Graphs, Capacities, Entropies
lecture notes, Fall 2022

First lecture (September 6, 2022)

1 Introduction

Information theory deals with the theoretical limits of information transmission.
In those cases when a negligible error is allowed on the decoding side, its the-
orems are of probabilistic nature. If, however, we insist on zero-error decoding
then combinatorial problems emerge. Such conisderations gave rise to several
interesting combinatorial concepts. A famous example for such a notion is the
Shannon capacity of graphs introduced by Claude Shannon [54] in 1956. We
start our discussion by introducing this invariant.

1.1 Shannon capacity of graphs

Trivial question: How many different ¢-length sequences can be given over the
alphabet {0,1}? The answer is trivially 2¢.

Another trivial question: How many different ¢-length sequences can be given
over the alphabet [n] := {1,2,...,n}? The answer is obviously n'.

Still very easy question: How many different (that is, pairwise distinguishable)
t-length sequences can be given over the alphabet [4] = {1,2,3,4} if we can
only distinguish between odd and even numbers, that is 1 and 3, as well as 2
and 4 “looks the same” when we want to “decode” our sequences? The answer
is again 2¢: it does not matter which odd and which even numbers we use, the
two odd values as well as the two even values can be identified.

Easy question: How many different (that is, pairwise distinguishable) ¢-length
sequences can be given over the alphabet {h, k, £, n, 2} if while 2 can be distin-
guished from all the other four letters, among those four only the pairs kn, nf
and hf can be distinguished, that is h can be confused with n as well as h with
k and k with 7 (Think about handwritten letters to feel it more realistic.) Now
the answer is 3! since we do not lose anything if we always substitute h with n
and k with /. But z,n and ¢ are pairwise distinguishable so all the sequences
using only them will be fine.

Very difficult question: How many different (that is, pairwise distinguishable)
t-length sequences can be given over the alphabet {0, 1,2, 3,4} if the pair a,b €
{0,1,2,3,4} can be distinguished if and only if a — b =1 or —1 modulo 5?7
Before explaining why this last question is difficult, let us formulate the problem
generally.

We are given a graph G = (V, E), where the vertices, that is the elements of
V represent the letters in an alphabet. The meaning of the edges is that the
two endpoints can surely be distinguished, while the lack of an edge between
two vertices means that the corresponding two vertices can be confused. We
are interested in the maximum number of #-length sequences that are pairwise
distinguishable. Let us denote this number by Mq(t).

Observation 1
Mg(t) > [w(@)]".



Proof. Indeed, let @@ C V be a subset of the vertex set that induces a largest
clique. Then the |Q|' = [w(G)]* possible sequences using letters only from Q
are all pairwise distinguishable. O

It is obvious that Mg(t) < |V|* so it makes sense to normalize by taking the t*%
root and investigate /Mg(t). In fact we are interested in the asymptotics of
this value, so consider its limsup as ¢ goes to infinity. (In fact, the limit always
exists.)

Now we are going to define the above asymptotic value in purely graph theoretic
terms. This needs that the distinguishability of sequences is expressed in graph
theory language. To this end we introduce a graph product.

Definition 1 For two graphs F' and G their OR-product F - G is defined by
V(F-G)=V(F)xV(G)

and
E(F xG)={{(f,9),(f,9)}: [, f € V(F),9,9' € V(G),
ff € E(F) or g¢' € E(G)}.

The t™" OR-power if a graph G is meant to be the t-fold OR-product of G with
itself.

Note that G! extends the distinguishability relation from individual letters to
t-length sequences: the vertices of G* are exactly t-length sequences over the
alphabet V(G) and two such sequences are adjacent in G if and only if there is
at least one position where their corresponding entries are distinguishable, that
is, they form an edge of G. This means that the maximum number of pairwise
distinguishable such sequences is just the clique number of G?.

With the above notion at hand we can now define the Shannon capacity of a
graph G.

Definition 2 The Shannon OR-capacity of a graph G is defined as

Cor(G) = limsup v w(G?).
t—o00

Two remarks are in order. The first is that due to what is called Fekete’s
Lemma, the above limsup is always attained as a limit. The second is that
choosing to represent the distinguishability relation of our pairs of letters to be
represented by the edges of a graph is a quite arbitrary choice: we could have
chosen just the opposite and say that edges mean confusability and then we get
the complementary graph to describe the exact same situation. Our approach
has several advantages but also a disadvantage, namely that traditionally the
complementary approach was followed (rather for psychological than for math-
ematical reasons, I believe). Below we briefly introduce also the complementary
notion that involves a different graph product, called AND-product. To make
it always clear which language is used the complementary notion will be called
Shannon AND-capacity.

Definition 3 The AND product of two graphs G and H is given by
V(GANH)=V(G) x V(H)
and
E(GAH) ={(g,h)(¢', 1) : 9,9 € V(G),h,h € V(H),(9¢9' € E(G) and hh' € E(H))
or (9 =¢ and hh' € E(H)) or (g9’ € E(G) and h = h')}.
We denote by G the t-fold AND product of G with itself.



Note that if the edges of H mean confusability of its endvertices then the edges of
H" can be interpreted as the confusability of the sequences forming their end-
points. Thus the largest number of pairwise distinguishable (=non-confusable)
t-length sequences can be expressed by the independence number a( H"'?).

Definition 4 The Shannon AND-capacity of a graph H is defined as

Canp(H) = limsup v/ a(H"?).

t—00
It is easy to verify by the foregoing that

Canp(H) = Cor(H),
where H is the complementary graph of H.

We have already seen that M¢(t) > [w(G)]*. In graph terms this means w(G*") >
[w(@)]* that immediately implies that

Cor(G) > w(G)

for every graph G. Next we give a general upper bound for Cor(G). Recall
that the chromatic number x(F') of a graph F' is the minimum number of colors
with which the vertices of F' can be colored so that adjacent vertices receive
different colors.

Theorem 1 For every graph G we have

Cor(G) < x(G).
To prove this statement we will prove the following two lemmas.

Lemma 1 Let p(G) be a graph parameter satisfying the following two condi-
tions:

1. w(G) < 9(G);

2.  is submultiplicative with respect to the OR-product, that is

p(F-G) < p(F)e(G)

holds for any finite simple graphs F' and G.

Then
Cor(G) < ¢(G)

for all finite simple graphs G.

Lemma 2 The chromatic number satisfies the two conditions in Lemma 1.

It is straightforward that the above two lemmas imply Theorem 1

Proof of Lemma 1. Let ¢ be a parameter as in the statement. Then we can
write

— Tim 4 t TN t TN _
Cor(G) = lim v/w(G') < lim /p(G") < lim /[p(G)] = ¢(G).
Here the two inequalities follow, respectively, from the first and the second

properties of ¢ given in the statement. a

Proof of Lemma 2. The first property is obvious: all vertices of a largest clique
must get distinct colors in any proper coloring. To prove the second property



consider an optimal coloring ¢ : V(F) — [x(F)] of G and an optimal coloring
h:V(GQ) = [x(G)]. We give a proper coloring r of F'-G using pairs of colors from
these two proper colorings in the folowing way. Let r : V(F - G) — [x(F)x(G)]
be defined by

v (f.9) = (e(f), h(9))

forall (f,g) € V(F-G). Thisis indeed a proper coloring since if {(f, g), (f',¢')} €
E(F-G) then by definition we either have f f’ € E(F) or g¢’ € E(G). In the first
case we must have ¢(f) # ¢(f’), in the second case we must have h(g) # h(g').
In either case (c(f),h(g)) # (c(f'),h(g’)) thus our coloring is proper. We have
used x(F)x(G) colors implying that x(F - G) < x(F)x(G) as stated. ad

As already said above, with proving Lemmas 1 and 2 we also proved Theorem 1.

Now we can return to the question we declared to be very difficult above. One
can observe that answering it we determine Cor(Cs), where C,, denotes the
cycle on n vertices. In all our questions preceding this one we dealt with graphs
G satisfying w(G) = x(G) and thus by the chain of inequalities

w(G) < Cor(G) < x(G)

the value of the Shannon OR-capacity simply coincides with the common value
of the clique number and the chromatic number. For C5, however this is not the
case as w(C5) = 2 < 3 = x(C5). (This in itself does not necessarily mean that
determining Cogr(C5) should be very difficult but it turned out to be so.) In
fact, Cor(Cj) is indeed strictly more than 2. This follows from the observation
that the five 2-length sequences

00

12
24
31
43

form a clique in C2 thus implying
w(C2) > 5.

It follows from this that w(C2*) > 5% for any positive integer k (simply use the
2-length blocks forming a 5-element clique in CZ) implying that Cor (Cs) > /5.
Our best upper bound so far is given by the chromatic number of C5 which is
3.

Now we leave the problem of the exact value of Cor(Cj5) open for the time being
and turn to discuss an important influence of the Shannon capacity problem on
graph theory.

2 Perfect graphs

The fact that x(G) = w(G) implies that Cor(G) coincides with the common
value of these two parameters made the French mathematician Claude Berge
elaborate on the question, what can one say about graphs whose chromatic num-
ber equals their clique number. (see [5] about the details of how his ideas about
perfect graphs developed). He realized that to obtain an interesting structural
property one better requires x(G’) = w(G’) for all the induced subgraphs of G
as well. (Otherwise we could always just add a complete graph on x(G) vertices



to G without really changing its inner structure yet obtaining equality between
the chromatic number and the clique number.)

Thus Berge defined the following class of graphs.

Definition 5 A graph G is called perfect if x(G') = w(G') holds for all of its
induced subgraphs.

It turns out that several interesting classes of graphs are perfect.
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2.1 Classes of perfect graphs

It turns out that several interesting classes of graphs are perfect. Let us see some
examples. In the following cases we always talk about such graph classes that
are hereditary in the sense that if G belongs to the class and G’ is an induced
subgraph of G then G’ also belongs to the class. Therefore in these cases it will
be enough to show that x(G) = w(G) for any member of the class, that will
immediately imply the similar inequality also for the induced subgraphs.

Proposition 1 Bipartite graphs are perfect.

Proof. This is quite obvious. If a bipartite graph G has at least one edge then
we have x(G) = 2 = w(G), if it has no edge, then we have x(G) = w(G) = 1.
With the remark in the first paragraph of this subsection this completes the
proof. O

Proposition 2 The complementary graph of any bipartite graph is perfect.

Proof. This follows from K6nig’s theorem stating that we have 7(G) = v(G) for
all bipartite graphs. Indeed, let G be a graph as in the statement on n vertices.
Let M be a matching of size v(G) in the complementary graph G and color the
pairs of vertices matched by M the same color while giving a unique color to
the rest of the vertices. This way (denoting the number of vertices by n) we use

v(G)+n—2v(G)=n—-v(G) =n—-7(G) = a(G) =w(G)

colors for a proper coloring, so x(G) < w(G). (The second equality above
follows from Ko&nig’s theorem, the third one from Gallai’s identity, the last one
is obvious.) Since the reverse inequality always holds, with the remark in the
first paragraph of this subsection the proof is completed. o

Proposition 3 Line graphs of bipartite graphs are perfect.

Proof. By the remark in the first paragraph of this subsection this statement
is equivalent to the equality of the edge-chromatic number x.(G) to the largest
degree A(G) for any bipartite graph G, that is also a theorem of Kénig. To
prove it we simply have to realize that every regular bipartite graph (possibly
containing parallel edges) contains a perfect matching (this is easy by checking
Hall’s condition) and that any bipartite graph G can be extended by the addition
of vertices and edges to a A-regular bipartite graph where A = A(G) (by also
using parallel edges if necessary). O



Proposition 4 The complementary graph of the line graph of any bipartite
graph is perfect.

Proof. Note that if G is the complementary graph of the line graph of a bipartite
graph F| then w(G) = v(F'). Thus by the remark in the first paragraph of this
subsection it will be enough to show that we can color G with v(F) = 7(F)
colors, where the last equality is again from Kénig’s theorem and the fact that
F is bipartite. Consider a set of size 7(F') of vertices of F' whose elements cover
all edges in F'. Observe that the edges of F' (that are vertices in G) incident to
the same vertex of F' form an independent set in G, thus are allowed to receive
the same color. Therefore we can indeed color G with as many colors as many
vertices of F are needed to cover all edges in F showing x(G) < 7(F) = v(F) =
w(@). As the reverse inequality is also true the proof is completed. |

The perfectness of interval graphs was proven in the basic courses on combina-
torics. All interval graphs are chordal, so this is a special case of the fact that
chordal graphs are perfect. This statement can be found as Proposition 5.5.2 in
Diestel’s book [14] together with its proof.

The complementary graphs of interval graphs are special cases of comparability
graphs (see their definition below) that are also perfect as we prove next.

Definition 6 Let (P, <) be a partially ordered set (a poset). Its comparability
graph G = G (p < is the graph with V(G) = P and E(G) = {uv : u <p v}. A
graph G is called a comparability graph if there exists a poset for which G is its
comparability graph.

Theorem 2 Comparability graphs are perfect.

Proof. Consider a comparability graph G and orient its edges according to
the relation “<” in the poset it represents, that is for every edge wv take the
orientation u — v if v < w and v — w if v < v. Let ¢t denote the number of
vertices in a longest oriented path of the so obtained oriented graph. Consider
such a longest path. Observe that since between any two of its vertices we
have an oriented path, any two of these vertices must be connected by the
transitivity property of our partial order. (If u < v and v < w, then u < w, so
uw is also an edge.) Therefore ¢t < w(G). Now we show that G can be colored
by t colors. Color all those vertices with color 1 that have outdegree 0 in our
oriented version of G. Clearly, they form an independent set, so using the same
color for all of them is valid. Now delete these vertices and color with color 2
all those vertices that have outdegree 0 in the remaining graph. Delete these,
too, and continue the process until all vertices are colored (and thus deleted).
This way we get a proper coloring with, say, m colors. We show that m < ¢,
that is, there exists an oriented path of length m. To show this consider an
arbitrary vertex colored with color m. This vertex must have an outneighbor
colored (m — 1), otherwise it would have already been colored one step earlier.
By the same logic, this outneighbor must have an outneighbor of color (m — 2),
that one must have an outneighbor of color (m — 3), etc. These vertices then
give us an oriented path with one vertex in all the m color classes, therefore we
indeed have m < t as claimed. But then we have x(G) < m <t < w(G) and
since w(G) cannot be larger than x(G) we proved that x(G) = w(G). Since all
induced subgraphs of a comparability graph are also comparability graphs, this
proves that comparability graphs are perfect. O

To mention some imperfect (=not perfect) graphs we note that odd cycles of
length at least 5 are not perfect: they have clique number 2 and chromatic num-
ber 3. They are actually minimal imperfect: any proper induced subgraph of



them is bipartite, therefore perfect. One can also observe that the complemen-
tary graphs of these odd cycles are also imperfect: w(Cai+1) = k, but since any
color class can have at most two elements (whenever k > 1), their chromatic
number is at least (in fact, exactly) [25t1] = k + 1 > k. Since the comple-
mentary graphs of bipartite graphs are perfect, these graphs are also minimally
imperfect.

2.2 The perfect graph conjectures

The above examples may suggest that perfect graphs go in pairs: whenever a
graph is perfect, so is its complement. Berge formulated it as a conjecture, it
became known as the Perfect Graph Conjecture. It was proven about ten years
later by Lovasz.

Perfect Graph Theorem. (Lovasz 1973) The complementary graph of a
perfect graph is perfect.

Berge also formulated a stronger conjecture, the Strong Perfect Graph Con-
jecture, stating that no other minimal imperfect graph exists, than the ones
mentioned above. By now this is also a theorem, but in this case it took several
decades until it was proven.

Strong Perfect Graph Theorem. (Chudnovsky Robertson, Seymour, Thomas
2006): A graph not containing a chordless odd cycle of length at least 5 or its
complement is perfect.

Below we will see a proof of the Perfect Graph Theorem (PGT). In case of
the Strong Perfect Graph Theorem (SPGT) it would be hopeless to prove it in
class within a reasonable time, the article containing this proof is more than
150 pages long.

2.3 Vertex packing and fractional vertex packing poly-
topes

We will prove the PGT in a form that involves also some other notions we will
need later. We introduce them here.

Definition 7 The vertex packing polytope VP(G) of a graph G is the convex
hull of the characteristic vectors of its independent sets.

Definition 8 The fractional vertex packing polytope FV P(G) of a graph G on
n vertices is the set of non-negative vectors in R™ whose entries belonging to the

vertices of a clique sum up to at most 1. Formally, denoting the set of cliques
by Q(G), this means

FVP(G)={be RV :vib, >0,VBeQ(G) Y b <1}
i€B

Since an independent set can intersect a clique in at most one vertex, the char-
acteristic vectors of independent sets satisfy the inequalities in the definition of
FV P(G). From this it is easy to see that

VP(G) C FVP(G)

for every graph G. It turns out that the two polytopes coincide if and only if
the graph is perfect. Below we prove this statement and the PGT in one proof.
This approach follows the one in the book [43].



2.4 Proof of the Perfect Graph Theorem

As indicated above we will prove the following theorem that combines indepen-
dent results due to Chvatal [9], Fulkerson [19] and Lovész [35].

Theorem 3 The following four statements are equivalent for a graph G.
1. G 1is perfect;
2. G is perfect;
3. VP(G) = FVP(G);
4. VP(G) = FVP(Q).
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The proof will use an important lemma that was proved by Lovész [35] when
he proved the Perfect Graph Theorem. We say that a vertex v in graph G is
substituted by an edge if we add a new vertex v’ to G adjacent to v and exactly
those other vertices that are also adjacent to v.

Lemma 3 (Substitution Lemma) Substituting a vertex v by an edge in a perfect
graph G preserves its perfectness.

For the proof of the above lemma see it as Lemma 5.5.5 in Diestel’s book.
(Note that the book uses the term “expanding a vertex” for what we called
“substituting a vertex by an edge”.)

Observe that for any positive integer s applying the Substitution Lemma sub-
sequently s — 1 times for the same vertex of a perfect graph shows that if the
vertex is “substituted by a clique of size s” the resulting graph is still perfect.
(By substituting a vertex v with a clique K we mean that we add s — 1 new
vertices that are all adjacent to each other and the original vertex v as well as
to the original neighbors of v and there are no other new edges.) We may also
think about deleting a vertex as substituting it with a clique with 0 vertices.
Perfectness is also preserved in this case by definition.

Proof of Theorem 3. By the symmetry of the statement it is enough to prove
that the first property implies the third one and the third property implies the
second one. This is what we will do.

1.= 3.: Assume G is perfect and consider an arbitrary © € FVP(G). We
will show that € V P(G) holds, too. We may assume that (every coordinate
of) z is rational (otherwise we could approximate it with rationals and repeat
the proof that way). Let N be a common multiple of the denominators of the
coordinates of x and write all coordinates in the form of . Note that these
values are attached to the vertices of G, 5 belonging to v;. Now substitute each
vertex v; by a clique of size m; to obtain a new graph G’. (As remarked above
this can be done by subsequent substitutions with edges, so by the Substitution
Lemma G’ is also perfect.) Observe that G’ has clique number N thus it can be
colored by N colors. Consider such an N-coloring and consider the independent
sets that form the color classes. Now “collapse” these independent sets back to
independent sets of G: if an independent set A of G’ contains a vertex which
is one of the copies of v; € V(G) obtained during the substitution process,
then (and only then) we include v; in the collapsed version of A. This way each
v; € V(G) will appear in exactly m; collapsed independent sets. (It may happen
that two different color classes A and B of G’ collapse to the same independent
set. Therefore each collapsed independent set is taken with multiplicity: if it
is the collapsed version of k color classes then we consider it k times.) Putting




weight % on each of the color classes of G', we distribute altogether unit weight
since we used N independent sets for coloring G’. Now putting % weight also on
the collapsed version of each of these independent sets (with multiplicity, thus
if the same collapsed independent set appears as a result of k color classes of
G’, then it receives weight % altogether) we again distribute exactly N - % =1
total weight. Taking these weights as coefficients of a convex combination of
the characteristic vectors of the respective independent sets of G we obtain the
vector x as a convex combination of characteristic vectors of independent sets,
thus as an element of VP(G).

3.= 2.: It is easy to see that property 3. is hereditary, that is, once it is true
for graph G then it also holds for all induced subgraphs of G. Therefore it is
enough to prove that this property implies x(G) = w(G), the analogous equality
will similarly follow for all induced subgraphs.

Assume VP(G) = FV P(G), we prove x(G) = w(G) by induction, that is we also
assume that this already follows if we have fewer vertices than in G. Consider
the points of V P(G) whose coordinates sum to the independence number a(G).
These points are on a hyperplane and they are maximal points of V P(G), so they
form a facet of VP(G). By VP(G) = FV P(G) the facets of this polytope are
described by the inequalities given in the definition of F'V P(G). Since the origin
is not on this facet, this facet must be described by one of those inequalities
given by a clique K € Q(G). Since the characteristic vectors of largest, that
is a(G)-size independent sets satisfy that the sum of their coordinates is a(G),
they are all on this facet, thus they all must have an intersection point with
K. But then using K as a color class in G we find that G can be colored with
just one more colors than G\ K and that the latter graph has clique number
(the independence number of G \ K) 1 smaller. From here the proof can be
completed by the induction hypothesis which implies that G'\ K can be colored
by w(G\ K) = w(G) — 1 colors. a

After the proof of PGT Andras Hajnal suggested that perhaps the following
stronger statement (that is still weaker than the Strong Perfect Graphs Conjec-
ture) could be proven. Lovész [36] found a proof of this statement as well which
appeared still in the same year as [35].

Theorem 4 (Lovész [36]) A graph is perfect if and only if the following in-
equality holds for all of its induced subgraphs G’.

a(Gw(G') 2 [V(E)].

Note that the only if part of Theorem 4 is obvious: every graph F must satisfy
a(F)x(F) > |[V(F)| (simply because all color classes in a proper coloring are
independent sets therefore cannot have more than a(F') vertices), thus if G is
perfect then every induced subgraph G’ must satisfy a(G")w(G) = a(G")x(G") >
[V(G")]. So the real content of the theorem is the reverse implication.
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Gasparian [23] found a proof of this statement that is significantly different
from that of Lovész in [36]. In particular, unlike Lovasz’s proof, it does not use
the Substitution Lemma. Both proofs are elegant, in fact, the one by Lovész
probably gives more “explanation” for why the statement is actually true. Yet,
Gasparian’s proof is so much different and surprising (partly by its unexpected
use of linear algebra) that I chose to present that in class. This proof can be
found in Diestel’s book [14] as the proof of Theorem 5.5.6 there.



Note that Theorem 4 has the following immediate consequence (that by now,
of course, also follows from the SPGT which completely describes all minimally
imperfect graphs.

Corollary 5 If G is minimally imperfect, that is, an imperfect graph whoch
becomes perfect by the deletion of any of its verices, then

[V(G)] = a(G)w(G) + 1.
3 Fractional chromatic and clique number

Definition: Denoting the set of independent sets of a graph G by S(G) a
fractional coloring is a function (a weighting) w : S(G) — R4, such that

Yo e V(Q): Y wA)>1.
A3v,A€5(G)
The fractional chromatic number x ¢(G) is the value
inf Z w(A)
AES(G)

taken under the above conditions. Instead of inf one can write min as the
infimum is always attained.

The above can be formulated as a linear program as follows: Let A be a matrix
with n := |V(G)| rows and s := |S(G)| columns in which the columns are the
characteristic vectors of the independent sets. This means that Af¢,j] = 1 if
vertex v; € Aj, where A; denotes the j*' independent set, and Ali,j] = 0
otherwise. Then x;(G) = min(c - «), where ¢ = (1,...,1) is the s-dimensional
all-1 vector and the minimization is under the constraints

Ax > b
for the n-dimensional all-1 vector b= (1,...,1)7 and
x > 0.

All the inequalities are meant coordinatewise.
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A linear program as the above has a dual:
yA<ec, y=>0,
and we seek
max(y - b)

under these constraint. With the above matrix a vector y satisfying the con-
straints is a non-negative weighting of the vertices such that the total weight in
any independent set is at most 1. Such a weighting is called a fractional clique
and the maximum possible total weight (that is the maximum of y - b) is the

10



fractional cliqgue number w;(G). (The name comes from the fact that a frac-
tional clique which has only integer coordinates is necessarily the characteristic
vector of a clique.)

By the Duality Theorem of linear programming

X (@) = wi(G).

This is a minimax theorem as any feasible solution for the first linear program
gives an upper bound for the value given by any feasible solution of the dual
program:

y -b<y(Az) = (yA)x < c-x.

Therefore if we present a fractional coloring and a fractional clique for a graph
giving the same value, then they are necessarily optimal.

It should be clear from the foregoing that we always have
w(@) < wr(G) = x7(G) < x(G),

where the equality in the middle is just the already stated consequence of the
Duality Theorem. The inequality w¢(G) > w(G) follows from the fact that
the characteristic vector of any clique gives a fractional clique (as no clique
and independent set can have more than 1 vertex in common). Similarly, the
inequality x7(G) < x(G) follows by observing that any proper coloring gives rise
to a fractional coloring by attaching weight 1 to the independent sets that are
color classes and weight 0 to the rest. Thus if x(G) = w(G), in particular, if G
is perfect, then x(G) also equals to the common value of these two parameters.

3.1 Fractional chromatic number and zero-error capacity

Now we show that x;(G) satisfies the conditions in Lemma 1 therefore it is
also an upper bound on the Shannon OR-capacity of G. The condition w(G) <
X#(G) we have already seen, what still needs proof is the submultiplicativity
with respect to the OR-product. In fact, more is true: the fractional chromatic
number is just multiplicative with respect to this product.

Lemma 4 For any two finite simple graphs F and G we have
X (F - G) = xp(F)xy(G).

Sketch of proof. Consider optimal fractional colorings f : S(F) — R4 and
g : S(G) = Ry . Observing that for A € S(F),B € S(G) we have A x B €
S(F - G) we can define a fractional coloring h : A x B — f(A)g(B) and do
similarly for optimal fractional cliques w : V(F) — R4 and z : V(G) = R4
by assigning the vertex (u,v) € V(F - G) weight w(u)z(v). Calculating the total
weight distributed this way we get that both

Xp(F-G) < x5 (F)xs(G)

and
wi(F-G) > wp(Fws(G)

hold proving the statement. |

Combining Lemmas 1 and 4 we immediately get

Theorem 6 For any graph G we have

Cor(G) < xs(G).

11



In particular, the above gives Cor(Cs) < 2. (Recall that our best lower bound
so far was v/5. The upper bound 2 was already known by Shannon. In [54]
one can find a completely different argument that also leads to the inequality
of Theorem 6 which we present next.

A noisy channel C is usually described by a stochastic matrix W¢ (meaning that
every row is a probability distribution) where the rows are indexed by the input
characters (..., (") the columns by the output characters y"), ..., y*) and
entry We/j, 4] is the probability of receiving y() at the output when input letter
() is sent.

From this matrix the distinguishability graph G¢ of the channel is obtained as
V(Ge) = {zW, ... 2™} B(Ge) = {aDz® . Vi Welj,i] - Welk,i] = 0}.

Then the zero-error capacity Co(C) = logy Cor(Gc) = limsup,_, . 1 log, w(G?).
(Taking the logarithm is traditional in information theory because this way we
measure the amount of transmitted information in bits.)

It is customary in information theory to also consider communication with feed-
back. In case of our channel model it means that after sending a character via
the noisy channel C the sender is informed of which output it resulted in and
should decide about the next character to be sent only after this information
is received. If Mc ¢(t) denote the number of messages one can transmit us-
ing t transmitted characters with zero probability of error, then the zero-error
capacity with feedback for this channel is

1
Co,¢(C) = limsup n logy Mc £(2).

t—o0

It is easy to observe that if Co(C) = 0 (this happens exactly when all pairs
of input letters can be confused, that is G¢ has no edges), then we also have
Co,f(C) = 0. This is simply because any two sequences of input characters can
result in the same output irrespective of whether we know what was received
before. If, however, Co(C) > 0 then we may have

Co,f(C) > CO(C)

as we will soon see.

A primary observation is that if feedback is allowed then even from the zero-error
capacity point of view the channel is not fully described by the distinguishability
graph G¢. Consider for example the following two channels given by the matrices
W1 and Wy, both with input and output alphabets identical to {0,1,2,3}. Let
us have W7(0,0) = W5(0,0) = 1, i.e., the input character 0 results in a 0
output character with probability 1 in both channels (implying that W7 (i,0) =
W (i,0) = 0 for every i € {1,2,3}). For input characters 7, j different from 0
we have

. 1

Wl (Za ]) = ga

that is, in the first channel these inputs result in any of the other nonzero inputs
with (the same but this is irrelevant) positive probability and with probability

1 they do not result in output 0. For the second channel we have
1
Wa(1,1) = Wa(2,1) = Wa(2,2) = Wa(3,2) = Wa(3,3) = Wa(1,3) = 9

while all other transition probabilities are zero. That is here all three nonzero
characters can become only two of the other three nonzero characters at the
output with positive probability. Observe that the distingushability graph is a

12



star with three edges where the center of the star is the vertex representing input
letter 0 in both cases. We will see, however that the zero-error capacity with
feedback is different for the two channels. Indeed, when we send input letter 1
and get the feedback that the receiver has received 2, then in case of the first
channel the receiver knows only that one of the three nonzero characters was
sent while in case of the second channel the receiver knows that either 1 or 2 was
sent. So the uncertainty of the receiver in the second case is smaller and since
we (the sender) know this, we can exploit this when continuing the transmission.
It still does not matter what are the actual values of the positive probabilities
in our channel matrices but it does matter which output character can be the
result of sending a certain input character (which is more information than just
saying that two input characters can or cannot result in the same output.) So
the channel is now described by a hypergraph: the vertices are the input letters
and each hyperedge represents an output letter containing exactly those vertices
that represent input letters which may result with positive probability in the
output letter that the edge represents. By formula this hypergraph He is given
as
V(He)) = {x(l)a e ’:L,(n)}7

E(He) ={U CV(He) : Iy Wely®, 2] > 0= 2 e U}.

Sizfth lecture (September 23, 2022)

Using the above defined hypergraph we can already state the theorem proved
by Shannon in [54] expressing the zero-error capacity of a noisy channel with
feedback.

Theorem 7 Let C be a noisy channel for which hypergraph Hc describes the
possible transitions of input letters to output letters the way described above.
Define the value Py as

where the minimization is over all P that are probability distributions on the
inpul alphabet and the inner mazimization is over the edges U; of Hc that
belong to the output letters. Then

log, -+ if Co(C) >0
Cor(C) = { 0 *h if C(O)(:)()_

Sketch of proof. The Cy = 0 case was already discussed above, so we have to
prove only the first line of the above formula.

First we prove that the right hand side is an upper bound. Assume this is not

the case, that is, Co s > log, 1 Then there must be some positive integer ¢ (in

Py
fact, infinitely many) such that M]Vc[cfi(ft(j)l)

of different messages that can be transmitted without error if feedback is used
by transmitting t — 1 input letters is less than Py times the maximum number of
different messages one can transmit under similar conditions by sending ¢ input
characters. Consider such a t and the M ¢(t) different messages. For each of
them the first letter to be sent is given by some optimal encoding strategy. The
fraction of all possible messages starting with the individual input characters

> P%)’ that is the maximum number

13



gives a probability distribution on the input alphabet. Whatever this distribu-
tion is, the definition of Py ensures that there must be some output character
that can be resulted by the first character of at least PoMc ¢(t) > Me¢ (t — 1)
of our messages. If this output character is received, then there are more than
Me r(t) messages that the receiver should be able to distinguish just by seeing
the result of the remaining ¢ — 1 transmissions. By the definition of M¢ ;(¢t —1)
this is impossible. (Even though the sender knows by the feedback exactly
which are these remaining messages, their number is too large.) This contra-
diction proves that Cp ; < log, P%

To prove the reverse inequality consider the probability distribution (pi,...,pn)
on the input that attains the value Py. When the number M of possible messages
is huge, we can attach to almost exactly p; M of them the input letter () as a
first character. Sending the first letter via the channel according to this choice,
the definition of Py ensures that whatever the received character will be, the
number of messages that remain consistent with that is not more than PyM.
Then we can repeat this process for these messages and keep doing so until the
number of still possible messages goes below some (possibly still quite large)
constant. Then those remaining messages can be encoded by a constant length
zero-error code whenever there are at least two never confusable characters in
the input aplphabet. (This is where we use that Cy(C) > 0.) This completes
the proof. |

Some remarks are in order.

1. Notice that for the two channels W; and W5 in our example above we obtain
different values for their zero-error capacity with feedback. Both of them has a
pair of always distinguishable pair of input letters so their zero-error capacity
is positive, we just have to determine the correspomding Py values. In case of
Wi this value is clearly 1/2 attained when the probability of input character 0
is 1/2 and the other 1/2 probability is distributed arbitrarily on the other three
input characters. For W5 we can do better by giving probability 2/5 to input
character 0 and 1/5 to each of the other three input characters. This way the
probability of every output character will be only 2/5 < 1/2 Thus the zero-error
capacity with feedback for the first channel is log, 2 = 1 while for the second
channel it is log,(5/2) > 1.

2. Our second remark shows that if G is the distinguishability graph of some
channel, then its zero-error capacity with feedback is at least log, x 7 (G). More-
over, there exists a channel with this distinguishability graph whose capacity
is exactly log, xf(G). Let S*(G) denote the set of maximal (that is, non-
extendable, not necessarily largest) independent sets of G. It should be clear
from the definition of Py in Theorem 7 that if G¢ is isomorphic to G for some
channel C, then C has minimal zero-error capacity if E(H¢) = S*(G). Consider
this case. Put the probabilities attaining Py on the vertices and multiply all
of them by Po_l. Observe that the definition of Py ensures that now the total
probability on each independent set is at most 1, that is we obtained a fractional
clique. In fact, the definition of P, also guarantees that this is a maximal frac-
tional clique and its value is Py 1 Thus y +(G) =Py 1 and its logarithm is the
value of the zero-error capacity with feedback for our channel. Note that since
feedback cannot decrease the capacity (we could simply ignore it to simulate its
non-existence), the above argument gives a new proof for Cy(C) < x7(Ge).

14



Seventh lecture (September 27, 2022)

4 Lovasz theta number

Recall that for the Shannon capacity of the pentagon graph C5 our best bounds
so far give

5
V5 < Cor(Cs) = Canp(Cs) < 3

The equality in the middle here follows simply by the self-complementary prop-
erty of Cs. These bounds were already proven in Shannon’s 1956 paper [54].
The situation has changed only more than two decades later when Lovész pub-
lished his celebrated paper [39] in which the graph paraemeter in the title of this
section was introduced. He showed that this new parameter is also an upper
bound on Shannon capacity and its value for Cs happens to be v/5 proving the
sharpness of the lower bound.

At this point we have to warn the reader that the Lovasz theta number is
originally introduced in such a way that it bounds Canp from above and this
is adopted in most publications, see e.g., [29]. Exceptions also exist though,
e.g. the complementary definition is used in [40] and later an equivalent notion
was also introduced under the name vector chromatic number (or strict vector
chromatic number) by Karger, Motwani and Sudan [27]. (The equivalence is
proven e.g. in [42].) The complementary type definition is fitting better for our
discussion so we will use that. To distinguish it clearly from the more traditional
Lovész theta number, usually denoted by 9(G) we will use the notation J(G) and
so we have 9(G) = 9(G). With slight abuse of the terminology we will also refer
to this number as the Lovdsz theta number, but when we want to emphasize
that it is 9J(G) rather than 9(G) then we will use the term complementary
theta number or OR-theta number (as opposed to theta number or AND-theta
number).

Key to the definition is the orthonormal representation of a graph G. Originally
our definition would be an orthonormal representation of the complementary
graph. To avoid confusion we will call the representation we need an orthonor-
mal corepresentation.

Definition 9 An orthonormal corepresentation of a graph G is an attachment
of a d-dimensional unit length vector (for some arbitrary but fized d) v, to each
vertex a € V(Q) such that if we have xy € E(G) for some z,y € V(G) then we
must have vy, = 0.

Definition 10 The (complementary) Lovdsz theta number 9(G) is defined as
1

I(G) = min  min max ——,
{va:aeV(G)} ¢ aeV (@) (cvy)?
where the inner minimization is over all d-dimensional unit vectors c¢ while the
outer minimization is over all orthonormal corepresentations of the graph G.
The unit vector ¢ attaining the minimum in the inner minimization is called
the handle of the corresponding orthonormal corepresentation.

This seemingly not that simple definition gives a surprisingly well-behaving

parameter. We will prove that it satisfies the conditions in Lemma 1 therefore
it is also an upper bound on Cogr(G).
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Lemma 5 For any graph G we have

w(G) <I(G).

Proof. Let {v, : a € V(G)} be an optimal orthonormal corepresentation of G
with handle ¢ and @ C V(G) be a set of vertices that induces a largest clique
in G. Then by the Pythagorean theorem we can write

e 2o e e QL
1 c =z GEZQ(C’UG) = |Q|aé11vl(1é¥)(cva) 19(G)

Note that the first inequality follows from the Pythagorean theorem using the
fact that ¢ has unit length and the vectors {v, : a € Q} are pairwise orthogonal.
Multiplying by 9(G) we get

(G) = Q] = w(G)

as required. O

To prove submultiplictivity with respect to the OR-product we will use the
following identity stating which requires the next definition.

Definition 11 For two vectors u = (uy,...,Un) € R™ and v = (v1,...,v,) €
R™ we let

-— mn
o v = (U1V1, ULV2 . . ., UTVp, UV, U2V2, . . . , Um Uy ) € R™™.

Identity 8 For two vectors x,y € R™ and two others u,v € R" we always
have

(zou)(yov) = (zy)(uv).

Proof. Both sides are equal to (3"i"; z;yi) - (D oney urvy) . |

Lemma 6 For any two finite simple graphs F and G we have

I(F - G) < I(F)I(G).

Proof. Let uq,...,u, € R?, ¢ € R? and v,,...,v, € R*, h € R* be optimal
orthonormal corepresentations with corresponding handles for graphs F' and G,
respectively. We claim that in that case the vectors u; o v; € R¥* give an
orthonormal corepresentation of the graph F' - G. Indeed, if vertices (x,y) and
(z,t) form an edge in F - G, then we have either 2z € E(F) or yt € E(G) and
thus
(ug 0 vy)(u, 0vy) = (Ugu,)(vyvy) = 0.
The unit length criterion is also satisfied as

(’U/i o) ’Uj)2 = u?v? =1.

Similarly, ¢o h is a unit vector in R% since (coh)? = ¢h? =1 by our identity.

This means that the above corepresentation of F'- G with potential handle coh
provides an upper bound on ¢¥(F - G), thus

Q) < = (cu)2(hv;)?
) S e ) w0 0,7~ " (cun 2 (ko )?
1 _ _
= Inzax (C’u,i)Q In]aX (hvj)2 - 19(F)19(G)
as needed. -
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Theorem 9 For any finite simple graph G we have
Cor(G) < V(G).

Proof. By Lemmas 5 and 6 the statement immediately follows from Lemma 1.
O

Proposition 5

J(Cs) = V5.
Hints for the proof. By the inequalities
V5 < Cor(Cs) < 9(Cs)

it is enough to show an orthonormal corepresentation of C5 uy,...,us € R?
with potential handle ¢ € R? for some d that gives max; w = /5. To this
end consider an umbrella with five unit length ribs and a unit length handle
opened up to the position when ribs that are not next to each other become
orthogonal to each other. Note that this gives an orthonormal corepresentation
of C5 in R3. Using basic analytic geometry one can calculate that for this
representation any of the vectors u; belonging to a rib and the handle ¢ gives
1

U = V/5 proving the required inequality 9(Cs) < V/5. Since the reverse

inequality was already known, this implies 9(Cs) = v/5. m]
By the foregoing we already have

Corollary 10 (Lovész [39])
Cor(Cs) = V5.

Eighth lecture (October 4, 2022)

Below we state some more of the nice properties of the Lovasz theta number.
All these are proven in [39].

We have defined ¥(G) as a minimum above. It can also be defined as a maxi-
mum. First we show that the value to be maximized is always a lower bound.

Lemma 7 Let {u, : a € V(G)} be an orthonormal corepresentation of G,
{ve : a € V(GQ)} be an orthonormal corepresentation of G and ¢, h be any
vectors (of appropriate dimension for the following formula to make sense).
Then

Z (cuy)?(hvy)? < 2h2.
acV(G)

Proof. Since any two vertices are adjacent either in G or in G we have that
whenever a # b
(g 0va)(up 0 v5) = (Ugup)(vavp) =0,
while
(g 0v,) (g 0 v,) = uZv? = 1.
This means that the vectors u, o v, form an othonormal system implying that

c?h® = (coh)? > Z ((coh)(ug0v,))? = Z (cua)? (hva)?.

a€V(Q) a€eV(G)
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Theorem 11 If {v, :a € V(G)} is an orthonormal corepresentation of G and
h is a unit vector (of the same dimension) then

WG > > (hva).

acV(G)

Proof. Let {u, : a € V(G)} be an optimal orthonormal corepresentation of G
with handle ¢ and {v, : @ € V(G)} and h be as in the statement. Then by
Lemma 7 we have

1=c*h*> Z (cuy)*(hv,)? >

acV(G)
1
: 2 2 2
min (cu, hv,)” = —— hv,
e’ ¥ it = g 3
a a€eV(QG)
giving the statement. |

It turns out that if we maximize the lower bound in the above inequality then
we get equality, that is, 9(G) satisfies a minmax theorem. This we state below
without proof.

Theorem 12 (Lovész [39])

n

J(G) = max Z(hvj)z,

vy g€V (G)h =

where the mazimization is over all possible orthonormal corepresentations of the
complementary graph G of G and unit vectors (of the same dimension) h.

Note that, as minmax theorems in general, the above equality gives a so-called
“good characterization” of J(G), that is a way to convince someone easily about
its value once we figured it out and the representations that attain it. This is
because presenting an orthonormal corepresentation of G and an orthonormal
corepresentation of G that provide the same value as an upper and as a lower
bound on J(G), we can already be sure that they are optimal and give the right
value of ¥(G). Theorem 12 can also be used to prove that the inequality in
Lemma 6 is actually an equality, that is, 9(F - G) = J(F)9(Q).

Theorem 12 also has the following consequence.

Corollary 13 For any finite simple graph G we have

NG) < xs(G).

That is to say that ¥(G) is a better upper bound of Cor(G) than the fractional
chromatic number for any graph, not only the 5-cycle.

Proof. Let {v; € R? : i € V(G) be an orthonormal corepresentation of G
and h € R? a unit vector (for some d). Furthermore let A C V(G) be an
independent set in G, that is a clique in G. The latter implies that the vectors
in {v; : i € A} are pairwise orthogonal, therefore 1 = h* > S icalhv;)?.
This means that putting weight (hv;)? on vertex i for every i € V(G) gives a
fractional clique of G. Thus

n

X7 (G) = wi(G) > vj:jrgggc)th(hvj)Q =9(G).

O

Another nice property of J(G) shows that in fact, J(Cs) = /5 is just a special
case of a more general fact. This follows from the following theorem. To state
it we need the following definition.
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Definition 12 A graph G is called vertex-transitive if for all pairs of vertices u
and v one can give an automorphism (an isomorphism to itself) of G that maps
u to v.

Intuitively, the above means that all vertices ”look the same”, that is the graph
is highly symmetric. It is easy to see that Cy is vertex-transitive.

Theorem 14 (Lovész [39]) If G is a vertex-transitive graph on n vertices then

3(G)I(C) = n.

Corollary 15 If G is a vertez-transitive and self-complementary graph on n
vertices then

Cor(G) = 9(G) = Vn.

Proof. Let G be a graph as in the statement. Since it is self-complementary
we have J(G) = J(G). Since it is vertex-transitive Theorem 14 implies that
72(G) = 9(G)3(G) = n mplying Cor(G) < 9(G) = V.

The reverse inequality follows by observing that if G is self-complementary and
f:V(G) — V(G) is an isomorphism from G to G then the 2-length sequences of
vertices (v, f(v)) induce a clique of size n in G2. Since that implies w(G?") > n"
for every positive integer r, we get Cor(G) > v/n. a

Examples for self-complementary vertex-transitive graphs are the so-called Pay-
ley graphs (see https://en.wikipedia.org/wiki/Paley graph for their def-
inition and other details). In particular, the Payley graph on 17 vertices is a
graph with no clique or independent set of size larger than 3, thereby proving
that the Ramsey number R(4) > 18 which is actually a sharp lower bound.
Corollary 15 shows that its Shannon capacity (both AND and OR as it is self-
complementary) equals to v/17.

5 More on the fractional chromatic number

It is natural to ask how much can the fractional chromatic number and the
chromatic number differ. The first question is where to look for graphs that
may provide a large gap. Fortunately, one can find those graphs which are
guaranteed to attain the largest possible gap. Key to this is the following
notion.

Definition 13 A graph homomorphism from a graph F to a graph G is a map-
ping p: V(F) = V(G) that preserves edges that is for which

wv € E(F) = p(u)p(v) € E(G).

The existence of a homomorphism from F to G is denoted by F — G.

It is worth noting that a proper coloring of a graph G with n colors is equivalent
to a homomorphism of G to the complete graph K,,. So an alternative definition
of the chromatic number could be

X(G) =min{n: G — K, }.

This immediately implies the following.

Proposition 6
F—G=x(F)<x(G).

19



Proof. By the above observation we know that G — K, (g) and since the
composition of homomorphisms is also a homomorphism, we can write F —
G — K, (), that is, we also have ' — K, () which is equivalent to a proper
coloring of F' with x(G) colors. a

We will see that just like the chromatic number, the fractional chromatic number
can also be defined via graph homomorphisms. To see that we first consider
another alternative definition that can be given via so-called b-fold colorings.

Definition 14 For a positive integer b a b-fold coloring of a graph G is an
attachment of b distinct colors to each vertex such that adjacent vertices get
disjoint sets of colors. The minimum number of colors needed for this is the
b-fold chromatic number x;(G).

A b-fold coloring is easy to turn to a fractional coloring: just attach weight %
to every independent set that is a color class in your b-fold coloring. (Note that
you may use two different colors on exactly the same vertices. Then the two
color classes coincide and the corresponding independent set gets the weight %
twice. Or several times if there are other color classes that are the same.)

It is also easy to see that a fractional coloring with all weights rational can also
be turned into a b-fold coloring for some appropriate b. Since irrationals can
arbitrarily well be approximated by rationals, this leads to the fact that

xo(G)
b b

xs(G) = inf
where again we can write min in place of inf.

Generalizing that a proper coloring is equivalent to a graph homomorphism to
a complete graph, one can observe that a b-fold coloring of a graph G using a
colors is equivalent to a homomorphism to a special target graph called Kneser
graph KG(a, b).

Definition 15 For positive integers n > 2k the Kneser graph KG(n, k) is de-
fined by

V(KG(n, k) = ([ZD

and
E(KG(n,k))={AB: A,B¢c ([Z})A N B = 0}.
Thus we get that
xf(6) = inf {21 G > KG(a,b) ]

where again, we can write min in place of inf.

Kneser graphs form a very interesting family of graphs. They are not yet that
exciting for n = 2k in which case they consist of only several independent edges
and for k£ = 1 when we have KG(n,1) = K,,. So the first interesting case is
KG(5,2) that turns out to be isomorphic to the famous Petersen graph—a fact
that already suggests that this family has some interesting properties.
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Ninth lecture (October 7, 2022)

The FIRST HOMEWORK WAS HANDED OUT TODAY, the problem sheet
is also POSSIBLE TO DOWNLOAD FROM THE WEBSITE.

One of the most famous facts about Kneser graphs is the Lovasz-Kneser theorem
that gives their chromatic number.

Theorem 16 (Lovész-Kneser theorem [38])

X(KG(n,k)) =n — 2k + 2.

The above statement was conjectured by Kneser [28] who observed that a color-
ing with n — 2k + 2 colors is possible. The truth of this conjecture was proven by
Lovéasz more than two decades later in his celebrated paper [38] that is widely
considered to be the starting point of a new branch of combinatorics called
topological combinatorics. In fact, a very surprising feature of the proof was
that it used what is called the Borsuk-Ulam theorem, a famous result in another
branch of mathematics called algebraic topology. Several other combinatorial
results were found later using similar tools, the book [44] is a very well-written
witness of that.

(The Lovész-Kneser theorem appears with proof in the course Graphs, hyper-
graphs and their applications therefore here we do not prove it. Nevertheless,
the interested reader who did not take that course is encouraged to try to find
a proper coloring of KG(n, k) with n — 2k + 2 colors.)

What is said above shows that if we have a graph G with a large gap between
its chromatic number and fractional chromatic number, then there must exist
a Kneser graph for which this gap is at least as large as for G. This is because
if xy(G) = % then there is some Kneser graph KG(n, k) for which we have
G — KG(n,k) and § = £ > xy(KG(n, k)) where the latter inequality follows
from the fact that ' — KG(n,k) already implies x;(F) < # and KG(n, k)
obviously admits a homomorphism to itself. So we have x¢(G) > x¢(KG(n, k)),
while x(G) < x(KG(n, k)) follows from Proposition 6.

By the above discussion we can already see how large the gap between the
fractional and the ordinary chromatic number can be. We see that the largest
possible gap can be attained for Kneser graphs and we also see that this gap is
unbounded in a very strong sense: If 7 is set to be any constant that is larger
than 2 then n — 2k + 2 already goes to infinity as n and &k grow. So for KG(n, k)
with 7 = 2+¢ for some € > 0 and n — 2k +2 larger than any prescribed number
N we have xf(KG(n,k)) <2+ ¢ and x(KG(n,k) > N.

Below we show that we actually have x ;(KG(n, k)) = %. That will also need to
accept the truth of the following famous theorem (also appearing in the course
about hypergraphs mentioned above).

Theorem 17 (Erdés-Ko-Rado theorem [16]) If n > 2k and A is a family of
pairwise intersecting k-element subsets of an n-element set then

n—1
IAlg(k_l).

Equality holds if and only if A consists of all the k-element sets containing a
fized element of the n-element set.
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Note that the above theorem is equivalent to saying that
n—1
K k)) = .
(kG k) = (17 })

Recall that a graph G is called vertex-transitive if for all pairs of vertices u and
v one can give an automorphism of G that maps u to v. Note that Kneser
graphs are obviously vertex-transitive because any of its vertices can be put to
another one by an automorphism generated by permuting the elements of the
basic n-element set in the definition of the Kneser graph at hand.

Before stating a general result about the fractional chromatic number of vertex-
transitive graphs we prove the following statement that is true for all graphs.
Proposition 7 For any finite simple graph G

V(G|
a(@)

xf(G) >
holds.

Proof. Giving weight ﬁ to every vertex no independent set gets more weight

than 1, so this is a fractional clique with total weight ‘Z((g)) |, Thus

V(G|
a(G)

Xf(G) =wp(G) >

Theorem 18 If G is vertez-transitive, then

_ V(@)
xf(G) = Ok

Proof. We have already seen in Proposition 7 that

V(&)

xf(G) = (G)

for any graph G.

Now we prove that for vertex-transitive graphs the reverse inequality also holds.
If G is vertex-transitive, then all vertices are contained in the same number
of maximum independent sets. Call this number ¢ and give every maximum
independent set (that is those of size a(G)) weight . By the definition of ¢
this is a fractional colouring: all vertices get total weight t% = 1. If the number
of maximum independent sets is ¢ then we distributed altogether K% = % total
weight, thus this is an upper bound on x;(G). Now we show that this upper

bound is equal to ‘Z((g)) L.

To this end we calculate the number of pairs (v, A) where A is an independent
set of size a(G) and v € A. We have £ such A each containing «(G) vertices, so
the number of such pairs is fo(G). On the other hand, we have |V (G)| vertices
and each is contained in ¢ independent sets of size a(G), so the number of such
pairs is |V(G)|t. Thus

ta(G) = [V(G)It,

that is we obtained

t_ V(G
G)<-= .
Xf( ) < P Oz(G)
By the two inequalities above the statement x;(G) = ‘Z((g))‘ follows. a
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Corollary 19 For every n > 2k we have

X (KG(n, k) = T

Proof. Since KG(n, k) is vertex-transitive we have

X (KG(n, k) = e

by Theorem 18 and the Erdés-Ko-Rado theorem. O

The above discussion shows that it is not possible to bound the chromatic num-
ber from above in terms of the fractional chromatic number. If, however, we
also take into account the value of the independence number, then the situation
changes. In particular, we are going to prove the following theorem that will be
very useful later.

Theorem 20
x(G) < x¢(G)1+1Ina(G)).

We will prove Theorem 20 in a more general form. Let H be a hypergraph. A
fractional covering of the edges of H is a function f: V(H) — Ry o such that for
every edge ' € E(H) we have ), . f(v) > 1. The fractional covering number
is the minimum possible value of ZUGV( ) f(v) over all fractional coverings
f. Note that if given a graph G we define Hg to be the hypergraph with
V(H) = S(G), i.e., the vertices of H are the independent sets of G and each edge
E = E, of H belongs to a vertex « € V(G) such that E, = {A € S(G) : x € A}
then 7¢(Hg) = xy(G) by definition. If we denote the covering number, the
minimum number of vertices covering (or pinning) every edge of H by 7(H),
then we can also see that 7(Hg) = x(G). Observe also that a(G) = A(Hg),
the maximum degree of Hg. So Theorem 20 will follow from the following more
general result.

Theorem 21 (Lovész [37])

T(H) <71r(H)(1+InA(H)).

To prove this theorem observe that just like the fractional chromatic number,
7¢(H) is also the solution of a linear program. Its dual program defines the
fractional matching number v,(H) as follows. A fractional matching of hyper-
graph H is a weighting w: E(H) — R4 of the edges of H such that for any
x € V(H) we have ) o w(E) < 1. Then

where the supremum (which, as usually, can be replaced by a maximum) is
taken over all fractional matchings of H. Thus by the duality theorem of linear
programming we have

Let v;(H) denote the largest number of (not necessarily distinct) edges in H
the union of which covers every vertex at most ¢ times. (Note that v1(H) is the
usual matching number of the hypergraph H.) Then clearly

Vi(H)

7

vi(H) >
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that can be seen by giving weight % to every edge in an i-fold matching. Let
V;(H) denote the largest number of distinct edges in H that cover every vertex

at most ¢ times. Obviously ;(H) < v;(H) and therefore v;(H) > @ holds,
too. To prove Theorem 21 we need the following lemma.

Lemma 8

?

T2 T o Tt

oy < D et paa(H) | va(H)
- 1

where d = A(H) is the mazimum degree of H.

Proof. To bound 7(H) from above we prepare a set of vertices pinning all edges
in a greedy way: first we choose a vertex that pins the largest number of edges,
that is, it has maximum degree, then a next vertex which has maximum degree
in the hypergraph remaining if we remove the already pinned edges, etc. This is
continued until all edges are pinned. Let ¢; denote the number of steps in which
we choose a vertex pinning exactly 7 edges that were not yet pinned in the earlier
steps and let t =t45 +tq_1 + ...t1 be the total number of vertices selected this
way. (Note that some of the ¢;’s may be zero.) Let H; denote the hypergraph
we have after deleting the edges already pinned in the first ¢4+ ...+ ;11 steps.
Then we have A(H;) < i (since no more vertices can pin at least ¢ + 1 edges)
and E(H;) = it; + (i — 1)t;—1 + ... + 2t2 + t; (since exactly that many edges
will be pinned in the remaining steps). By A(H;) < i we can also say that
v;(H) > |E(H;)|. Therefore we can write

U; >ty 4. 2t + 1

for every ¢ € {1,...,d}. Divide these inequalities by i(i+1) fori =1,...,d—1
and with d for ¢ = d to obtain
Ui > t; (Z — 1)ti,1 o 2to 4 t
i(i+1) " i+1 i+ 1) Gt TGt

fori=1,2,...d—1 and

Vg (d—1D)tg—1 2ty 1y
— >t —_— 4.+ — + =
g = + P + + P + d

for i = d. Adding all these inequalities the coefficient of ¢; on the right hand

side becomes

N 1 1 1
Z<z'(z‘+1)+(z‘+1)(i+2)+"'+(d—1)d+d>

(o 1 L1y,
G i i iv2d—1 dtd) "
Note that this is so also for ¢ = d, so the sum of the right hand sides is just

tq+tg—1+...+t1 =t while the sum of the left hand sides is just the right hand
side in the statement of the lemma. So using 7(H) <t the result follows. O.

Proof of Theorem 21. If we substitute the inequality @ < vy¢(H) for every i

in the statement of Lemma 8 and then use 7;(H) = v¢(H) then we obtain

T(H)STf(H)(;+;+...+Cli+l).

Using the well-known fact that

IN

1+1Ind

ISH

1
14+ +...
+g et
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we obtain

T(H) < 14(H)(1+1nd)

which is just the statement of the theorem we had to prove. O

Using the above theorem we will be able to prove the followimg result.

Theorem 22 (McEliece-Posner theorem [45])

lim {/X(G") = x;(G).

t—o00

Tenth lecture (October 11, 2022)

First we prove the McEliece—Posner theorem.

Proof. Note that by xf(F - G) = xf(F)xs(G) we have x¢(G") = [xs(G)]" and
thus
Jim /X (G) = lim /xp(G) = lim (/[xp (G)] = x4 (G).

To prove the reverse inequality we use Theorem 20 and the easy fact that
a(G") = [a(G@)]". By these we can write

lim {/x(G%) < lim {/x;(G*)(1+Ina(GY)) =

t—o00

lim /[ (G)]1(1 + nfa(G)]Y) = x(G) lim +/(1+ thna(G)) = x/(G).

t—o0

6 Witsenhausen rate

Consider the following communication problem that was considered generally
by Witsenhausen [56], while the following example follows the idea of Alon and
Orlitsky [4] (this example is also quoted in [53]).

Alice and Bob teach in a school attended by 250 pupils. Every afternoon the
students form two teams of 100 participants each that will play some game in
which two teams are the rivals of each other, e.g., they play “Capture the Flag”.
The other 50 just watch the game and the selection of the two teams and the
audience is varying from day to day. Bob is the teacher with the students at the
beginning of each afternoon when they form the two teams and start playing.
But he leaves earlier than the end of the game and he does not know who is the
winner. Alice is the gym teacher and later in the day she learns which students
were in the winning team but she does not know who were members of the other
one. The task is that Alice communicates this knowledge (the winning team)
to Bob in a shortest possible message.

Observe that the abstract model of the above situation is that Bob knows an

edge of the Kneser graph KG(n, k) and needs to learn one of the endpoints of
this edge (the “winner”). Alice knows this endpoint but she does not know the
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other end of the edge Bob knows. So, Alice knows a message to transfer that can
be any one out of (fgg) possible messages. But she need not use log, @38) bits
for the communication because she knows that Bob has some extra information
(called side-information), which is an edge containing the vertex she knows. If
she knew exactly which edge Bob knows, she could send just 1 bit. She does
not know this, but she can still use the fact that Bob knows two vertices that
are adjacent, so at least she did not need to send a different message for non-
adjacent vertices. Thus the best she can do to communicate the result of an
afternoon game is to send the shortest message with which she can encode a set
of independent vertices such that the independent sets belonging to all possible
messages cover every vertex. This means that these independent sets form a
proper coloring of the graph, so the minimum number of different messages
needed is just the chromatic number which is x(KG(250,100)) = 52, so the

nuber of bits to communicate is [log, 52] = 6 each afternoon.

We soon come back to this example but let us first formulate the general prob-
lem. A source emits one message of a set X of M possible messages every day
(or: in every time slot) that we have to encode so that it should be possible
to decode it without error. Under this condition we want it to be compressed
as much as possible, that is, use the shortest possible encoding. We also know
that the decoder will have some side-information. The exact side-information
is not known to us but we know at least a set ) of the possible pieces of side-
information and we also know which pairs (z,y) of z € X,y € ) can appear
together with positive probability. The question is the minimum length of the
message we have to send.

The general model of the situation is this: we can consider a graph G with
vertex set V(G) := X and edge set

E(G) := {{z,2'} : Jy € ¥ Prob(z,y)Prob(a’,y) > 0}.

The question is how many bits we should communicate in one message. It is
clear that in case we have to communicate only one outcome at a time, then
the answer is [log x(G)]. (We use the convention that if not stated otherwise,
then log always means log, in our information theoretic context.) But the ques-
tion arises, as in most communication problems in information theory: What
happens if we are allowed to communicate several outcomes of the source to-
gether? Can we gain with that possibility in terms of the length of messages
per outcome? And as in many similar situations, the answer is yes.

Now we formulate the graph theory model belonging to the last questions. If we
have ¢ outcomes of the source we have to communicate together then a message
can be considered as a t-length sequence (z1,...,2¢) formed by the possible
individual messages. And we have to send such a message which can distinguish
two outcomes in case they may have the same sequence of side-information
(y1,-..,y:) that comes with it at the decoding side. This means exactly that
we have to encode a vertex of the AND power graph G”! in such a way that
adjacent vertices of this graph should be encoded by different codewords. Then
the minimum length of binary codewords we should send is [log x(G**)] that,
as we will see, can be shorter than t[log x(G)]. In fact, we are interested in the
normalized asymptotic value of this length.

Definition 16 The logarithmic Witsenhausen rate of a graph G is defined to
be

.1 At
r(G) = tlirgo n log x(G™").
In combinatorial investigations we usually use the non-logarithmic version

R(G) = lim /x(G™).
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Note that the information theoretic content would suggest to write liminf in
the above definitions but it is easy to see (again by Fekete’s Lemma as in the
case of graph capacities) that the limits exist. Also note the obvious fact, that
r(G) =log R(G).

Let us return now to our example with Alice, Bob and the Capture the Flag
game at their school. We have seen that if Alice is obliged to communicate her
information day-by-day then during ¢ days she will need 6¢ bits. What happens
if she is allowed to tell the results of many days together? In the asymptotics
she will need t-r(KG(250,100)) bits and that is significantly fewer. To see this,
it is enough to bear in mind that G C G' and therefore x(G"') < x(G") which
implies

1 o L N
r(G) < lim ~logx(G7) = log lim /x(G*) = log xs(G)

by the McEliece-Posner theorem. Since xr(KG(250,100)) = 233 = 2.5, Alice

needs no more that tlog 2.5 &~ 1.322t bits instead of 6¢ in this case.

6.1 General properties of the Witsenhausen rate

As we have already seen above
R(G) < x¢(G)

always holds. This already implies that R(G) < log x(G), too. We also obvi-
ously have R(G) > w(G) by x(G") > w(G") = [w(G)]¢, therefore x(G) = w(G)
(in particular, if the graph is perfect) implies that in that case R(G) coincides
with this common value (just like Cor(G) does in that case.)

The smallest imperfect graph, Cs was also considered by Witsenhausen and he
showed that C£2? can be properly colored by 5 independent sets that implies
R(C5) < /5, since R(G) < {/x(G") holds for every positive integer ¢. (The
proof is similar to that of Cor(G) > /w(G?) using x(G"*) < [x(G)]! in place
of w(G") > [w(G)]'.) Lovész’s result about the Shannon capacity of C5 also
determined the exact value of R(C5) via the folowing more general fact.

Lemma 9 V(@)
G2 Con@y

Proof. By the general fact x(F) > ”;((75))' applied to Gt (and denoting |V (G)]

by n) we can write

—
Q
>
~+
=

Corollary 23

R(C5) = V5.

Proof. R(Cs) > /5 follows from the above theorem and Cor(Cs) = /5. The
reverse inequality follows from the observation that x(C%?) < 5 that was already
shown by Witsenhausen [56] by providing 5 independent sets in C£? covering
all 25 vertices of V(C2%?). Note that in such a construction all the independent
sets should be 5-vertex cliques of the second OR-product of the complementary
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Cs, so the construction shows strong similarities with Shannon’s construction
that proved Cor(Cs) > v/5. It is a little more involved in the sense that it
should give 5 disjoint such cliques the union of which is the whole vertex set of
C2. Labelling the vertices of our Cs by 0,1,2,3,4 so that ij is an edge if and
only if |i — j| =1 (mod 5) the construction is as follows (each A; is a color
class).

Ay = {00,12,24,31,43}, A, = {11,23,30,42,04}, As = {22,34,41,03,10},
Ag = {33,40,02,14,21}, As = {44,01,13,20,32}.
O

As a generalization of the Erdés-Ko-Rado theorem Lovdsz proved in [39] that
YKG(n, k) = (Zj) which gives that all the inequalities in

(Z: i) = w(KG(n, k)) < Cor(KG(n, k)) < 9(KG(n, k)) = <Z: D

are equalities. This implies by the previous lemma that

R(KG(n, k)) = (Sﬁ)l) = = = s (KG(n, b)).
k—1

In particular, in the story of Alice and Bob, the upper bound we gave on
R(KG(250,100)) was sharp.

Eleventh lecture (October 14, 2022)

7 Shannon capacity and Ramsey numbers

We know that the chromatic number of a graph can be arbitrarily large even
if the graph contains no triangle. One of the best-known constructions proving
this is that of Mycielski graphs. Triangle-free Kneser graphs also can have
arbitrarily large chromatic number but their fractional chromatic number is
bounded, it is always less than 3. Nevertheless a similar result is true for the
fractional chromatic number, in fact, the fractional chromatic number of the
series of Mycielski graphs is known to tend to infinity by the following cute
result that we state below. Recall that the Mycielski construction is an iterative
construction that creates a graph M(G) from any graph G with the properties
that w(M(G)) = w(G) and x(M(G)) = x(G) + 1.

Theorem 24 (Larsen—Propp—Ullman [34]) For any finite simple graph G

xr(M(G)) = x(G) + )

holds.

It is also known that there are triangle-free graphs with arbitrarily large value of
their J-function, see e.g. [2]. It is a very natural question, and here the answer
is not known, whether the Shannon OR-capacity of a triangle-free graph can
also be arbitrarily large or it is bounded. Below we will show that this is closely
related (in fact, equivalent) to a very famous problem of Erdés that at first look
seems very different.
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Recall that the Ramsey number R(ky,..., k) denotes the smallest integer N
for which if we color the edges of K with m colors then a monochromatic Ky,
must occur in the i*® color for some i € {1,...,m}. Ramsey’s theorem states
that R(k1,..., k) is finite for all possible choices of the parameters.

Our question above is about triangle-free graphs, basically we want to know
how the clique number of their OR-powers can grow. First we look at a more
general question: how large can the clique number be in the m-fold OR-product
of graphs G, ..., G,, if we have some given upper bound for the clique number
of all these graphs. This is answered by the following result.

Theorem 25 (Erdés-McEliece-Taylor [17]) Let Gy, ..., Gy, be graphs with w(G;) <
k; for everyi € {1,...,m}. Then

w(Gl-Gg~...-Gm)§R(k‘1+1,k:2+1,...,k:m+1)—1.

Moreover, this bound is sharp in the sense that there exist graphs Gi,...,Gpm
for which w(G;) < k; holds for every i while

W(GlGQGm):R(k1+17k2+1,7km+1)71

Proof. Let Gy,...,Gyy, satisfy Vi w(G;) < k; and let Q CV(Gy) X ... x V(Gp)
induce a largest clique in Gy -...-G,,. We define an edge coloring c of the edges
of this clique. For an edge between « = (z1,...,%,,) and y = (y1,...,Ym) € Q
let ¢(zy) be defined as the minimum 4 for which z;y; € E(G;). Note that since
@ induces a clique, such an i exists by the definition of the OR-product. Let H;
denote the graph with vertex set () containing the edges colored with ¢ by the
above rule. It is not hard to see that H; is isomorphic to a “blown up” version
of G; that one obtains by substituting independent sets (possibly of size 0) into
the vertices of G;. In particular w(H;) < w(G;) (a clique of size r in H; requires
r pairwise adjacent vertices of G;). This means that we could edge-color the
clique of the product graph induced by @ with m colors so that the largest
monochromatic clique in the i*" color has size at most w(G;) = k;. This proves
that |Q| < R(k1 4+ 1, ko +1,...  kp +1) — 1.

To prove the second statement consider a complete graph on N = R(ky +
1,ko+1,...,kpn + 1) — 1 vertices with an m-edge-coloring containing no clique
of size k; + 1 monochromatic in the i*" color for any i. By the definition of
R(ky + 1,ka +1,...,ky + 1) such an edge-coloring of Ky exists. Let G; be
defined as the graph spanned by the edges of color ¢ for i = 1,...,m. These
graphs satisfy the requirement w(G;) < k; for every i. In their OR-product the
vertices given by the m-tuples of m identical vertices give a clique of size IV,
since any two vertices are adjacent in one of the m graphs. O

With a little more consideration we can see that if all k; values are the same,
that is, k; = ... = k,, =: k, then we can choose all graphs being the same, i.e.,
G1 =...=G,, =: G in the second part of the statement of Theorem 25. Indeed,
in this case taking G as the vertex-disjoint union of the m graphs defined in the
proof will do the job.

The last paragraph thus gives that the maximum possible value of w(G?) when
G is triangle-free is equal to R(3;t) := R(3,3,...,3) where ¢ denotes the number
of 3’s in the argument of R(.). Thus the largest possible value of Cor(G) when
G is triangle-free is equal to lim; o, v/ R(3;t). It is a famous and still open
problem of Erdés what the value of this limit is. In particular, he offered $ 250
for its determination and $ 100 for deciding whether it is finite or infinite, cf.
[47] and see also the lecture by Noga Alon [3] between 46:58 and 48:32.
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Twelfth lecture (October 18, 2022)

8 Types, typical sequences and asymptotic graph
parameters within a given distribution

The following notions and statements are discussed in more detail in the book
by Csiszér and Korner [11], most of what is written in this section follows the
discussion there.

Definition 17 The type of a sequence © = (x1,...,1;) € Xt is the probability
distribution P over X expressing the relative frequency of the elements of X in
x, i.e., for which

Pla) = [{i : ;Eit: a}|
for every a € X.

Definition 18 Given a probability distribution P on the finite set X we say
that a sequence © € X is (P, e)-typical for some € > 0 if

{i: @i =a}|

t

VYa e X — P(a)| <e.

One of the main properties of (P, ¢)-typical sequences is that if the probability
of a t-length sequence © = 7 ...x; is defined as

P(a) = IT'_, P(x,)

then asymptotically the probability of the set of (P,¢e)-typical sequences tends
to 1. (The probability of a set of sequences is meant to be the sum of the
probabilities of the sequences in the set.)

It will also be important for us that the number of possible types of t-length
sequences is only polynomial in ¢ as expressed by the following easy lemma.

Lemma 10 (Type Counting Lemma [11]) The number of different types of t-
length sequences over an alphabet X of size n is less than (t + 1)™.

Proof. The number of appearances of a given letter a € X in a sequence & € X
is one of the numbers 0,1,...,¢. So even if we could choose these numbers
independently for every a € X (that we clearly cannot, as the number of ap-
pearances of all letters should add up to t) we would have (¢ 4+ 1) independent
choices n times giving the upper bound (¢ 4 1)™. O

Note that the upper bound proved in the previous lemma is indeed only poly-
nomial in t. It is exponential in n, but in most of our investigations this n, the
size of our alphabet, is a constant. As a first application of the Type Counting
Lemma we show that the entropy of a probability distribution P is just the
asymptotic exponent of the number of sequences having the given type P.

Notation: The set of t-length sequences of type P is denoted by Th. The set of
(P, e)-typical t-length sequences will be denoted by T[tp]s.
The entropy of the probability distribution P = (p1,...,py) is

- 1
H(P) := Zpi log o
i=1 v
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Lemma 11 For every type P of sequences in Xt we have
(t+1)"|¥ItHP) < 7| < tH(P),

In particular,

. 1

kli)ngo o log |Tr| = H(P).

(Note that the role of k above is only to avoid the problem that could be caused
by Tf; = () for those lengths £ on which P cannot be the exact type of a sequence.)

Proof. The probability of a sequence x of type P according to the product
distribution coming from P is
P!(z) = TT}_, P(x;) = Maex[P(a)]"7@ = 271H7).
Since
1> PUT}) = [Th|P'(2) = [Th|2~H ()

for some & € T} this already implies

To prove the lower bound it is enough to show that if @ is any probability
distribution on &’ that can be the type of a sequence of length ¢ then P*(Tf)) <
PY(T), therefore |T5[27HH(P) > (tTl)M’\ implying the lower bound. This follows
by writing

! a
PATY) o oafigra Heex [P(a)] 9 [tP(a)]!

:Ha)(
PUTH) ~ r—tpalaex[P@] 7@ — Y Qa)]!

P(a)!Q@)=P(a))

from which applying the inequality

n! _
m! —
we can continue by
t it
P (TQ) < [tp(a)}!P(a)t(Q(a)—P(a)) <

Pi(rh) = S Q) =

e [tP(a)){(P@)=Q@) p(q)HQ@)—P(@) _ 11, (Pa)=Q(a) _ .

The second statement is an immediate consequence of the first one and the easy
fact that lim;_, o ﬁ log(t+1) =0. O

Thirteenth lecture (October 21, 2022)

Now we introduce Shannon OR-capacity within a given distribution P that
will be denoted by Cor(G, P). The idea is that when we look at w(G') in
the definition of Cor(G) we could also restrict attention to w(G*[Th]) for some
distribution P that is realizable as a type of sequences of length t. (Why this
will be useful, we will see later.) Since not every distribution is realizable on a
given length (or if there are irrational values among the P(a) probabilities then
on no finite length) we will actually look at w(G* [T[tp]s]) considering the lim sup
as t goes to infinity and then let € tend to 0.
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Definition 19 The Shannon OR-capacity of graph G within distribution P is

defined as
— 1 : + t t
Cor(G, P) = cpmohmt sup ¢/w(G*[1 [P]ED.

An important consequence of the Type Counting Lemma is the following.

Proposition 8
Cor(G) = max Cor(G, P).

Sketch of proof. Let P; denote the set of probability distributions that can be
the type of a sequence of length ¢. By the Type Counting Lemma we can write

W(G) < (¢4 )V e (G Ty )

Thus
Cor(G)

lim w(G?) <

- t—o00

lim sup \t/(t + 1)\‘/\ max w(Gt[T[tP]O]) = lim sup \t/max W(Gt[T[tp]OD'

t—00 PePy t—00 PeP,

Accepting the at least intuitively clear statement that maXpeptw(Gt[T[tp]o])
can be assumed to be taken by a sequence of distributions tending to a limiting
distribution P we obtain the statement of the Proposition. O

Notice that a “within a distribution” version of many other graph parameters
can be introduced in a similar manner and an analog of Proposition 8 will also
be true in those other cases. For example, we can speak about the Witsenhausen
rate within a distribution P that will be

R(G, P) := Ly limsup {/ (G [T ]

R(G) = max R(G, P).

and we will have

The usefulness of these within a distribution parameters lies in the fact that the
graphs G' [T[tp]o] are vertex-transitive. This is obviously so as the vertices are
t-length sequences in V! that are just permutations of each other. Since any
permutation of the coordinates induces an automorphism of G* and any vertex
of Gt [T[tp ,J can be mapped to any other vertex of G* [T[tP]O] by a permutattion,
this graph is indeed vertex-transitive. But that means that for example

V(G [T DI VG [T DI

G o) = e, T T @ )

Using also that
X(CM[Tpy, ) < X (G [Tpy D1+ I a(GN[Tp, )
and taking t*® root and limits one gets that
R(G,P)-Cor(G, P) =21®

holds for every P. This immediately implies for example Lemma 9. We get only
an inequality there because we cannot be sure that R(G, P) and Cor (G, P) will
be maximized by the same P. But if, for example, the graph is vertex-transitive,
implying that the uniform distribution should achieve both maxima, we obtain
that we should have equality. This, in particular, implies Corollary 23.
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If the above thoughts are applied to the OR-product instead of the AND-
product, then we obtain an inequality which—by the McEliece-Posner theorem
and the easy fact that lim; o v/a(G?) = a(G) simply by the multiplicativity
of a(G) under the OR-product—could be written as

X7 (G, P)-a(G, P) =21,

In the next section we sill see that what we temporarily denoted here as x r(G, P)
is actually an interesting notion.

9 Graph Entropy

Graph entropy was introduced by Jdnos Korner in [30]. The forthcoming lec-
tures will largely follow the discussion in the survey paper [55]. In those cases
we will simply refer to the corresponding part of [55], the details can be read
directly from there (see a link on the course website).

9.1 Different formulas for graph entropy

The information theoretic motivation for introducing graph entropy is discussed
in Section 2 of [55]. This leads to the definition we also repeat here.

Definition 20

— 1 : 1 t
H(G, P) = lim veve BB log x(G*[U]) (1)

where PY(U) = >, ., P'(x).

xeU

In the light of the remark given in the paragraph following Definition 18 we can
see that H(G, P) is just the logarithmic version of what we denoted by x (G, P)
at the end of the previous section. And thus we can write

H(G, P) = H(P) — log a(G, P).

The definition of mutual information is given as Definition 2.3 in [55] that we
quote here.

Definition 21 Let X and Y be two discrete random variables taking their val-
ues on some (possibly different) finite sets and consider the random variable
formed by the pair (X,Y). The functional

I(XAY)=H(X)+H(Y) - H(X,Y))

18 called the mutual information of the variables X and Y.

The main result of [30] (apart from the very idea of introducing H(G, P)) is
the theorem expressing the equivalence of the above definition of graph entropy
with the following expression that is given in Definition 1.2”.

Theorem 26 (Korner [30])
H(G,P)=min (X AY) 2)

where the minimization is over pairs of random wvariables (X,Y) having the
following properties. The variable X is taking its values on the vertices of G,
while Y on the stable sets of G and their joint distribution is such that X € Y
with probability 1. Furthermore, the marginal distribution of X on V(G) is
identical to the given distribution P.
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Fourteenth lecture (October 25, 2022)

By what is said above, Theorem 26 is proved if one shows that the following
equality holds.

log a(G, P) = H(X,Y)— H(Y), (3)

max
Px=P,XeYeS(G)
where the maximization is over pairs of random variables (X,Y) having the
following properties. The variable X is taking its values on the vertices of G,
while Y on the independent sets of G and their joint distribution is such that
X € Y with probability 1. Furthermore, the marginal distribution of X on
V(G) is identical to the given distribution P. (Note that the last conditions are
just those already said in Theorem 26.)

Sketch of proof. Let P, — P be a sequences of probability distributions con-
verging to P such that P; is realizable as a type of ¢-length sequences. Then an
independent set in G* [T[tPt]o] is given by a set of t-length sequences of vertices
of G whose type is P, and at every coordinate all vertices in the sequences be-
long to the same independent set A € S(G). Thus these sequences also define
a sequence of the independent sets, let A; denote the one belonging to coordi-
nate i. Therefore we can also think about these sequences as sequences of pairs
(x4, A;) where A; is the same for all coordinates within an independent set of
G! [T[tPt]o]' Consider now all possible ¢-length sequences of pairs (x;, A;) with
xz; € V(G),A; € S(G),z; € A;. Each of these sequences have a type that is a
distribution on V(G) x S(G). We know that for all our sequences the “marginal
type” of their x; part is P; since we started with sequences that are vertices of
G* [T[tpt ,J. Yet the type of the sequences formed by the pairs (z;, 4;) need not
all be tLe same, since the “marginal type” of the A; parts may differ. However,
in one independent set of G* [T[tPf,]o] this will also be fixed as the A;-sequence
must be constant there. What we are trying to do is to choose this fixed joint
type so that our independent set is as large as possible. To this end we now
also fix a joint type W; and calculate the size of our independent set assuming
that this is the actual joint type for our independent set. Then we will get an
expression for this size in terms of the fixed joint type and then maximize over
all possible choices. So let us see the calculation.

Once W; is fixed the asymptotic exponent of the number of sequences of our
pairs (x;, A;) is H(W;), that is, their number is 27 (Wi)+e()  Then the “marginal
type” Qq of the A; part of our sequences is already given by

Qu(A)= > Wiz, A)

zeV(G)

and the number of different sequences we have if considering only the A; part
of our sequences is 2¢7(@)+o()  (We may imagine a matrix whose rows are in-
dexed by the P;-type t-length sequences of the x;’s, the columns by the Q;-type
sequences of the A;’s and every entry is either empty—in case for the corre-
sponding z;-sequence and A;-sequence z; ¢ A; for some i—or contains a unique
sequence of (z;, A;) pairs, the one determined by the row and the column of
this entry. Then the number of non-empty entries will be the same for every
column. Similarly, the number of non-empty entries will be the same for every
row.) So we have 2t (W)+o(t) sequences of pairs (z;, A;) and they can be parti-
tioned into 2tH(Q)+o(t) partition classes according to their subsequences given
by their A; components. (Such a partition class belongs to a column of the ma-
trix mentioned above.) These partition classes have the same size because they
can be permuted into each other (as each A appears together with a given z the
same number of times that is given by tW;(x, A) ). Since for an independent set
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we need to have the A;-part fixed, what we are interested in is the number of
sequences in one partition class. Since those have the same size, this is simply
the ratio of the number of all sequences and the number of partition classes,
ie.,

2tH(Wt)+o(t)

ot (H(Wy)—H(Q¢))+o(t)
2tH(Qt)+0(t) '

Ignoring the o(t) term that will disappear when taking the accordingly normal-
ized limit, we get that the logarithm of the maximum asymptotic size of an
independent set is indeed

log a(G, P) = H(X,Y) - H(Y
oga(G,P) = max  oHXY)-H{Y)

where the maximization is under the conditions said above. Putting this into the
already stated equality H(G, P) = H(P) —log (G, P) and using that H(P) =
H(Px) was one of our conditions for the above maximization, we get that

H(G,P)=H(P)—-loga(G,P) =

min HX)+HY)-HX,)Y)=
Px=P,XeY€eS(G)

min I(X AY)
Px=P,XeY€S(G)

as stated. O

More than two decades after its original definition it turned out that graph
entropy can be defined by yet a third at first look completely different formula.
Recall that the vertex packing polytope is the convex hull of characteristic
vectors of independent sets, cf. Definition 7

Theorem 27 ([12])

In the proof we will use that if (X,Y") is a random variable with joint distribution
W, marginal distributions P for X and @ for Y and conditional distribution
R(y|z) for Y given X = x then we can write the mutual information of X and
Y as

I(XAY)=ZP($)IOgﬁ+ZQ( )IOgQ(y) ZW“T Y logW(ic y)

+Z<ZP y|x>logQ?y)

1
~ 2 PRI 8 pryRey =

1 1 1 !
Y P(a) <log o) + Zy: R(y|z)log o log P@) zy: R(y|z)log R(y|$)>

_ Qy)
= zw: P(x) zy: R(y|z) log Ryl)”

With this in mind the reader can already understand the proof below that is
essentially the one presented on pages 4-5 of [55].
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Proof of Theorem 27. First we prove that

i I(XAY)> min -5 p;loga,.
xgeé?gipxzp( )—ae%lﬁa) ;p oga

Let the minimum of the left hand side be achieved by a pair (X,Y). Let Q
be the marginal distribution of Y for this pair. We know that the marginal
distribution for X is P and denote the conditional distribution of Y given X by
R. By the definition of mutual information and the identities shown above we
can write

I(XAY) sz > R(J|)10g

i=1 JueJeS(G)

Z ilog > Q)

J:ieJeS(G)

where the inequality follows from Jensen’s inequality by the concavity of the log
function. Since the vector defined by a; =3 ;. jeg(6) Q(J) (i =1,...,n) is in
VP(G) we have I(X AY) > mingey p(g) — 21y Pilog a;.

To prove the reverse inequality let a be the minimizing vector for the right
hand side. Since a is in V.P(G) it can be represented as a; = 3 ;. jes(q) Q' (J)
where the vector of coefficients Q'(J) can be regarded as a probability dis-

tribution on S(G). Define the conditional probabilities R'(J|i) = (J) for
1 € J and 0 otherwise. We define another probability distribution on S (G) by
Q*(J) = > piR'(J|i). Having in mind the pair (X,Y") with marginal dis-
tribution dist(X) = P and conditional distribution dist(Y|X) = R’ (thereby
dist(Y) = Q*) we can write

min I(XAY) Zpl > R/(J]i)log Q*(J_) (4)

_ /
XeYeS(G),Px=P prr R R'(Jli)

using again the identities presented just before the proof. (The inequality comes
from the fact that the distribution we work with here is not necessarily the one
attaining the minimum on the left hand side.) By the concavity of the log
function

> oW <oy 3 Q) =log1 =0,

JES(G) JES(G

hence

prz i) log Q( sz i)log Q'(J).

Thereby we can continue (4) as

i I(XNY) R'(J|i)1 1
XeYeg(lClJI)l,PX:P ( ;pz i) log R/ sz 0g a;
completing the proof. O
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Fifteenth lecture (October 28, 2022)

9.2 On properties and applications

Some important properties of graph entropy are summarized in Section 3 of
[65]. We will particularly need Lemmas 3.1 (monotonicity), 3.2 (sub-additivity),
Corollary 3.4 (formula for H(G, P) in terms of the entropies of the components)
and Proposition 3.5 (entropy of the complete graph). Note that the latter also
follows from Shannon’s Source Coding Theorem that we get back when looking
at the coding problem that led to the definition of graph entropy specifically for
the complete graph. We also remark that although Corollary 3.4 is presented in
[65] as a consequence of Lemma 3.3 there that we did not cover on the lecture,
Corollary 3.5 of [55] already follows from the mentioned Lemmas 3.1 and 3.2.

The subadditivity of graph entropy has several applications, in the course we
illustrate that by a new proof of a result of Krichevskii [33] due to Newman,
Ragde, and Wigderson [48, 49], cf. Subsection 5.2, in particular Theorem 5.3 in
[55] (on pages 18-20).

Sizteenth lecture (November 4, 2022)

9.3 About exact additivity

Next we discuss some of the structural results given in Section 6 of [55]. We
focus on the content of Subsection 6.2, in particular on Theorems 6.4 and 6.5.
To understand the latter we need the notion of convex corners and the definition
of their entropy given in Definitions 4.2 and 4,3 (page 12) of [55]. We repeat
them here for the reader’s cenvenience.

Definition 22 A set A € %'} is called a convex corner if it is closed, convex,
has a non-empty interior, and satisfies the property that if 0 < a < a; for
i=1,..,n then a € A implies a’ € A.

Definition 23 For a convex corner A C R} its entropy with respect to a prob-
ability distribution P = (p1, ..., pn) is defined as

" 1
HA(P) = mi log —. 5
A(P) ggg;p o8 - (5)

Clearly, H(G, P) = Hy p(g)(P) by Theorem 27.

The main question we want to answer is when we will have equality in the
subadditivity inequality of graph entropy for a graph and its complement. The
following definition gives a name to this property.

Definition 24 A graph G is called strongly splitting if for every probability
distribution P on its vertexr set

H(G,P)+ H(G, P) = H(P). (6)
The main theorem we are going to prove is this (see as Theorem 6.5 in [55]).
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Theorem 28 ([12]) A graph G is strongly splitting if and only if it is perfect.
The only if part has the following quick proof.

Proposition 9 Let Py be the uniform distribution on the vertices of a minimal
imperfect graph G. Then

H(G,Py) + H(G, Py) > H(Py).

Proof. Let a and b be the vectors from V P(G) and V P(G) achieving the
entropy of G and G, respectively, with respect to Py. Clearly, > . a; < a(G)
and ). b; < w(G). So we have

11 T 2>
(IT; @)= (IL; bi)»

~ 1 1 1 1
H(G,PU)+H(G,PU)zzﬁlog;—i—zﬁloggzlog

)

log W > log n,

n n

where the first inequality follows from the relation of the arithmetic and geo-
metric mean and the second from Theorem 4. ]

Note that Proposition 9 already implies that no imperfect graph is strongly
splitting because we can always concentrate a uniform distribution on the vertex
set of a minimal imperfect subgraph of an imperfect graph.

Both the above and the reverse implication will easily follow from Theorem 6.4
in [55] that is not proven there, but here we are giving a proof. To state the
theorem we need some definitions.

Definition 25 (Fulkerson [18]) Let A € R be a convex corner. The antiblocker
A* of A is defined as

A*={beR? :b" -a<1Vac A}
Note that we have o
FVP(G)=[VPG)*
by definition.

Definition 26 The pair of conver corners A,B C R% is said to form a gener-
ating pair if for every probability distribution P = (p1,..,pn) there exist a € A
and b € B satisfying a;b; = p; for (i =1,..,n).

The result behind the characterization of strongly splitting graphs is the follow-
ing theorem.

Theorem 29 ([12]) For convex corners A,B € R the following two statements
are equivalent:

(i) A*CB

(i) (A, B) is a generating pair
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We remark that in Theorem 6.4 of [55] a third equivalent statement is also given,
but here we restrict ourselves to only that part of the theorem that is needed
to prove Theorem 28.

Proof. (i) = (ii): Consider an arbitrary probability distribution P = (p1,...,pn)
and let ap be the element of A attaining the minimum in the definition of
H4(P). Then for any a € A and 0 < A <1 we have Aa+ (1 — X)ap € A since
A is convex. Thus by the choice of a,, the derivative of " | p; log m

at 0T is non-negative. The derivative is

1
i 1 =
dax Zp %8 Xai + (1— Naps

Zpi (- O + (11_ Nap)? (Aa; + (1 = XN)ap;)(ai — ap)i)> —

. Z aPz
pi )\az —Nap,i

and evaluating it at A = 0 we obtain

zn: aPz_ % > 0.

From here we can write

bp; = Pi
api
we have
a - bp § 1

for our arbitrarily chosen a € A. In other words this means that bp € A* and
so the distribution P can indeed be obtained as ap o bp where ap € A and
bp € A* C B, so A and B form a generating pair.

(ii) = (i): Now assume A* ¢ B therefore 3¢ € A* \ B and thus also some
d € B* such that ¢-d > 1. (The existence of such a d follows from the fact that
(B*)* = B.) Define the distribution P by

cid;

pi = c- d

We show that this P cannot be written in the form aob for any a € A, b € B and
therefore (A, B) is not a generating pair in this case. Assume for contradiction
that such a pair a € A, b € B does exist. Then we can write

1 c~d
1> a;c; = —c_ >1
Z A=) 4 Zl 1]% dzbz

which is a contradiction. Here the first inequality follows from ¢ € A*, the
second is a consequence of the inequality between the arithmetic and harmonic
mean applied to the numbers 7 b and the last inequality is a consequence of
be Bde B"and c-d > 1 " The contradiction we arrived to proves the
statement. O
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Proof of Theorem 28. The strongly splitting property means that for every
probability distribution P = (p1,...,p,) we have

- 1
Zpilog;:H(P) H(G,P)+ H(G,P) = Zpl

for appropriate @ € VP(G) and b € VP(G). If VP(G) and VP(G) form a
generating pair then there are vectors a € VP(G) and b € VP(G) for which
a;b; = p; for every i and these vectors should be the minimizing vectors attaining
the value of H(G, P) and H(G, P), respectively, otherwise the right hand side
above would be smaller than the left hand side which we know to be impossible.
So G will be strongly splitting if V P(G) and V P(G) form a generating pair that
by Theorem 29 is equivalent to

VP(G) 2 [VP@G)]* = FVP(G)

that is equivalent to G being perfect by Theorem 3. So perfect graphs are
strongly splitting.

We have already seen a short proof of the reverse implication but it also fol-
lows from what is said here if we take into account that VP(G) C FVP(G)
always holds thus a - b < 1 is always true for @ € VP(G),b € VP(G) and also
that for any probability distribution @ = (q1,...,q,) we have >\, p; log i <

i pilog %, since Jensen’s inequality implies

Zpilogq—glog Zpif =logl=0
i=1 pi iz P

with equality if and only if ¢; = p; for all i. So if H(G, P) and H(G, )
attained by a € VP(G) and b € V P(G), respectively, then setting ¢; :=
have

a

H(G,P)+ H(G,P) = Zm

n

a‘'b 1 1
> pilog ——= = E piloga > E pilogng(P)
i=1 v i=1 v i=1 v

with eqality if and only if a-b =1 and ¢; = p;. So for G being strongly splitting
we must have that VP(G) and VP(G) form a generating pair and this only
happens when G is perfect. a.

Note that the above argument shows that H(G,P) + H(G,P) = H(P) for
any given P = (p1,...,pn) if and only if p; = a;b; for some a € VP(G) and
b € VP(G). Furthermore, it also shows that such a P for which Vi: p; # 0 exists
if and only if the vertex set of G can be covered by independent sets Ay, ..., A,
and also by cliques Q1, ..., Q, such that A;NQ; # 0 forany i € {1,...,m},j €
{1,...,r}, cf. Definitions 6.1, 6.2 and Proposition 6.2 in the survey paper [55]
for more details.

Seventeenth lecture (November 8, 2022)

We mention without proof that the problem of exact additivity is also solved in
the general case when the two graphs involved are not necessarily complemen-
tary. An interesting feature of this result is that the complementary case plays
a special role in, it seems that it cannot be avoided to solve it separately. This
result is the following.
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Theorem 30 ([32]) For two graphs F' and G on the same vertex set V one has
H(FUG,P) = H(F,P)+ H(G,P)

for every P if and only if the following three conditions are satisfied.

(a) E(F)NE(G) = 0;

(b) if F UG induces a clique on some U C V then the graphs induced by F
and G on U are perfect;

(¢) no Ps (path on 3 vertices) of F'UG has one edge in F and one edge in

We remark that the above result implies the following theorem due to Cameron,
Edmonds and Lovész [8].

Theorem 31 ([8]) If the edges of a complete graph are three-colored (with red,
blue, and green, say) in such a way that no three-colored triangle occurs and the
graph formed by the red edges, and the graph formed by the blue edges are both
perfect then so is the graph formed by the green edges.

Here is the proof that Theorem 30 implies Theorem 31. Assume that the con-
ditions of Theorem 31 are satisfied and denote the graphs formed by the red,
blue and green edges by R, B and G respectively. Note that the perfectness of
R and the Perfect Graph Theorem implies R and G both induce perfect graphs
on those subsets of their common vertex set V on which their union is complete,
therefore perfect the conditions of Theorem 31 imply by Theorem 30 that for
every probability distribution on V' we have

H(R,P)+ H(G,P)=H(RUG,P).
Since B is perfect we also have that
H(B,P)+H(B,P)=H(B,P)+ HRUG,P)=H(P)
holds for every probability distribution. The last two equalities imply
H(R,P)+ H(G,P)+ H(B,P) = H(P)
for every probability distribution. But this means that we must also have
H(G,P)+ H(G,P)=H(G,P)+ HQRUB,P) = H(P)

for every probability distribution, so G must be perfect. (The last equality fol-
lows from knowing that the left hand side is not more than H (G, P)+ H (R, P)+
H(B,P) = H(P) by sub-additivity, but also cannot be less than H(P), again
by sub-additivity.)

9.4 Another application: A job scheduling problem

We show another possible application of Theorem 29 to a non-linear optimiza-
tion problem. It appears in the work of Denardo, Hoffman, Mackenzie, and
Pulleyblank [13].

Let H = (V, E) be a hypergraph with all vertices covered by at least one edge
and A be the convex corner defined by the characteristic vectors of the edges of
H,ie.,

A=conv{ly:A¢cE}.
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Our aim is to find w € A minimizing the value of

Iy
a(lw) = max » -,
€ ica Wi

where the [;’s are given prescribed values.

In the example of [13] the elements of V' are the edges of an acyclic directed
graph, while E consists of its subsets that form directed paths from a given
source to a given sink. The graph describes a project, the edges are the single
tasks that should be done for having done the whole work. (Such a graph
is often called and taught about as a PERT Chart, where PERT abbreviates
“Program Evaluation and Review Technique”.) We have a number of workers
and know that the ith task would last [; time units if all workers worked on
that. The project can obviously be finished in }_,_ I; time units if we let all
workers work on each task together until it is completed. This method may
have, however, some practical disadvantages. One of those is that each worker
has to deal with each single task for a while and another one is that sometimes
the workers have to switch from one task to another with no connection between
the two. The authors of [13] show that the work can be done in ), [; time
units also without these disadvantages. Let w; mean the proportion of workers
working on task i. Then task ¢ will be done in i}—z time units and the whole
project will be finished in a(w) time units. The restriction to w € A describes
the condition that each worker should work on consecutive tasks.

Theorem 32 (Denardo, Hoffman, Mackenzie, Pulleyblank [13])

min a(w) = Z l;.

weA
eV

Furthermore, the above minimum is achieved by the w that achieves the mini-
mum in the definition of Ha(P), where P is the probability distribution on V

Jp— L
defined by p; S

Proof. The direction a(w) > >,y [; for every feasible w is easy. Let w =
> acp@ala and consider the weighted mean

R B S S L

e
AeE €A ' AcE ieAZA9Z A ev

therefore a(w) which (not considering the coefficients) is the largest member of
the weighted sum on the left hand side cannot be smaller than ;i

Now consider the w achieving the minimum in the definition of H 4(P). Define
the vector b by b; = wz:lill It follows from Theorem 29 that b is in the
antiblocker of A, i.e., for bea\;nd every A € E one has ), ,b; < 1. But this
implies that ), 4 i}—‘ <> ey li for every A € E. Hence we must have equality
for all those A € E that appear with positive coefficient in the representation
of w. This also implies that this w must minimize a(w), too. O
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FEighteenth lecture (November 11, 2022)

9.5 Kahn and Kim’s application to sorting

This application, due to Kahn and Kim [26], is one of the most beautiful ones
of graph entropy that provided a deterministic algorithm to a problem which
was solved before only in case when randomization is allowed. For the details
we refer to Section 7 of [55].

The theorems of Kahn and Kim are stated but not proved in [55]. Here we show
the proof of one of them, which is Theorem 7.3 in [55]. It states the following
(G is the comparability graph of the poset S and Py is the uniform distribution
on its elements).

Theorem 33 (Kahn and Kim [26]) For any partial order S and z,y € V that
are incomparable according to S one has

. 2
mln{H(GS($<y), PU), H(Gs(y<z), PU)} < 1'7(6?57 PU) + o (7)

In the algorithmic context this theorem provides a way to answer to all questions
of the type “Is x < y?” in such a way that (using the notation introduced in
Section 7 of [55]) the need for Q(loge(S)) questions is forced.

Proof. Let a € VP(Gg) be the vector attaining H(Gg, Py). Let us denote x
by x1 and y by xo. Let T, V, W, Z be the following four subsets of S.

T={zeS:z<x}, V.={xeS:x>ux}

Wi={zeS:x<a}, Z:={xe€S: x>}
Let K C T be a clique (thus a chain in §) that maximizes the weight
w(K) = Z a;.
i EK
Choose the chains L CV,M C W, N C Z in a similar manner. Then

KU{z;}UL, and MU {z2} UN

are also chains, thus
w(K)+w(L)+a <1

and
w(M) +w(N)+ a2 < 1.

This implies that at least one of the following two inequalities should hold:

w(K) 4+ w(N) + al;az <1

or
w(L) + w(M) + ‘“;7“2 <1.

We may assume without loss of generality that the first one holds. Assuming
this we show that the following vector a’ we have

al S VP(GS(:E1<:E2))7
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where G gz, <2,) stands for the comparability graph of the poset we obtain from
S if we add the relation 1 < x5 to it along with all its consequences due to

transitivity. Let
a = o if¢= 1.7 2
a; otherwise.
By showing a’ € VP(Gg(z,<x,)) We will be done since that implies

n

"1 1 1 1 2 2
H(GS(QT1<3?2)7PU)SZﬁlogg:Zﬁlog;—’_ﬁ:H(GSvPU)—’_g

i=1 i =1
Since G (3, <a,) is perfect (as it is a comparability graph), we have
VP(GS($1<$2)) = FVP(GS($1<$2))7

thus for the above it is enough to show that for any clique Q in Gg(y, <z,) We

have
Z ay < 1.
1x; €Q

To this end let @ be a non-extendable clique (clearly, it is enough to consider
those) in Gg(z,<a,)- We consider two cases.

First assume that {z1,z2} € Q. Then @ is also a clique in Gg (note that to say
this we use that @ is non-extendable, for example with z; and x5, and therefore
it is surely a clique already in Gg), therefore

In the second case {z1, 22} C Q. In that case let

K':={z€Q: 2 <gu <) T1}

and
N :={z€Q: xs <s(@r<az) T}-

Then we have K’ C T and N’ C Z and both K’ and N’ are chains in S. This
implies by the choice of K and N that

w(K') <w(K) and w(N") < w(N).
Since there cannot exist any z € S for which z1 <g(4, <z,)< T2, we must have

Q=K UN'U{x1,x2}.

But then a a
w'(Q) = w'(K') +w/(N') + 5 + 5 =
w(EK') + w(N) + P92 (k) w(v) + B2 oy

2 2 -
Thus @’ € FVP(Gs(z,<2,)) = VP(Gs(2,<2,)) and the proof is complete. |
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Nineteenth lecture (November 14, 2022)

10 Sperner capacity

We are going to generalize Shannon’s graph capacity notion to directed graphs.
Formally this generalization will be quite straightforward. The question re-
mains: Why is it interesting? We will see that there are multiple answers to
that. One reason is that it leads to interesting mathematical problems: even
when the Shannon capacity of an undirected graph is unknown, we might solve
the problem for certain orientations nontrivially. And also the other way around:
there are undirected graphs for which the value of the Shannon capacity is easy
to determine, yet the directed case is nontrivial. (As we will see later, an exam-
ple for the latter phenomenon will be the case of a cyclically oriented triangle,
while examples for the former case are provided by certain orientations of longer
odd cycles.) Two other reasons will become clear when we generalize our defini-
tions to graph families. It will turn out that certain natural extremal set theory
questions can be formulated in the language of capacities of directed graphs.
And we will also see that there is also a natural information theoretic meaning
of these capacity values.

10.1 Definitions

First we generalize the the OR-product and OR-power to digraphs (=directed
graphs).

Definition 27 For two digraphs F' and G their OR-product F' - G is defined by
V(F-G)=V(F)xV(G)

and
E(F xG)={((f,9),(f.d) : f.f € V(F), 9,9 € V(G),

(f,f) e E(F)or (9,4') € E(G)}.

The t*" OR-power if a digraph D, denoted DY, is meant to be the t-fold OR-
product of D with itself.

Note that the only difference between Definitions 27 and ?7? is that the orien-
tation of the edges is taken into account. Also note that two vertices of the
OR-product of two digraphs can be connected by edges in both directions even
if this does not happen in any of the two graphs whose product is taken. If we
consider an undirected graph equivalent to the directed graph that contains all
of its edges with both of their possible orientations (and no other edge), then
the OR product of undirected graphs simply becomes a special case. This kind
of phenomenon will be true for all the notions we are going to consider here
for digraphs. Having this in mind, the generalization of Shannon capacity is
already straightforward.

Notation: A digraph on n vertices containing an edge between any two distinct
vertices in both directions will be called a symmetric clique. The number of
vertices in a largest symmetric clique in a digraph D will be denoted by w4 (D).
(We call this the symmetric clique number of D.
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Definition 28 The (non-logarithmic) Sperner capacity of a digraph D is de-

fined as
Sp(D) := limsup v/ws(D?).

t—o0

We do not distinguish now OR and AND capacities because the literature is
much more unified in case of Sperner capacity. Using the notation Sp only
emphasizes that the graph after it should be (considered as) a directed graph.
Just as in case of Cor(G) it follows from Fekete’s Lemma that the limsup in
the definition is actually a limit.

It is straightforward from the above definition that if D is the undirected version
of a digraph D then we always have

Sp(D) < Cor(D). (8)

The reason is that H C D obviously implies Sp(H) < Sp(D) and, as we already
mentioned, Cogr(D) is just the Sperner capacity of the graph that contains all
edges of D in both directions, so D is certainly a subgraph of it.

The name Sperner capacity comes from the fact that a symmetric clique in the
t*™ power of the simplest possible directed graph that consists of two vertices
(labeled 0 and 1) and a unique directed edge between them is formed by elements
of {0,1}" that-if considered as characteristic vectors of a t-element set—form a
Sperner system: the sets they describe have the property that none of them is
the subset of another one.

10.2 Bounds

Above we introduced the symmetric clique number of a digraph. Another special
type of directed clique will also be important for us. These are called transitive
cliques.

Definition 29 An oriented complete graph T is called a tournament if all pairs
of vertices are connected in exactly one of the two possible directions. A tour-
nament is called a transitive tournament if its vertices can be labeled by distinct
positive integers (by 1,2,...,n, say) in such a way that for any two of the la-
bels, i and j, the edge between i and j is oriented towards the larger of the two
numbers i and j. A transitive tournament subdigraph T of a digraph D will be
called a transitive clique of D and the number of vertices of a largest transitive
clique of D will be its transitive clique number denoted by wy, (D).

Proposition 10 If T,, is a (one could say the, as it is unique up to isomor-
phism) transitive tournament on n vertices then

Sp(T,) = n.

Proof. By
Sp(Tn) < OOR(Kn) =n

we have that n is an upper bound. To prove the reverse inequality assume that
V(T,) ={1,...,n} and

(i,4) € E(T,) i < j.
Let b be any positive integer between ¢ and tn and consider the set @), of all

vertices 125 ... € V(T%) for which Y)_, z; = b. Observe that Q; induces a
symmetric clique in T%: indeed, if y1 ...y, 21 - .. z¢ are two different vertices in
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Q@p then there must exist 1 < r,s < ¢ such that y,. < z, and ys > z,, otherwise
we could not have Z:.:l Yi = Z§=1 z;. This implies that any two vertices are

connected in both directions in @) so it is a symmetric clique.

Since the nt — t + 1 sets @, belonging to the nt — ¢t + 1 possible values of b

partition V(T), the largest one of them has at least it elements. This
implies that
t n'
ws(Th) > ———
o(T) 2 nt—t+1
and thus
Sp(T,) > lim {/—"
P = By e =

Since n was also an upper bound this completes the proof. O

Corollary 34 For any digraph D we have

Sp(D) > w (D).

The smallest digraph which is not a transitive tournament is a cyclically oriented
triangle that we denote here by Y3. The above bounds give us

2 < Sp(Ys) <3.

It was first proven in [7] that the above lower bound is tight. An alternative
proof was given in [6] which was then generalized by Alon [1] who proved the
following result.

Theorem 35 For every directed graph D we have
Sp(D) < min{A4(D) +1,A_(D) + 1}.
Here Ay (.) and A_(.) stands for the maximum outdegree and mazimum inderee,

respectively.

Proof. We define a polynomial of ¢ variables f,(x) for each a € [V (D)]* = V(D?)
as follows. We assume that V(D) = {1,2,...,n}.

fa(m) = H§=1Hj€N+(ai)(m’i - .])7

where N, (v) is the outneighborhood of vertex v.

Let @ be a largest symmetric clique in D?. Observe that if a,b € @ then
fa(b) 20 < a=b.

Indeed, if @ # b then for some i € {1,...,t} we must have b; € N, (a;) resulting
in fq(b) = 0. On the other hand, if we do not allow loops (and we do not),
fa(a) # 0. This implies that the set of polynomials

{fa(®)}acq

are linearly independent, therefore |@Q| cannot be larger than the dimension
of the linear space they generate. The latter can be bounded from above by
the number of monomials of the form x7'...z7" that can be present in our
polynomials. Since by the definition of f,(2) we must have 0 < j; < A, (D) for
every i in these monomials, we can have at most (A4 (D) +1)! such monomials.
Thus we have obtained

Q1 < (AL (D) + 1),
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Since Q was chosen to be a largest symmetric clique in D? this gives
Sp(D) = tlim Vws(Dt) < tlim V(AL (D) +1)t= A, (D) +1.
— 00 — 00

Observing that reversing all edges in a digraph does not change the value of its
Sperner capacity we can see that the above also implies

Sp(D) < A_(D)+1
completing the proof. O

Denoting the cyclically oriented n-cycle by Y,, the above theorem has the fol-
lowing immediate consequence.

Corollary 36
Sp(Y,) = 2.

Corollary 36 solves, in particular, the Sperner capacity problem for the cyclically
oriented triangle. Since the triangle has only two non-isomorphic orientations
and the other one is transitive for which Corollary 34 gives the solution, we
know the Sperner capacity for every oriented version of the 3-length cycle. The
5-length cycle is already different: it has four non-isomorphic orientations and
the results presented so far give the Sperner capacity only for one of them (the
cyclic one). For the rest we know only that 2 is a lower bound by Corollary 34
and /5 is an upper bound by (8) and Corollary 10.

Twentieth lecture (November 18, 2022)

To get a better upper bound we will introduce first another graph coloring
parameter.

10.3 Local chromatic number

Imagine a university department where every professor is the instructor of ex-
actly one course and everybody has enough expertise in a few other courses to
give a lecture on it if the course instructor needs to be substituted for some rea-
son. The department head makes the schedule of the courses so that no one has
a lecture at the same time as another course on which (s)he might potentially
substitute the instructor and tries to make it so that if everyone is asked to be
available at the time of such lectures on which (s)he is a potential substitute
then the total number of timeslots when any of the professors should either
lecture or be available is as small as possible. The idea is that it is extremely
unlikely that two professors should be substituted at the same time so it is all
right if two different courses the same person could lecture on as a substitute
are scheduled to the same time. We are interested in the behaviour of the above
mentioned minimum value as a parameter of the situation that is of the graph in
which two vertices are connected if they represent two courses whose professors
could substitute each other. At this point the astute reader may ask why it
is obvious that if one professos can substitute another one then this other one
can also substitute the first one. It is indeed an important point and we will
see that it will worth to look at also the asymmetric situation but let us first
assume that there is such a symmetry: if Professor A can substitute Professor
B then this is mutual, Professor B can also substitute Professor A.

The investigation of the graph parameter we obtain this way was initiated
in a paper by Erdds, Firedi, Hajnal, Komjdth, Rodl and Seress [15] and can be
defined formally as follows.
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Definition 30 ([15]) The local chromatic number xioc(G) of a graph G is the
mazimum number of different colors appearing in the closed neighbourhood of
any vertex, minimized over all proper colorings of G. Formally,

Xioe(@) = min max [{e(w) :u € N ()]

where N(v), the closed neighborhood of the vertez v € V(G), is the set of those
vertices of G that are either adjacent or equal to v and ¢ runs over all proper
colorings of G.

It is obvious that if we use only x(G) colors for the coloring then no closed
neighborhood can contain more than that, so

Xloc (G) S X(G)

must hold. It is also clear that in any proper coloring with exactly x(G) colors
each color class must contain a vertex that sees all the other colors in its neigh-
borhood. If this was not so for a color class then every vertex of that color could
be recolored to one of the other colors resulting in a proper coloring with fewer
than x(G) colors, an obvious contradiction. So if there exists a proper coloring
that attains a local chromatic number strictly smaller than x(G) then it must
use strictly more colors than minimally necessary for a proper coloring. At first
look one may feel that this is hard to imagine that one can make each closed
neighborhood having fewer than x(G) colors by “wasting” colors, that is, using
more colors than it is necessary for a proper coloring. Yet, surprisingly, this is
the case, there are graphs for which the local chromatic number is smaller than
the chromatic number.

Definition 31 The universal local coloring graph U(m,r) with parameters m,r
(where m > r and both of them are positive integers) is defined as follows.

V(U(m,r)) ={(z,A):x € [m],AC [m],x ¢ A,|A| =r —1}

E(U(m,r)) ={{(z,A),(y,B)}:x € B,y € A}.

Proposition 11
Xioc(U(m,r)) = r.

Proof. Let ¢:V(U(m,r)) — [m] be the coloring for which
cl(z,A)—x

for every vertex (x, A) € V(U(m,r)). Note that by the definition of U(m,r) this
gives ¢(N (z, A)) = AU{z} which by |A| = r—1,z ¢ A implies that |N(z, A)| = r
for all (z,A) € V(U(m,r), therefore proving Xioc(U(m, 7)) < r. On the other
hand, if T is an r-element subset of [m] then the r vertices in {(z, A) : {zx}UA =
T} induce an r-vertex clique in U(m, r). Since xioc(K;) = 7 for obvious reasons,
this shows that xi0c(U(m, 7)) > 7, so we must have yioc(U(m, 7)) = r as stated.
O

It is easy to see that U(m,2) is bipartite for every m > 2, so these graphs
have their local chromatic nuber equal to their chromatic number. However, we
are going to prove, that for r = 3 the value of x(U(m,r) is unbounded. Since,
obviously, U(m,r) C U(m+1,r) this actually means that lim,, ., x(U(m, 3)) =
oo. To prove this we will use the following notion.
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Definition 32 For a digraph D its line graph L(D) is defined as follows.

and
E(L(D)) = {{(a,b),(c,d)} : b=c or a = d}.

Thus two edges are connected as vertices of the line graph if the head of one of
them is identical to the tail of the other one.

It is a well-known exercise (see e.g. as Exercise 9.26a in [41]) that if D is a
digraph with underlying undirected graph D then we have

x(L(D)) > log x(D).

The proof is as follows: consider an optimal proper coloring of L(ﬁ) with h :=
Y(L(D)) colors as an edge-coloring of D and color each vertex v of D with the
set of colors that appear on the edges that have v as their tail. This is a proper
vertex-coloring of D since if (u,v) € E(D) then the color of this edge is an
element of the set used to color u and cannot be an element of the set used to
color v (otherwise the edge-coloring would not be proper). Since the possible

number of subsets of the set of h colors is 2" this gives
x(D) < 2"

which is equivalent to x(L(D)) = h > log x(D) that we wanted to prove.

Theorem 37 For every m > 3 we have

x(U(m,3)) > loglogm.

Proof. The vertices of U(m,3) are of the form (z, A) where A = {a;1,az2} is a
2-element set. Consider only the subgraph induced by those vertices for which
we have a; < & < ag and observe that this subgraph is isomorphic to L(L(T,,))
where L(D) is the line graph of digrah D with its natural orientation: edges of
the form {(u,v), (v, w)} are oriented as ((u,v), (v, w)) and T, denotes the tran-
sitive tournament on the m vertices 1,2, ..., m. Applying the above mentioned
result twice this observation gives x(U(m, 3)) > x(L(L(T},))) > loglogm. O
Note that since x10c(U(m,3)) = 3 this means that the gap between the local
chromatic number and the chromatic number can be arbitrarily large.

It is a more or less trivial observation that a graph G admits a proper coloring
with m colors attaining that its local chromatic number is at most r if and only
if a homomorphism from G to U(m,r) exists. Indeed, if the claimed coloring
exists then any vertex colored with color j and having the at most r — 1 colors
one can collect in a set H can be mapped to (j, A) for some A O H to obtain
such a homomorphism. Similarly, if such a homomorphism exists then coloring
every vertex that are mapped to a vertex (j, A) of U(m,r) by j we get a proper
coloring attaining local chromatic number at most r. Using this observation we
prove the following result.

Theorem 38 ([31]) Every finite simple graph G satisfies

Xf(G) < Xloc(G)'

Proof. First we prove that
xf(U(m,r)) =r.
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We have already seen that w(U(m,r)) > r (since vertices {(x, T\ {z}) : x € T}
form an r-clique for any r-subset T' of [m]). This implies x;(U(m,r)) > r.
To prove the reverse inequality we observe that U(m,r) is vertex-transitive
since any vertex (xz, A) can be moved to any other one (y, B) by an appropriate
permutation of the elements of [m]. Observe also that the vertices in {(z, A): z =
min(A U {z})} induce an independent set in U(m,r). (This is because if (z, A)
and (y, B) are connected, then w.l.o.g. = < y and so x € B implies that y
cannot be the minimal element of BU {y} as the latter also contains « which is

[V/(U(m,r)

smaller.) The size of this set is exactly )l and so this is a lower bound

on a(U(m,r)) providing

proving the statement. ]

Since we know Cogr(G) < x7(G) Theorem 38 implies that the local chromatic
number bounds the Shannon OR-capacity from above. But the proof itself
already shows that this upper bound will give nothing new as it is always a worse
(or at least not better) upper bound than the fractional chromatic number.
The novelty comes in the case when we consider directed graphs. It is quite
straightforward to define a directed version of the local chromatic number for
digraphs. Indeed, in our introducing “story” there is nothing that should make
us assume that if Professor X can substitute Professor Y then this should be
mutual and Professor Y should also be able to teach the course of Professor X.
This leads to the following definition.

Definition 33 ([31]) The directed local chromatic number Xioc,a(D) of a di-
graph D is defined as

Xioc,d(D) = mclnvér‘l/aﬁj) He(w) :u e Ny(v)},

where N+(v), 1s the closed outneighborhood of the vertex v, that is the set of
vertices including v and those u € V(D) for which (v,u) € E(D) and the
minimization is over all proper colorings ¢ of (the underlying undirected graph

of) D.

Theorem 39 ([31]) For any (loopless) digraph D

SP(D) < Xloc,d(D)'

Twenty first lecture (November 22, 2022)

Proof of Theo