval $[0,1]$. Let A be the event that $\xi+\eta \leq \frac{1}{2}$ and let B the event that $\xi \leq \frac{1}{4}$. Decide if A and B are independent or not.
23. We are choosing randomly 5 elements $\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right\}$ from the set $\{1,2, \ldots, 90\}$ (each element may be chosen at most once). Let

$$
\xi=\mid\left\{i \leq 5: 3 \text { divides } a_{i}\right\} \mid .
$$

Give the probability distribution of ξ.
24. Consider a permanently operating bus in public transportation. Assume p
is the probability that a controller gets on in the next station. Let ξ be the number of the first station where a controller gets on. Provide the probability distribution of ξ.
25. We are rolling a red and a blue dice. Let ξ be the maximum of the results on the red and blue dice. Give the probability distribution of ξ.
27. Let ξ and η be uniformly distributed random variables in the unit interval $[0,1]$. Compute the probability that the matrix

$$
\left(\begin{array}{ll}
\xi & 1 \\
\eta & \xi
\end{array}\right)
$$

has non-negative determinant.
29. Let ξ and η be uniformly distributed random variables in the unit interval $[0,1]$. Compute the probability that $\min \{\xi, \eta\} \leq \xi^{3}$.
30. Let ξ and η be uniformly distributed random variables in the interval $[-1,1]$ Compute the probability that the length of the vector $\underline{v}=[1, \xi, \eta]$ is at most $\sqrt{2}$
32. Let ξ and η be uniformly distributed random variables in the interval $[-1,1]$ and let q be the polynomial $q(x)=x^{2}+\xi \cdot x+\eta$. Compute the probability that $q(1) \geq 1$.
33. Let ξ and η be uniformly distributed random variables in the unit interval $[0,1]$. The coordinates of the points A, B, C in the plane are $A=(1,0), B=(1+\xi, 0)$ and $C=(0, \eta)$. Compute the probability that the area of the triangle $A B C$ is at most $\frac{1}{4}$.

