Previous Test Questions – Hints for solutions

On elementary properties of graphs, trees, Eulerian and Hamiltonian Cycles, elementary probability theory

Graph theory

2. For a natural number n let V_n be the set of (0, 1)-sequences of length n and let \mathcal{G}_n be the graph on V_n such that there is an edge between $s, t \in V_n$ iff the sequences s and t differ from each other in exactly one position (for example, for n = 3, there is an edge between 011 and 010 but there is no edge between 000 and 011). Determine all values of n for which \mathcal{G}_n has an Eulerian cycle.

Hint. Fix *n*. Then a vertex of \mathcal{G}_n is an *n*-termed esquence of 0's and 1's, hence the degree of each vertex of \mathcal{G}_n is *n* (because there are *n* many possibilities do modify one coordiante of a vertex).

It is easy to see that \mathcal{G}_n is connected, hence it contains an Eulerian cycle if and only if all of its vertices have even degree. But, by the previous paragraph, each vertex has degree n, hence \mathcal{G}_n contains an Eulerian cycle if and only if n is even.

10. Prove that if $\mathcal{G} = \langle V, E \rangle$ is a tree on *n* vertices then

$$\sum_{x \in V} d(x) = 2n - 2.$$

Hint. As we learned, for any graph $\sum_{x \in V} d(x) = 2 \cdot |E|$ and (as we learned) for a tree |E| = n - 1.

11. Suppose \mathcal{G} is a 2017-regular graph whose complement is 2016-regular. Show that \mathcal{G} has a Hamiltonian cycle.

Hint. Let a be a vertex of \mathcal{G} . Since \mathcal{G} is 2017-regular, a has 2017 neighbors. Since the complement of \mathcal{G} is 2016-regular, there are 2016 vertices which are not neighbors of a. Thus the number of vertices of \mathcal{G} is 1 + 2017 + 2016 = 4034 (1 stands for a). Since \mathcal{G} is 2017-regular, it satisfies the Dirac condition, hence it has a Hamiltonian cycle.

13. Is there exist a graph \mathcal{G} on 100 vertices such that both \mathcal{G} and its complement contain an Eulerian cycle? (Prove your statement, a simple yes/no answer is not enough.)

Hint. There is no such a graph: let \mathcal{G} be any graph on 100 vertices and denote the complement of \mathcal{G} by $\overline{\mathcal{G}}$. If \mathcal{G} or $\overline{\mathcal{G}}$ is not connected then it does not contain an Eulerian cycle. Assume both are connected and let a be any vertex of \mathcal{G} . Then $d^{\mathcal{G}}(a) + d^{\overline{\mathcal{G}}}(a) = 99$ hence either $d^{\mathcal{G}}(a)$ or $d^{\overline{\mathcal{G}}}(a)$ is odd, hence either \mathcal{G} or $\overline{\mathcal{G}}$ does not contain an Eulerian cycle.

16. Assume that the graph \mathcal{G} has *n* vertices and the degree of each vertex of \mathcal{G} is at least $\frac{2}{3}n$. Show that \mathcal{G} contains at least $\frac{n}{12}$ many pairwise different Hamiltonian cycles.

Hint. Clearly, \mathcal{G} satisfies the Dirac condition, hence it has a Hamiltonian cycle. Let \mathcal{G}_1 be the graph obtained from \mathcal{G} by removing the edges of a Hamiltonian cycle from \mathcal{G} . Then, for all $a \in V(\mathcal{G})$ we have $d^{\mathcal{G}_1}(a) = d^{\mathcal{G}}(a) - 2$. If \mathcal{G}_1 satisfies the Dirac condition, then it contains a Hamiltonian cycle; removing its edges from \mathcal{G}_1 we obtain \mathcal{G}_2 and so on.

Clearly, $d^{\mathcal{G}_k}(a) = d^{\mathcal{G}}(a) - 2k$, so we can keep going and repeat the process described in the previous paragrph until $\frac{2}{3}n - 2k \geq \frac{n}{2}$, that is, we can proceed while $k \leq \frac{n}{12}$.

18. Let $\mathcal{G}_1, \mathcal{G}_2, \mathcal{G}_3$ be graphs. Assume that \mathcal{G}_1 is isomorphic with \mathcal{G}_2 and \mathcal{G}_2 is isomorphic with \mathcal{G}_3 . Prove that \mathcal{G}_1 is isomorphic with \mathcal{G}_3 .

Hint. Suppose f is an isomorphism from \mathcal{G}_1 onto \mathcal{G}_2 and g is an isomorphism from \mathcal{G}_2 onto \mathcal{G}_3 . Then their composition $g \circ f$ is an isomorphism from \mathcal{G}_1 onto \mathcal{G}_3 .

Probability Theory

20. We are rolling a red and a blue dice. Let A be the event that the result in

the blue dice is even and let B be the event that the sum of the results in the blue and red dice is at least 10. Decide if A and B are independent or not.

Hint. $P(A) = \frac{3}{6} = \frac{1}{2}$, $P(B) = \frac{6}{36} = \frac{1}{6}$ and $P(A \cap B) = \frac{4}{36} = \frac{1}{9}$. Since $P(A \cap B) \neq P(A) \cdot P(B)$, A and B are NOT independent.

23. We are choosing randomly 5 elements $\{a_1, a_2, a_3, a_4, a_5\}$ from the set $\{1, 2, ..., 90\}$ (each element may be chosen at most once). Let

$$\xi = |\{i \le 5 : 3 \text{ divides } a_i\}|.$$

Give the probability distribution of ξ .

Hint. Let $A = \{1, 2, 3, ..., 90\}$ and let $B = \{x \in A : 3 \text{ divides } x\} = \{3, 6, 9, ..., 90\}$. The possible values of ξ are 0, 1, 2, ..., 5. If $0 \le k \le 5$ then

$$P(\xi = k) = \frac{\binom{30}{k} \cdot \binom{60}{5-k}}{\binom{90}{5}}$$

because if $\xi = k$ then you have chosen k elements from B and 5 - k elements from $A \setminus B$. (Remember $\binom{n}{k}$) is the number of k-element subsets of an n-element set).

32. Let ξ and η be uniformly distributed random variables in the interval [-1, 1] and let q be the polynomial $q(x) = x^2 + \xi \cdot x + \eta$. Compute the probability that $q(1) \ge 1$.

Hint. $q(1) = 1^2 + 1 \cdot \xi + \eta = \xi + \eta$ so the question is $P(\xi + \eta \ge 1)$. Computing the areas of the appropriate square and triangle we get

$$P(\xi + \eta \ge 1) = \frac{\frac{1}{2}}{4} = \frac{1}{8}.$$