Combinatorial Problems and Exercises

by László Lovász

2nd edition

Akadémiai Kiadó · Budapest

- 5. Let T be a tree on points v_1, \ldots, v_n . Delete the endpoint having the least index and write down the index of its neighbor. Repeat this procedure with the resulting tree, until a tree with only one point remains. This associates a sequence of n-1 numbers with T, called the $Pr\ddot{u}fer\ code$ of T. Prove that
 - (a) the Prüfer code of T uniquely characterizes T.
- (b) given any sequence (a_1, \ldots, a_{n-1}) such that $1 \le a_i \le n$, $a_{n-1} = n$, there is a (unique) tree with this Prüfer code.
 - (c) Deduce the Cayley formula.

5. (a) Let b_1, \ldots, b_{n-1} be the indices of removed points. Let us see how to determine b_i , if we know the Prüfer code.

 b_i is obviously different from $b_1, \ldots, b_{i-1}, a_i$. Also, $b_i \neq a_j$ for j > i; for b_i is removed and it cannot be the neighbor of an endpoint at a later step. Conversely, if $k \notin \{b_1, \ldots, b_{i-1}, a_i, \ldots, a_{n-1}\}$, then v_k is an endpoint of $T - \{v_{b_1}, \ldots, v_{b_{i-1}}\}$; otherwise it would be a neighbor of a point removed at a later step. Thus,

(1)
$$b_i = \min\{k : k \notin \{b_1, \dots, b_{i-1}, a_i, \dots, a_{n-1}\}\}.$$

Thus, the Prüfer code uniquely determines the numbers b_i . Since (v_{a_i}, v_{b_i}) are the edges of T, the Prüfer code uniquely determines T.

(b) Let (a_1,\ldots,a_{n-1}) be any sequence of integers with $1 \leq a_i \leq n,\ a_{n-1} = n.$ Define b_i recursively by (1) and join v_{a_i} to v_{b_i} for $i=1,\ldots,n-1$. We claim that the resulting graph T is a tree with Prüfer code (a_1,\ldots,a_{n-1}) . Both assertions will follow, if we show that v_{b_i} is an endpoint of the graph $T_i = T - \{v_{b_1},\ldots,v_{b_{i-1}}\}$ and no point with smaller index is endpoint. We have

$$v_{a_i} \in V(T_i)$$

because $a_i \neq b_1, \ldots, b_{i-1}$ by (1). Thus, v_{b_i} has a neighbor in T_i , v_{b_i} cannot be adjacent to any other point of T_i : for suppose that (v_{a_j}, v_{b_j}) is another edge of T_i adjacent to b_i , then j > i as $v_{b_j} \in V(T_i)$ and either $b_i = b_j$ or $b_i = a_j$, which both contradict (1). Hence v_{b_i} is an endpoint of T_i . This proves that T and all T_i 's are trees.

Now suppose that T_i has an endpoint v_k with $k < b_i$. Since k did not come into consideration when defining b_i by (1), it follows that either $k = b_{\nu}$, $\nu < i$ or $k = a_j$, $j \ge i$. Now the first possibility does not occur because $v_{b_{\nu}} \in V(T_i)$, so $k = a_j$, $j \ge i$. Since $a_{n-1} = n \ge b_i > k$, we have $j \le n-2$. By the argument above, v_{b_j} is an endpoint of T_j and its neighbor is v_{a_j} . But $v_{a_j} = v_k$ is an endpoint of T_i , and therefore it must be an endpoint of T_j too. Hence $V(T_j) = \{v_{a_j}, a_{b_j}\}$ which is impossible as T_i has n-j+1>3 points.

The Cayley formula follows immediately: The number of sequences (a_1, \ldots, a_{n-1}) with $1 \le a_i \le n$, $a_{n-1} = n$ is, obviously, n^{n-2} , [A. Prüfer, Archiv f. Math. u. Phys. 27 (1918) 142–144.]

[From L. Lovasz Combinatorial Problems and Exercises, Akademiai Kiado and Elsevier, 1993]