Previous Test Questions - Hints for solutions

On elementary properties of graphs, trees, Eulerian and Hamiltonian Cycles, elementary probability theory

Graph theory

2. For a natural number n let V_{n} be the set of $(0,1)$-sequences of length n and let \mathcal{G}_{n} be the graph on V_{n} such that there is an edge between $s, t \in V_{n}$ iff the sequences s and t differ from each other in exactly one position (for example, for $n=3$, there is an edge between 011 and 010 but there is no edge between 000 and 011). Determine all values of n for which \mathcal{G}_{n} has an Eulerian cycle.

Hint. Fix n. Then a vertex of \mathcal{G}_{n} is an n-termed esquence of 0 's and 1's, hence the degree of each vertex of \mathcal{G}_{n} is n (because there are n many possibilities do modify one coordiante of a vertex).

It is easy to see that \mathcal{G}_{n} is connected, hence it contains an Eulerian cycle if and only if all of its vertices have even degree. But, by the previous paragraph, each vertex has degree n, hence \mathcal{G}_{n} contains an Eulerian cycle if and only if n is even.
10. Prove that if $\mathcal{G}=\langle V, E\rangle$ is a tree on n vertices then

$$
\sum_{x \in V} d(x)=2 n-2 .
$$

Hint. As we learned, for any graph $\sum_{x \in V} d(x)=2 \cdot|E|$ and (as we learned) for a tree $|E|=n-1$.
11. Suppose \mathcal{G} is a 2017-regular graph whose complement is 2016-regular. Show that \mathcal{G} has a Hamiltonian cycle.

Hint. Let a be a vertex of \mathcal{G}. Since \mathcal{G} is 2017-regular, a has 2017 neighbors. Since the complement of \mathcal{G} is 2016-regular, there are 2016 vertices which are not
neighbors of a. Thus the number of vertices of \mathcal{G} is $1+2017+2016=4034(1$ stands for a). Since \mathcal{G} is 2017-regular, it satisfies the Dirac condition, hence it has a Hamiltonian cycle.
13. Is there exist a graph \mathcal{G} on 100 vertices such that both \mathcal{G} and its complement contain an Eulerian cycle? (Prove your statement, a simple yes/no answer is not enough.)

Hint. There is no such a graph: let \mathcal{G} be any graph on 100 vertices and denote the complement of \mathcal{G} by $\overline{\mathcal{G}}$. If \mathcal{G} or $\overline{\mathcal{G}}$ is not connected then it does not contain an Eulerian cycle. Assume both are connected and let a be any vertex of \mathcal{G}. Then $d^{\mathcal{G}}(a)+d^{\overline{\mathcal{G}}}(a)=99$ hence either $d^{\mathcal{G}}(a)$ or $d^{\overline{\mathcal{G}}}(a)$ is odd, hence either \mathcal{G} or $\overline{\mathcal{G}}$ does not contain an Eulerian cycle.
16. Assume that the graph \mathcal{G} has n vertices and the degree of each vertex of \mathcal{G} is at least $\frac{2}{3} n$. Show that \mathcal{G} contains at least $\frac{n}{12}$ many pairwise different Hamiltonian cycles.

Hint. Clearly, \mathcal{G} satisfies the Dirac condition, hence it has a Hamiltonian cycle. Let \mathcal{G}_{1} be the graph obtained from \mathcal{G} by removing the edges of a Hamiltonian cycle from \mathcal{G}. Then, for all $a \in V(\mathcal{G})$ we have $d^{\mathcal{G}_{1}}(a)=d^{\mathcal{G}}(a)-2$. If \mathcal{G}_{1} satisfies the Dirac condition, then it contains a Hamiltonian cycle; removing its edges from \mathcal{G}_{1} we obtain \mathcal{G}_{2} and so on.

Clearly, $d^{\mathcal{G}_{k}}(a)=d^{\mathcal{G}}(a)-2 k$, so we can keep going and repeat the process described in the previous paragrph until $\frac{2}{3} n-2 k \geq \frac{n}{2}$, that is, we can proceed while $k \leq \frac{n}{12}$.
18. Let $\mathcal{G}_{1}, \mathcal{G}_{2}, \mathcal{G}_{3}$ be graphs. Assume that \mathcal{G}_{1} is isomorphic with \mathcal{G}_{2} and \mathcal{G}_{2} is isomorphic with \mathcal{G}_{3}. Prove that \mathcal{G}_{1} is isomorphic with \mathcal{G}_{3}.

Hint. Suppose f is an isomorphism from \mathcal{G}_{1} onto \mathcal{G}_{2} and g is an isomorphism from \mathcal{G}_{2} onto \mathcal{G}_{3}. Then their composition $g \circ f$ is an isomorphism from \mathcal{G}_{1} onto \mathcal{G}_{3}.

Probability Theory

20. We are rolling a red and a blue dice. Let A be the event that the result in
the blue dice is even and let B be the event that the sum of the results in the blue and red dice is at least 10 . Decide if A and B are independent or not.

Hint. $P(A)=\frac{3}{6}=\frac{1}{2}, P(B)=\frac{6}{36}=\frac{1}{6}$ and $P(A \cap B)=\frac{4}{36}=\frac{1}{9}$. Since $P(A \cap B) \neq$ $P(A) \cdot P(B), A$ and B are NOT independent.
23. We are choosing randomly 5 elements $\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right\}$ from the set $\{1,2, \ldots, 90\}$ (each element may be chosen at most once). Let

$$
\xi=\mid\left\{i \leq 5: 3 \text { divides } a_{i}\right\} \mid .
$$

Give the probability distribution of ξ.

Hint. Let $A=\{1,2,3, \ldots, 90\}$ and let $B=\{x \in A: 3$ divides $x\}=\{3,6,9, \ldots, 90\}$. The possible values of ξ are $0,1,2, \ldots, 5$. If $0 \leq k \leq 5$ then

$$
P(\xi=k)=\frac{\binom{30}{k} \cdot\binom{60}{5-k}}{\binom{90}{5}}
$$

because if $\xi=k$ then you have chosen k elements from B and $5-k$ elements from $A \backslash B$. (Remember $\binom{n}{k}$ is the number of k-element subsets of an n-element set).
32. Let ξ and η be uniformly distributed random variables in the interval $[-1,1]$ and let q be the polynomial $q(x)=x^{2}+\xi \cdot x+\eta$. Compute the probability that $q(1) \geq 1$.

Hint. $q(1)=1^{2}+1 \cdot \xi+\eta=\xi+\eta$ so the question is $P(\xi+\eta \geq 1)$. Computing the areas of the appropriate square and triangle we get

$$
P(\xi+\eta \geq 1)=\frac{\frac{1}{2}}{4}=\frac{1}{8} .
$$

